HIERARCHICAL MODELING OF THE RESOLVE SURVEY

Sheila Kannappan, UNC Chapel Hill Faculty Fellow for SAMS ASTRO
Charlie Bonfield, UNC Chapel Hill Graduate Fellow for SAMS ASTRO

with input from Katie Eckert, David Stenning, Amanda Moffett, Andreas Berlind, Victor Calderon, and other helpful people in Working Groups 1&4
Galaxy groups/clusters share dark matter “halos” in the cosmic web

- galaxy mergers lag halo mergers
- some halos still merging
- some “groups” of one
- physics of galaxy growth (e.g. star formation and black hole growth) tied to physics of dark matter halo growth – *how much?*
REsolved Spectroscopy Of a Local VolumE

http://resolve.astro.unc.edu

- volume-limited, unusually complete census of dynamical, stellar, and gas mass, plus star formation and merging, from dwarf galaxy to cluster scales
- >50,000 cubic Mpc
- >1500 galaxies
- stellar+gas mass limit \(\sim 10^9 \, M_{\odot} \)
- 1” = 0.3-0.5 kpc
- volume-limited design enables robust group finding
- perfect for hierarchical Bayesian modeling (HBM)
Cosmic Variance and Completeness

ECO: “Environmental COntext catalog” (~10x larger, stellar mass and group metrics match RESOLVE; Moffett+ 2015)
Contains RESOLVE-A; enables calibration of cosmic variance.
More complete than SDSS.

RESOLVE-B:
Stripe 82: extra deep; hyper-complete – cz campaign for galaxies lost by SDSS (dwarfs, pairs, shredded spirals)
Empirical completeness corrections larger than predicted by Blanton+ 2005 (Eckert+ 2016).
TWO PROJECTS

(NOTE IN ASTRO JARGON: “FUNCTION” = FREQUENCY DISTRIBUTION)

1. HBM of the ECO group velocity dispersion function (demo using mock ECO built on a dark matter simulation)

 observable: \(\sigma_{\text{gal}} \) = “dispersion” in projected galaxy orbital velocities; proxy for \(\sigma_{\text{true}} \) = metric of halo mass if halo is virialized (meaning \(M \leftrightarrow \sigma \))

2. HBM of RESOLVE galaxy stellar mass function and star formation history distribution (model grid design/interpolation challenge)

 observables: spectra or filter fluxes; indicative of \(M_\star \) and SFH (+metallicity, dust)

Popescu et al. 2011
1. HBM of the ECO group velocity dispersion function (demo using mock ECO built on a dark matter simulation)

Restrict mock ECO to groups with N≥3

Q: Can HBM improve σ_{gal} accuracy?

Step 1: Semi realistic

- central galaxy not ID’d, but biases σ low with true velocity zero
- 3D information is lost because velocities are only along line-of-sight
- groups need not be virialized, so even well-measured σ_{gal} may exceed value expected from halo mass σ_{true}
- low-mass groups have lower N

Step 2: Fully realistic

- add friends-of-friends group finding

observable: σ_{gal} = “dispersion” in projected galaxy orbital velocities; proxy for σ_{true} = metric of halo mass if halo is virialized (meaning $M \leftrightarrow \sigma$)
HBM OF ECO GROUP VEL. DISPERSION FUNCTION
(DEMO USING MOCK ECO BUILT ON A DARK MATTER SIMULATION)

Restrict mock ECO to groups with \(N \geq 3 \)

Q: Can HBM improve \(\sigma_{gal} \) accuracy?

Step 1: Semi realistic
- central galaxy not ID’d, but biases \(\sigma \) low with true velocity zero
- 3D information is lost because velocities are only along line-of-sight
- groups need not be virialized, so even well-measured \(\sigma_{gal} \) may exceed value expected from halo mass \(\sigma_{true} \)
- low-mass groups have lower \(N \)

Step 2: Fully realistic
- add friends-of-friends group finding

Step 1 compared to:
- **Gapper** – traditional robust metric akin to standard deviation around mean velocity
- **Halo Abundance Matching (HAM)** – monotonic mapping from “observed” cumulative group \(X \) function to theoretical cumulative halo mass function at equal space density, plus \(M_{HAM} \leftrightarrow \sigma_{HAM} \) (assume virialized)
- **Simple Bayesian** – separate fit to each group’s distribution of velocities using Student’s \(t \), \(\nu=8 \)
HBM OF ECO GROUP VEL. DISPERSION FUNCTION
(DEMO USING MOCK ECO BUILT ON A DARK MATTER SIMULATION)

HAM

\[X = \text{tracer of collapsed mass (} M_\star, M_{\text{gas}}, \text{light)} \]

but expect diversity in ratio of hot group gas to collapsed mass \(\rightarrow \) not monotonic

\(\Rightarrow \) by design, \(\sigma_{\text{HAM}} \) matches theoretical \(\sigma_{\text{true}} \) better than \(\sigma_{\text{gal}} \) does for overall distribution, but only \(\sigma_{\text{gal}} \) can probe real diversity

Step 1 compared to:

- **Gapper** – traditional robust metric akin to standard deviation around mean velocity

- **Halo Abundance Matching (HAM)** – monotonic mapping from “observed” cumulative group X function to theoretical cumulative halo mass function at equal space density, plus \(M_{\text{HAM}} \Leftrightarrow \sigma_{\text{HAM}} \) (assume virialized)

- **Simple Bayesian** – separate fit to each group’s distribution of velocities using Student’s t, \(\nu=8 \)
HBM OF ECO GROUP VEL. DISPERSION FUNCTION
(DEMO USING MOCK ECO BUILT ON A DARK MATTER SIMULATION)

RESULTS

• HBM seems to work – see shrinkage at low σ (low mass \Leftrightarrow low N \Leftrightarrow broadest posteriors)

• HBM is better than Gapper
HBM OF ECO GROUP VEL. DISPERSION FUNCTION
(DEMO USING MOCK ECO BUILT ON A DARK MATTER SIMULATION)

RESULTS

• HBM seems to work – see shrinkage at low σ (low mass \Leftrightarrow low N \Leftrightarrow broadest posteriors)

• HBM is better than Gapper

NEXT STEPS

• understand posteriors
HBM OF ECO GROUP VEL. DISPERSION FUNCTION
(DEMO USING MOCK ECO BUILT ON A DARK MATTER SIMULATION)

RESULTS

• HBM seems to work – see shrinkage at low σ (low mass \Leftrightarrow low N \Leftrightarrow broadest posteriors)

• HBM is better than Gapper

NEXT STEPS

• understand posteriors

• test whether HBM can beat HAM for individual (true) group σ’s, despite built-in victory for σ_{HAM} distribution
HBM OF ECO GROUP VEL. DISPERSION FUNCTION
(DEMO USING MOCK ECO BUILT ON A DARK MATTER SIMULATION)

RESULTS

• HBM seems to work – see shrinkage at low σ (low mass \Leftrightarrow low N \Leftrightarrow broadest posteriors)

• HBM is better than Gapper

NEXT STEPS

• understand posteriors

• test whether HBM can beat HAM for individual (true) group σ’s, despite built-in victory for σ_{HAM} distribution

• add friends-of-friends
TWO PROJECTS

(NOTE IN ASTRO JARGON: “FUNCTION” = FREQUENCY DISTRIBUTION)

1. HBM of the ECO group velocity dispersion function (demo using mock ECO built on a dark matter simulation)

observable: σ_{gal} = “dispersion” in projected galaxy orbital velocities; proxy for σ_{true} = metric of halo mass if halo is virialized (meaning $M \leftrightarrow \sigma$)

2. HBM of RESOLVE galaxy stellar mass function and star formation history distribution (model grid design/interpolation challenge)

observables: spectra or filter fluxes; indicative of M_\star and SFH (+metallicity, dust)

Popescu et al. 2011
HBM OF RESOLVE STELLAR MASSES AND SFHs
(MODEL GRID DESIGN/INTERPOLATION CHALLENGE)

Problem: severe degeneracies (e.g. age-metallicity-dust reddening)

Q: Can HBM achieve consistent results within/across galaxies?

0: create/interpolate model grid

1: within galaxies
 • model annuli as if distinct galaxies
 • add HBM to enforce consistency
 • test on fake data with noise

2: across galaxy population
 • complete subsets within groups, all groups of same mass, etc.
 • full survey subject to universal SFH

3: nested HBM within & across galaxies
HBM OF RESOLVE STELLAR MASSES AND SFHs
(MODEL GRID DESIGN/INTERPOLATION CHALLENGE)

RESULTS (step 0)

- model grid creation automated (one run = 999 dust reddening/metallicity/SFH combos x 10 sec)
- singular value decomposition on grid of model UV-NIR filter fluxes ⇒ too few SVD components!
HBM OF RESOLVE STELLAR MASSES AND SFHs
(MODEL GRID DESIGN/INTERPOLATION CHALLENGE)

RESULTS (step 0)
• model grid creation automated (one run = 999 dust reddening/metallicity/SFH combos x 10 sec)
• singular value decomposition on grid of model UV-NIR filter fluxes ⇒ too few SVD components!

NEXT STEPS
• remove reddening from grid?
• or add more information (optical spectra, ISM model)?
• Gaussian Process model interpol’n
• test simple Bayesian MCMC vs. brute force integration

Model parameters (free or in grid sims):
1. total stellar mass formed in both young & old components combined M
2. fraction of mass in the younger component f_y
3. reddening of each component (free/grid)
4. metallicity of each component, 6 options
5. SFH parameters (when and for how long star formation occurred) – real # values
TWO PROJECTS
(NOTE IN ASTRO JARGON: “FUNCTION” = FREQUENCY DISTRIBUTION)

1. HBM of the ECO group velocity dispersion function (demo using mock ECO built on a dark matter simulation)
 status: paper demonstrating HBM and applying to ECO expected this summer

2. HBM of RESOLVE galaxy stellar mass function and star formation history distribution (model grid design/interpolation challenge)
 status: model grid completion and simple Bayesian test expected this summer