COMPRESSED SENSING IN PYTHON

Sercan Yıldız
syildiz@samsi.info

February 27, 2017
Outline

A Brief Introduction to Compressed Sensing

A Brief Introduction to CVXOPT

Examples
A Brief Introduction to Compressed Sensing
Signal Processing and Compression

- Signals over time and/or space
- Often, signals are sparse in an appropriate domain.

- Basic idea behind lossy sound/image compression:
 - Transform signal to the frequency domain.
 - Keep frequencies with the largest magnitudes, discard the rest.
 - Examples: MP3, JPEG, MPEG
Sampling

- Sampling at discrete points:
 - Reduces a continuous-time (analog) signal to a discrete-time (digital) signal
 - If the signal is bandlimited (bounded frequency) and the sampling rate is large enough, the signal can be exactly recovered:

Theorem (Nyquist-Shannon sampling theorem)

A bandlimited signal can be exactly reconstructed from its samples if the sampling rate is more than twice the maximum frequency in the signal.

- Compressed sensing combines compression and sampling with efficient sampling protocols that capture and condense the information content in a sparse signal into a small amount of data.
Compressed Sensing (CS)

- Perfect reconstruction can be possible at sub-Nyquist sampling rates if additional information about the signal (such as sparsity) is available.
- Why are low sampling rates attractive?
 - Number of sensors may be limited.
 - Measurements may be expensive.
 - Sensing process may be slow.
- Reconstruction of undersampled signal requires optimization!
- In the remainder, we consider discrete signals of finite length...and make things a little more concrete.
Compressed Sensing (CS)

- Given: Signal \(f \) with the sparse representation \(f = \Psi x \) for some square unitary matrix \(\Psi \)
- We would like to design an \(n \times m \) sensing matrix \(\hat{\Phi} \) (for \(m << n \)) that captures as much information about \(f \) as possible. The matrix \(\hat{\Phi} \) will generate the observations
 \[
 y = \hat{\Phi}^\top f.
 \]

- Questions:
 - How do we design \(\hat{\Phi} \)?
 - How do we reconstruct \(f \) from \(y \)?
A key property of good sensing matrices is their incoherence with Ψ.

The coherence of two orthogonal matrices Φ and Ψ is

$$\mu(\Phi, \Psi) = \sqrt{n} \max_{j,k} \Phi_j^\top \Psi_k.$$

Coherence measures the largest correlation between any two elements of Φ and Ψ.

Examples of low coherence pairs:
- Φ: identity matrix, Ψ: Fourier matrix
- Φ: random orthogonal matrix, Ψ: fixed orthogonal matrix (whp)

Given a low coherence pair (Φ, Ψ), we choose the sensing matrix $\hat{\Phi}$ as an $n \times m$ column submatrix of Φ.

Sensing Matrices
Let $A = \hat{\Phi}^\top \Psi$.

To recover the signal x in the frequency domain, we solve the “basis pursuit” problem

$$\min_x \|x\|_1 \quad \text{subject to} \quad Ax = y.$$

- ℓ_1-norm promotes sparsity.

- How can we attack basis pursuit?
 - Reformulate as a linear program:
 $$\min_{x,u} \sum_j u_j \quad \text{subject to} \quad Ax = y, \quad -u \leq x \leq u.$$
 - Reformulate as an ℓ_1-regularized least squares problem:
 $$\min_x \|Ax - b\|_2^2 + \lambda \|x\|_1.$$
 - Special-purpose algorithms
When does CS work?

Theorem (Candès and Romberg, 2007)

Suppose the true signal \tilde{x} is s-sparse. Let $\hat{\Phi}$ consist of m uniformly random measurements from Φ. If

$$m \geq C\mu(\Phi, \Psi)s \log n$$

for some constant $C > 0$, then the basis pursuit problem recovers \tilde{x} with high probability.

- Taking $m \geq 4s$ seems to work well in practice.
- Signals are not always exactly sparse: Many coefficients of the true signal \tilde{x} may be small but not zero.
When does CS work?

Definition (Candés and Tao, 2005)

For each integer $s = 1, 2, \ldots$, the *isometry constant* δ_s of a matrix A is the smallest number such that

$$(1 - \delta_s)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta_s)\|x\|_2^2$$

holds for all s-sparse vectors x. We will say that A has the *restricted isometry property (RIP)* of order s if δ_s is “small.”

- How is RIP useful?
 - If $\delta_{2s} \approx 0$, then $\|A(x_1 - x_2)\|_2^2 \approx \|x_1 - x_2\|_2^2$ for all s-sparse vectors x_1, x_2.
 - In other words, x_1 and x_2 remain distinguishable even after left-multiplication with A.
When does CS work?

Theorem (Candés, Romberg, and Tao, 2006)

Assume $\delta_{2s} < \sqrt{2} - 1$. Let \bar{x} be the true signal, and let \bar{x}_s be the s-sparse vector consisting of the s largest (in absolute value) entries of \bar{x}. Then the solution x^* to the basis pursuit problem satisfies

$$
\|x^* - \bar{x}\|_2 \leq C' \|\bar{x} - \bar{x}_s\|_1 / \sqrt{s} \quad \text{and} \quad \|x^* - \bar{x}\|_1 \leq C' \|\bar{x} - \bar{x}_s\|_1
$$

for some constant $C' > 0$.

- **Why is this surprising?**
 - In a traditional compression scheme, we would sample f, calculate the transform coefficients \bar{x}, and compress \bar{x} into \bar{x}_s.
 - If A satisfies the assumption, using CS techniques we can compute a solution x^* of quality close to \bar{x}_s from the sample y only.

- **Where do we find matrices A that satisfy the RIP?**
 - There are several randomized schemes for sampling matrices A that satisfy the RIP whp.
 - Given a low-coherence pair (Φ, Ψ), one can sample m columns of Φ uniformly at random. If $m \geq Cs(\log n)^4$, $A = \hat{\Phi}^\top \Psi$ satisfies the RIP whp.
Interested in More?

- **Surveys:**

- **Textbooks:**

For more information on compressed sensing, consider the following books:

- *Compressed Sensing: Theory and Applications* by Yonina C. Eldar and Gitta Kutyniok
- *Sampling Theory: Beyond Bandlimited Systems* by Yonina C. Eldar
- *A Mathematical Introduction to Compressive Sensing* by Simon Foucart and Holger Rauhut

_images sources:
- [Compressed Sensing](https://images-na.ssl-images-amazon.com/images/I/514fK1MG-9L_.SX327_BO1,204,203,200_.jpg)
- [A Mathematical Introduction to Compressive Sensing](https://images-na.ssl-images-amazon.com/images/I/41s%2B850qu0L_.SX331_BO1,204,203,200_.jpg)
Interested in More?

- Other key references:
A Brief Introduction to CVXOPT
Introduction to CVXOPT

- CVXOPT is a free convex optimization package for Python.
- It can be used with iPython or on the command line by executing Python scripts.
- It provides built-in solvers for
 - linear cone programs: `cvxopt.solvers.conelp`
 - quadratic cone programs: `cvxopt.solvers.coneqp`
 - convex programs with linear objectives: `cvxopt.solvers.cpl`
 - convex programs with nonlinear objectives: `cvxopt.solvers.cp`
- It provides routines for implementing customized solvers and interfaces to external solvers (GLPK, MOSEK, and DSDP5).
- It also provides the module `cvxopt.modeling` for modeling and solving linear programs and optimization problems with convex piecewise-linear cost and constraint functions.
Essentials for Today

- **cvxopt.matrix and cvxopt.spmatrix**
 - CVXOPT extends the built-in Python objects with a `cvxopt.matrix` object for dense matrices and an `cvxopt.spmatrix` object for sparse matrices.
 - To enter a problem in matrix form into CVXOPT, data must be provided using one of these matrix objects.
 - NumPy arrays can be converted to CVXOPT matrices.

- **cvxopt.modeling**
 - Use `cvxopt.modeling.variable` to define (a vector of) variables.
 - Affine and convex piecewise-linear functions can be created with compositions of linear expressions, `max`, and `abs`.
 - Use `cvxopt.modeling.op` to create an optimization problem.
 - Call the method `cvxopt.modeling.op.solve` to solve the optimization problem: This method converts the problem to a linear program and solves it using the CVXOPT linear programming solver.

Discrete Fourier Transform (DFT)

- Let $\Psi \in \mathbb{C}^{n \times n}$ be the square unitary matrix

\[
\Psi = \begin{bmatrix}
 \vdots & \vdots & \vdots & \vdots \\
 \frac{1}{\sqrt{n}} e^{i 2\pi p/n} & \frac{1}{\sqrt{n}} e^{i 4\pi p/n} & \cdots & \frac{1}{\sqrt{n}} e^{i 2\pi p} \\
 \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}
\]

- Recall Euler’s identity? $e^{ix} = \cos x + i \sin x$.

- For one-dimensional signals:
 - (Orthonormalized) DFT: $f \rightarrow \Psi^\top f$
 - (Orthonormalized) Inverse DFT: $x \rightarrow \Psi x$

- For two-dimensional signals:
 - DFT/IDFT acts on the rows first and columns later.
Discrete Cosine Transform (DCT)

- Similar to the DFT but real-valued
- Let $\Psi \in \mathbb{R}^{n \times n}$ be the square orthogonal matrix

$$
\Psi = \begin{bmatrix}
\vdots & \vdots & \vdots \\
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{2n}} & \cos \left(\frac{\pi (2p+1)}{2n} \right) & \cdots & \frac{1}{\sqrt{2n}} & \cos \left(\frac{\pi (2p+1)(n-1)}{2n} \right) \\
\vdots & \vdots & \vdots
\end{bmatrix}
$$

- For one-dimensional signals:
 - (Orthonormalized) DCT (of type II): $f \rightarrow \Psi^\top f$
 - (Orthonormalized) Inverse DCT (of type II): $x \rightarrow \Psi x$
- For two-dimensional signals:
 - DCT/IDCT acts on the rows first and columns later.
- DFT/DCT represents a signal as a sum of sinusoids of varying magnitudes and frequencies.
- For a “typical” sound/image signal, the sample data is correlated, and the DFT/DCT is sparse: Most of the information is concentrated in just a few coefficients of $x = \Psi^\top f$.
EXAMPLE #1: SOUND SENSING

- Example #1.a: Artificial sound wave
Example #1: Sound Sensing

- Example #1.a: Artificial sound wave
 - Percentage sampled: 10%

![True Signal in the Time Domain](image1)

![Signal in the Frequency Domain](image2)

![True and Recovered Signals in the Time Domain](image3)
EXAMPLE #1: SOUND SENSING

- Example #1.a: Artificial sound wave
 - Percentage sampled: 10%

- Example #1.b: Real sound wave
Example #1: Sound Sensing

- Example #1.a: Artificial sound wave
 - Percentage sampled: 10%

- Example #1.b: Real sound wave
 - Percentage sampled: 20%
Example #2: Image Sensing

- Example #2.a: SAMSI
Example #2: Image Sensing

- Example #2.a: SAMSI
 - Percentage sampled: 25%
Example #2: Image Sensing

- Example #2.a: SAMSI
 - Percentage sampled: 25%

- Example #2.b: Boat
Example #2: Image Sensing

- Example #2.a: SAMSI
 - Percentage sampled: 25%

- Example #2.b: Boat
 - Percentage sampled: 25%
Questions?