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♣ Fact: Many inference procedures in Statistics reduce to
optimization
♠ Example: MLE – Maximum Likelihood Estimation

Problem: Given a parametric family {pθ(·) : θ ∈ Θ}
of probability densities on Rd and a random observa-
tion ω drawn from some density pθ?(·) from the family,
estimate the parameter θ?.
Maximum Likelihood Estimate: Given ω, maximize
pθ(ω) over θ ∈ Θ and use the maximizer θ̂ = θ̂(ω)

as an estimate of θ?.

Note: In MLE, optimization is used for number crunching only
and has nothing to do with motivation and performance anal-
ysis of MLE.

♣ Most of traditional applications of Optimization in Statistics
are of “number crunching” nature.
• In contrast, we will focus on inference routines motivated and
justified by Optimization Theory – Convex Analysis, Optimality
Conditions, Duality...
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Detector-Based Hypothesis Testing
Detectors & Detector-Based Pairwise Tests

♣ Situation: Given two families P1, P2 of probability distribu-
tions on an observation space Ω and an observation ω ∼ P

with P known to belong to P1∪P2, we want to decide whether
P ∈ P1 (hypothesis H1) or P ∈ P2 (hypothesis H2).
♣ Detectors. A detector is a function φ : Ω → R. Risks of a
detector φ w.r.t. P1,P2 are defined as

Risk1(φ|P1,P2) = sup
P∈P1

∫
Ω

e−φ(ω)P (dω),

Risk2(φ|P1,P2) = sup
P∈P2

∫
Ω

eφ(ω)P (dω)

Risk1(φ|P1,P2) = Risk2(−φ|P2,P1)

♠ Simple test Tφ associated with detector φ, given observa-
tion ω,
• accepts H1 – Tφ(ω) = 1 – when φ(ω) ≥ 0,
• accepts H2 – Tφ(ω) = 2 – when φ(ω) < 0.
♣ Immediate observation:

Risk1[Tφ|H1, H2] ≤ Risk1(φ|P1,P2)
Risk2[Tφ|H1, H2] ≤ Risk2(φ|P1,P2)

(∗)

where test’s risks Risk1, Risk2 are

Riskχ[Tφ|H1, H2] = sup
P∈Pχ

Probω∼P
{
Tφ(ω) 6= χ

}
Reason for (∗): Probω∼P {ω : ψ(ω) ≥ 0} ≤

∫
eψ(ω)P (dω).
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Risk1(φ|P1,P2) = sup
P∈P1

∫
Ω

e−φ(ω)P (dω),

Risk2(φ|P1,P2) = sup
P∈P2

∫
Ω

eφ(ω)P (dω)

♣ Detectors admit simple “calculus:”

♣ Renormalization: φ(·)⇒ φa(·) = φ(·)− a

⇒
{

Risk1(φa|P1,P2) = eaRisk1(φ|P1,P2)
Risk2(φa|P1,P2) = e−aRisk2(φ|P1,P2)

⇒What matters, is the product

[Risk(φ|P1,P2)]2 := Risk1(φ|P1,P2)Risk2(φ|P1,P2)

of partial risks of a detector. Shifting the detector by constant,
we can distribute this product between factors as we want,
e.g., always can make the detector balanced:

Risk(φ|P1,P2) = Risk1(φ|P1,P2) = Risk2(φ|P1,P2).
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♣ Passing to multiple observations. For 1 ≤ k ≤ K, let
• P1,k,P2,k be families of probability distributions on obser-

vation spaces Ωk,
• φk be detectors on Ωk.
♥ Families {P1,k,P2,k}Kk=1 give rise to families of product
distributions on ΩK = Ω1 × ...×ΩK :

PKχ = {PK = P1 × ...× PK : Pk ∈ Pχ,k, 1 ≤ k ≤ K}, χ = 1,2,

and detectors φ1, .., φK give rise to detector φK on ΩK :

φK(ω1, ..., ωK︸ ︷︷ ︸
ωK

) =
K∑
k=1

φk(ωk).

♠ Observation: We have

Riskχ(φK|PK1 ,P
K
2 ) =

K∏
k=1

Riskχ(φk|P1,k,P2,k).
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♣ From pairwise detectors to detectors for unions
Assume that we are given an observation space Ω along with
• R families Rr, r = 1, ..., R of “red” probability distribu-

tions on Ω,
• B families Bb, b = 1, ..., B of “brown” probability distribu-

tions on Ω,
• pairwise detectors φrb(·), 1 ≤ r ≤ R, 1 ≤ b ≤ B.

εrb := Risk(φrb|Rr,Bb) = Risk1(φrb|Rr,Bb) = Risk2(φrb|Rr,Bb),

Let us aggregate the red and the brown families as follows

R =
R⋃
r=1

Rr, B =
B⋃
b=1

Bb

and consider matrices

E =

 ε1,1 · · · ε1,B
... · · · ...

εR,1 · · · εR,B

 , F =

[
E

ET

]
The maximal eigenvalue of F is the spectral norm ‖E‖2,2 of
E, and the leading eigenvector [g; f ] can be selected to be
positive, giving rise to shifted detectors

ψrb(ω) = φrb(ω)− ln(fb/gr)

which can further be assembled into the detector

ψ(ω) = max
r≤R

min
b≤B

ψrb(ω)

Theorem: Partial risks of detector ψ on aggregated families
R, B are ≤ ‖E‖2,2.
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Detector-Based Tests ”Up to Closeness”

♣ Situation: We are given L families of probability distribu-
tions P`, 1 ≤ ` ≤ L, on observation space Ω, and observe
a realization of random variable ω ∼ P taking values in Ω.
Given ω, we want to decide on the L hypotheses

H` : P ∈ P`, 1 ≤ ` ≤ L.

Our ideal goal would be to find a low-risk simple test deciding
on the hypotheses.
However: It may happen that the “ ideal goal” is not achiev-
able, for example, when some pairs of families P` have
nonempty intersections. When P` ∩ P`′ 6= ∅ for some ` 6= `′,
there is no way to decide on the hypotheses with risk < 1/2.
But: Impossibility to decide reliably on all L hypotheses “indi-
vidually” does not mean that no meaningful inferences can be
done.
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♠ Example: Consider 3 colored rectangles on the plane:

and 3 hypotheses, with H`, 1 ≤ ` ≤ 3, stating that our obser-
vation is ω = x + ξ with deterministic “signal” x belonging to
`-th rectangle and ξ ∼ N (0, σ2I2).
♥ Whatever small σ be, no test can decide on the 3 hypothe-
ses with risk < 1/2; e.g., there is no way to decide reliably on
H1 vs. H2.
However, we may hope that when σ is small, we can discard
reliably some of the hypotheses. For example, if the actual
signal is brown, we cannot exclude the possibility for it to be
claimed green, but hopefully can infer that it is not blue.

♠ When handling multiple hypotheses which cannot be re-
liably decided upon “as they are,” it makes sense to speak
about testing the hypotheses “up to closeness.”
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♠ Situation: We are given
• L families of probability distributions P`, ` = 1, ..., L, on

observation space Ω, giving rise to L hypotheses H`, on the
distribution P of random observation ω
inΩ:

H` : P ∈ P`, 1 ≤ ` ≤ L;

• closeness relation C – a set C of pairs (`, `′) of indexes of
“close to each other” hypotheses H`, H`′ such that (`, `) ∈ C
(every hypothesis is close to itself) and (`, `′) ∈ C whenever
(`′, `) ∈ C (closeness is symmetric).
• system of balanced detectors{

φ``′ : ` < `′, (`, `′) 6∈ C
}

along with upper bounds ε``′ on detectors’ risks:

∀(`, `′ : ` < `′, (`, `′) 6∈ C) :

{ ∫
Ω e−φ``′(ω)P (dω) ≤ ε``′ ∀P ∈ P`∫
Ω eφ``′(ω)P (dω) ≤ ε``′ ∀P ∈ P`′

• Our goal is to build single-observation test deciding on hy-
potheses H1, ..., HL up to closeness C.
♠ Definition. Let T be a test which, given observation ω, ac-
cepts some of the hypotheses H` and rejects the remaining
hypotheses. We say that C-risk of T is ≤ ε, if, whenever the
distribution P of the observation obeys H`∗ for some `∗ ≤ L,
the P -probability of the event “H`∗ is accepted, and all ac-
cepted hypotheses are C-close to H`∗” is at least 1− ε.
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♠ Proposition. The pairwise detectors φ``′ can be straight-
forwardly assembled into single-observation test T with C-risk
upper-bounded by∥∥∥[ε``′χ``′]L`,`′=1

∥∥∥
2,2

[
χ``′ =

{
1, (`, `′) 6∈ C
0, (`, `′) ∈ C

]
,

♠ Corollary. Let ε``′ ≤ θ < 1 whenever (`, `′) 6∈ C and let
stationary K-repeated observations – i.i.d. samples

ωK = (ω1, ..., ωK)

drawn from distributions in question – be allowed. Then the
K-repeated version T K of T – with detectors

φ
(K)
``′ (ωK) =

∑K
t=1 φ``′(ωt)

in the role of φ``′ – satisfies

RiskC[T K|H1, ..., HL] ≤ θKL.
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♣ “Universality” of detector-based tests. Let Pχ, χ =

1,2, be two families of probability distributions on observa-
tion space Ω,and Hχ, χ = 1,2, be associate hypotheses on
the distribution of an observation.

Assume that there exists a simple deterministic or random-
ized test T deciding onH1,H2 with risk≤ ε ∈ (0,1/2). Then
there exists a detector φ with

Risk(φ|P1,P2) ≤ ε+ := 2
√
ε[1− ε] < 1.

♠ Note: Risk 2
√
ε[1− ε] of the detector-based test induced

by simple test T is “much worse” than the risk ε of T .
However: When repeated observations are allowed, we can
compensate for risk deterioration ε 7→ 2

√
ε[1− ε] by pass-

ing in the detector-based test from a single observation to a
moderate number of them.
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inf
φ

Risk(φ|P1,P2) = min

{
ε :

∫
Ω e−φ(ω)P (dω) ≤ ε ∀(P ∈ P1)∫

Ω eφ(ω)P (dω) ≤ ε ∀(P ∈ P2)

}
(!)

Note:
• The optimization problem specifying risk is convex in φ, ε
•When passing from families Pχ, χ = 1,2, to their convex

hulls, the risk of a detector remains intact.

♣ Intermediate conclusion: It would be nice to solve (!),
thus arriving at the lowest risk detector-based tests.
But: (!) is an optimization problem with infinite-dimensional
decision “vector” and infinitely many constraints.
⇒ (!) in general is intractable.

Simple observation schemes: A series of special cases
where (!) is efficiently solvable via Convex Optimization.
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Simple Observation Schemes

♣ Simple Observation Scheme admits a formal definition
which we skip.
Instructive examples are as follows.

♠ Gaussian o.s.:

ω = A(x) +N (0, Id)

• A(x): affine image of unknown signal x varying in signal
space X := Rn.
• Gaussian o.s. is the standard observation model in Signal
Processing.

♠ Poisson o.s.:

ω ∈ Zd, ωi ∼ Poisson[Ai(x)] independent across i = 1, ..., d

• Ai(x): affine functions of unknown signal x varying in a
given open convex signal space X ⊂ Rn such that Ai(x) >

0, x ∈ X .
Poisson o.s. arises in Poisson Imaging, including
• Positron Emission Tomography,
• Large binocular Telescope,
• Nanoscale Fluorescent Microscopy.
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♠ Discrete o.s.:

ω ∈ {e1, ..., ed} takes value ei with probability Ai(x)

• ei: i-th basic orth in Rd

• Ai: affine functions of unknown signal x varying in a given
open convex signal space X ⊂ Rn such that Ai(x) > 0 and∑
iAi(x) = 1, x ∈ X .

♠ K-repeated version of a simple o.s.:

ω = ΩK := (ω1, ..., ωK)

with ωt sampled, independently across t, from observations of
an unknown signal x ∈ X yielded by a simple o.s., e.g., Gaus-
sian/Poisson/Discrete one.

♠ Note: Distributions P of observations in a simple o.s. pos-
sess positive continuous densities p(·) w.r.t. a properly se-
lected reference measure Π on the space of observations.

♠ Convex hypothesis HX in a simple o.s. is specified by
a nonempty convex compact subset X of the corresponding
signal space X and states that the signal x underlying obser-
vation belongs to X.
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ε?(P1,P2) = min

{
ε :

∫
Ω e−φ(ω)P (dω) ≤ ε ∀(P ∈ P1)∫
Ω eφ(ω)P (dω) ≤ ε ∀(P ∈ P2)

}
(!)

♣Main Result. For χ = 1,2, letPχ of probability distributions obeying
convex hypothesis Hχ : x ∈ Xχ in a simple o.s. The problem

Opt = max
p1,p2

{∫ √
p1(ω)p2(ω)Π(dω) : pχ(·) is the density

of a distribution from Pχ, χ = 1,2

} (!)

is equivalent to an explicit finite-dimensional convex program and is solv-
able. Optimal solution (p∗1(·), p∗2(·)) to the problem gives rise to the mini-
mum risk balanced detector

φ∗(ω) =
1

2
ln(p∗1(ω)/p∗2(ω))

for P1, P2. This detector is an affine function of ω, and the risk of the
detector is Opt.
• In our standard o.s.’s, (!) reads:

• Gaussian o.s.: ln(Opt) = −1
8

min
x∈X1,

y∈X2

‖A(x)−A(y)‖2
2

[Π: Lebesque measure]

• Poisson o.s.: ln(Opt) = −1
2

min
x∈X1,

y∈X2

∑
i[A

1/2
i (x)−A1/2

i (y)]2

[Π: counting measure]

• Discrete o.s.: Opt = max
x∈X1,

y∈X2

∑
iA

1/2
i (x)A1/2

i (y)

[Π: counting measure]

For K-repeated version of a simple o.s., the optimal detector is

φ(K)
∗ (ωK) =

K∑
t=1

φ∗(ωt),

and its risk is OptK = OptK.
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Near-Optimality of Minimum Risk Detector-Based Tests
in Simple Observation Schemes

♣ Proposition A. Let HXχ, χ = 1,2, be convex hypotheses
in a simple o.s., and Pχ be the family of distributions obeying
the hypotheses. Assume that in the nature there exists a sim-
ple single-observation test T , deterministic or randomized, T
with

Risk[T |H1, H2] ≤ ε < 1/2.

Then the risk of the simple test Tφ∗ accepting H1 when
φ∗(ω) ≥ 0 and accepting H2 otherwise is comparable to ε:

Risk[Tφ∗|H1, H2] ≤ ε+ := 2
√
ε(1− ε) < 1.
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♣ Proposition B. Let Hχ, χ = 1,2, be convex hypotheses in
a simple o.s. Assume that for some ε < 1/2 and K∗ in the na-
ture there exists a test, based on K∗-repeated observations,
with risk ≤ ε. Then the risk of the test T

φ
(K)
∗

with

K ≥ K̂∗ = 2

[
ln(1/ε)

ln(1/ε)− ln(4(1− ε))

]
︸ ︷︷ ︸

→1 as ε→+0

K∗.

does not exceed ε as well.

♣ Proposition C. Let H`, ` = 1,2, ..., L, be convex hypothe-
ses in a simple o.s., and C be a closeness relation. Assume
that for some ε < 1/2 and K∗ in the nature there exists a
test, based on K∗-repeated observations, deciding on the hy-
potheses with C-risk ≤ ε. Then the efficiently computable K-
observation test T K yielded by assembling optimal pairwise
detectors with

K ≥ 2

[
ln(1/ε) + ln(L− 1)

ln(1/ε)− ln(4(1− ε))

]
︸ ︷︷ ︸

→1 as ε→+0

K∗.

has C-risk ≤ ε as well.
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♣Generic applications of minimum-risk-detector-based tests
in simple o.s. include

• near-optimal estimation of linear/factional-linear function-
als on finite unions of convex signal sets

• sequential testing of multiple convex hypotheses

• change point detection in linear dynamical systems

• rudimentary measurement design
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Illustration: Estimating Fractional-Linear Functional on
Union of Convex Sets

♠ Situation: Signal x known to belong to the finite union

X =
M⋃
µ=1

Xµ

of given convex compact setsXµ is observed via a Simple o.s.
Given a linear-fractional function

F (u) =
aTu+ b

cTu+ d
: X → R,

[
min
u∈X

cTu+ d > 0
]

we want to recover f(x) via observation(s) associated with x.
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♠ Strategy: Given N , we
• split the range ∆ = [minx∈X F (x),maxx∈X F (x)] into

N consecutive bins ∆ν of length δN = |∆|/N ,
• define MN convex hypotheses

Hµν : x ∈ Xµ & F (x) ∈∆ν

• use pairwise optimal detectors to decide on the convex
hypotheses Hµν, 1 ≤ µ ≤M , 1 ≤ ν ≤ N up to closeness

C : Hµν is close to Hµ′ν′ ⇔∆ν ∩∆ν′ 6= ∅
• estimate F (x) by the center of masses F̂ of the union of

bins ∆ν associated with the accepted hypotheses Hµν.
♠ Fact: For the resulting test T the recovery error does not
exceed δN with probability at least 1−RiskC[T |H1,1, ..., HM,N ].
♠ Near-Optimality: Let ε ∈ (0,1/2). Assume in the nature
there exists an estimator recovering F (x), x ∈ X, (1 − ε)-
reliably within accuracy δN/2 via K∗ observations. Then
Prob{|F̂ − F (x)| > δN} ≤ ε, provided that the number K of
observations underlying F̂ satisfies

K ≥ 2

[
ln(MN/ε)

ln(1/ε)− ln(4(1− ε))

]
K∗.
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♣ Observation: A “common denominator” of minimum risk
detectors for simple o.s.’s is their affinity in observations.

♠ Fact: Presumably good affine detectors can be found, in
a computationally efficient way, in many important situations
which are beyond simple o.s.’s.
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Setup

♣ Given an observation space Ω = Rd, consider a triple
H,M,Φ, where
• H is a nonempty closed convex set in Ω symmetric w.r.t.

the origin,
• M is a closed convex set in some Rn,
•Φ(h;µ) : H×M→ R is a continuous function convex in

h ∈ H and concave in µ ∈M.

♣ H,M,Φ specify a family S[H,M,Φ] of probability distri-
butions on Ω. A probability distribution P belongs to the family
iff there exists µ ∈M such that

ln
(∫

Ω
eh

TωP (dω)
)
≤ Φ(h;µ) ∀h ∈ H (∗)

We refer to µ ensuring (∗) as to parameter of distribution P .
• Warning: A distribution P may have many different param-
eters!
♥ We refer to triple H,M,Φ satisfying the above require-
ments as to regular data, and to S[H,M,Φ] – as to the sim-
ple family of distributions induced by these data.
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♠ Example 1: Gaussian and sub-Gaussian distributions.
When M = {(u,Θ)} ⊂ Rd × intSd+ is a convex compact
set such that Θ � 0 for all (u,Θ) ∈ M, H = Rd and
Φ(h;u,Θ) = hTu + 1

2h
TΘh, S = S[H,M,Φ] contains

all probability distributions P which are sub-Gaussian with pa-
rameters (u,Θ), meaning that

ln
(∫

Ω
eh

TωP (dω)
)
≤ hTu+

1

2
hTΘh ∀h, (1)

and, in addition, the “parameter” (u,Θ) belongs toM.
Note: Whenever P is sub-Gaussian with parameters (u,Θ),
u is the expectation of P .

Note: N (u,Θ) ∈ S whenever (u,Θ) ∈ M; for P =

N (u,Θ), (1) is an identity.
♠ Example 2: Poisson distributions. WhenM ⊂ Rd+ is a
convex compact set, H = Rd and

Φ(h;µ) =
d∑

i=1

µi(ehi − 1),

S = S[H,M,Φ] contains distributions of all d-dimensional
random vectors ωi with independent across i entries ωi ∼
Poisson(µi) such that µ = [µ1; ...;µd] ∈M.
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♠ Example 3: Discrete distributions. When

M = {µ ∈ Rd : µ ≥ 0,
∑
j

µj = 1}

is the probabilistic simplex in Rd, H = Rd and

Φ(h;µ) = ln

 d∑
i=1

µie
hi

,
S = S[H,M,Φ] contains all discrete distributions supported
on the vertices of the probabilistic simplex.
♠ Example 4: Distributions with bounded support. Let
X ⊂ Rd be a nonempty convex compact set with support func-
tion φX(·):

φX(y) = max
x∈X

yTx : Rd → Rd.

WhenM = X, H = Rd and

Φ(h;µ) = hTµ+
1

8
[φX(h) + φX(−h)]2, (2)

S = S[H,M,Φ] contains all probability distributions sup-
ported on X, and for such a distribution P , µ =

∫
X ωP (dω)

is a parameter of P .
• Note: Conclusion in Example IV remains valid when func-
tion (2) is replaced with the smaller function

ΦG(h;µ) = min
g∈G

[
µT(h− g) + 1

8
[φX(h− g) + φX(g − h)]2 + φX(g)

]
.

[G 3 0 : convex compact set]
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♣ Main observation: When deciding on simple families of
distributions, affine tests and their risks can be efficiently com-
puted via Convex Programming:
♥ Theorem. Let Hχ,Mχ,Φχ, χ = 1,2, be two collections
of regular data with common H1 = H2 =: H, and let

Ψ(h) = max
µ1∈M1,µ2∈M2

1

2
[Φ1(−h;µ1) + Φ2(h, µ2)]︸ ︷︷ ︸

Φ(h;µ1,µ2)

: H → R

Then Ψ is efficiently computable continuous convex function,
and for every h ∈ H, setting

φ(ω) = hTω +
1

2

[
max
µ1∈M1

Φ1(−h;µ1)− max
µ2∈M2

Φ1(h;µ2)

]
︸ ︷︷ ︸

κ

,

one has

Risk(φ|P1,P2) ≤ exp{Ψ(h)} [Pχ = S[H,Mχ,Φχ]]

In particular, if convex-concave function Φ(h;µ1, µ2) pos-
sesses a saddle point h∗, (µ∗1, µ

∗
2) on H× (M1 ×M2), the

affine detector

φ∗(ω) = hT∗ ω +
1

2

[
Φ1(−h;µ∗1)−Φ2(h∗;µ∗2)

]
admits risk bound

Risk(φ|P1,P2) ≤ exp{Φ(h∗;µ∗1, µ2)}
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♣ Example: Sub-Gaussian Direct Product case. For χ =

1,2, let Uχ ⊂ Ω = Rd and Vχ ⊂ intSd+ be convex compact
sets. Setting

Mχ = Uχ × Vχ, Φ(h;u,Θ) = hTu+
1

2
hTΘh : H×Mχ → R,

the regular data H = Rd,Mχ,Φ specify the families

Pχ = S[Rd, Uχ × Vχ,Φ]

of sub-Gaussian distributions with parameters from Uχ × Vχ.

♠ Saddle point problem responsible for the design of affine
detector for P1,P2 reads

SadVal = min
h∈Rd

max
u1∈U1,u2∈U2

Θ1∈V1,Θ2∈V2

1

2

[
hT(u2 − u1) +

1

2
hT [Θ1 + Θ2]h

]
The problem is efficiently solvable, and its solution yields affine
detector φ∗ with risk

Risk(φ∗|P1,P2) ≤ exp{SadVal}.

♥ Note: In the symmetric case V1 = V2 the affine detector
we end up with is the minimum risk detector for P1, P2.
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♠ Beyond Direct Product case: Let

Qχ = {(µ,Θ) ∈ Rd × Sd++}, χ = 1,2[
Sd++ = {Θ ∈ Sd : Θ � 0}

]
be convex compact sets. Applying Theorem, we can test the
hypotheses

Hχ : ω ∼ N (µ,Θ) with (µ,Θ) ∈ Qχ, χ = 1,2

via affine detector readily given by the solution to an explicit
convex-concave saddle point problem.

Note: Utilizing sets Qχ, we extend Gaussian o.s. by allowing
for dependencies between the mean and the covariance of
observations.
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What is “affine?” Quadratic Lifting

♣ We have developed a technique for building reasonable
affine detectors for simple families of distributions.
But: Given observation ζ ∼ P , we can subject it to nonlinear
transformation ζ 7→ ω = ψ(ζ), e.g., quadratic lifting

ζ 7→ ω = (ζ, ζζT )

and treat as our observation ω rather than the “true” observa-
tion ζ. Affine in ω detectors are nonlinear in ζ.
Example: Detectors affine in the quadratic lifting ω =

(ζ, ζζT ) of ζ are exactly the quadratic functions of ζ.
♠ We can try to apply our machinery for building affine de-
tectors to nonlinear transformations of true observations, thus
arriving at nonlinear detectors.
• Bottleneck: To apply the outlined strategy to a pair P1,P2

of families of distributions of interest, we need to cover the
families P+

χ of distributions of ω = ψ(ζ) induced by distribu-
tions P ∈ Pχ, χ = 1,2, by simple families of distributions.

♠ The bottleneck can be resolved reasonably well for Gaus-
sian and sub-Gaussian distributions.
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♥ Numerical illustration: Gaussian Direct Product case
ζ = Au+ σξ, ξ ∼ N (0, I8)

Hχ : u ∈ Uχ & σ = σχ, χ = 1,2

U1 = Uρ
1 = {u ∈ R12 : ui ≥ ρ,1 ≤ i ≤ 12}

U2 = Uρ
2 = −Uρ

1

• A ∈ R8×12 (deficient observations)

ρ σ1 σ2
unrestricted
H and h H = 0 h = 0

0.5 2 2 0.31 0.31 1.00
0.5 1 4 0.24 0.39 0.62

0.01 1 4 0.41 1.00 0.41
Risk of quadratic detector φ(ζ) = hTζ + 1

2
ζTHζ + κ

♣We see that
• when deciding on families of Gaussian distributions with
common covariance matrix and expectations varying in as-
sociated with the families convex sets, passing from affine to
quadratic detectors does not help.
• in general, both affine and purely quadratic components in a
quadratic detector are useful.
• when deciding on families of Gaussian distributions in the
case where distributions from different families can have close
expectations, affine detectors are useless, while the quadratic
ones are not.
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♣ Model: We observe one by one vectors (“vectorized” 2D
images)

ωt = xt + ξt,

• xt: deterministic image
• ξt ∼ N (0, σ2Id): independent across observation noises.
Note: We know a range [σ, σ] of σ, but perhaps do not
know σ exactly.

• We know that x1 = x2 and want to check whether x1 =

... = xK (“no change”) or there is a change.
♠ Goal: Given an upper bound ε > 0 on the probability of
false alarm, we want to design a sequential change detection
routine capable to detect change, if any.



♠ Approach:
• Pass from observations ωt, 1 ≤ t ≤ K, to observations

ζt = ωt − ω1 = xt − x1︸ ︷︷ ︸
yt

+ ξt − ξ1︸ ︷︷ ︸
ηt

, 2 ≤ t ≤ K

• Test null hypothesis H0 “no change” (y2 = ... = yK = 0)

vs. alternative
K⋃
k=2
{Hρ

k : change at time k of magnitude ≥ ρ}

H
ρ
k : y2 = ... = yk−1 = 0, ‖yk‖2 ≥ ρ

via our machinery for testing multiple hypotheses Gρk on
quadratic lifts Yk = yky

T
k of observations yk:

G1 : {Y1 = .... = YK = 0},
Gρk : {Y1 = ... = Yk−1 = 0,Tr(Yk) ≥ ρ2, Yt � 0 ∀t}, 2 ≤ k ≤ K

up to closeness
C: all brown hypotheses are close to each other and are not close

to the magenta hypothesis

• Find the smallest ρ for which the C-risk of the resulting infer-
ence is ≤ ε, and utilize this inference in change point detec-
tion.
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How It Works

♠ Setup: dim y = 2562 = 65536, σ = 10, σ2/σ2 = 2,
K = 9, ε = 0.01

♠ Inference: At time t = 2, ...,K, compute

φ∗(ζt) = −2.7138
‖ζt‖22
105

+ 366.9548.

φ∗(ζt) < 0⇒ conclude that the change took place and terminate
φ∗(ζt) ≥ 0⇒ conclude that there was no change so far and proceed

to the next image, if any
♠ Note:
• When G1 holds true, the probability not to claim change

on time horizon 1, ...,K is at least 0.99.
• When Gρk holds true, the change at time ≤ k is detected

with probability at least 0.99, provided ρ ≥ ρ∗ = 2716.6 (av-
erage per pixel energy in yk at least by 12% larger than σ2)
• No test can 0.99-reliably decide via ζ1, ..., ζk on Gρk vs. G1,

provided ρ/ρ∗ < 0.965.
• In the movie, the change takes place at time 3 and is de-

tected at time 4.
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Signal Estimation in Gaussian O.S.

♣ Situation: “In the nature” there exists a signal x known to
belong to a given convex compact set X ⊂ Rn. We observe
corrupted by noise affine image of the signal:

ω = Ax+ σξ ∈ Rm

•A: given m× n sensing matrix
•ξ: random observation noise
♠ Goal: To recover the image Bx of x under a given linear
mapping
•B: given k × n matrix.
♠ Risk of a candidate estimate x̂(·) : Ω→ Rk is defined as

Risk[x̂|X ] = sup
x∈X

√
Eξ

{
‖Bx− x̂(Ax+ σξ)‖22

}
⇒ Risk2 is the worst-case, over x ∈ X , expected ‖ ·‖22 recov-
ery error.
♣ Agenda: Under appropriate assumptions on X , we shall
show that
• One can build, in a computationally efficient fashion, the

(nearly) best, in terms of risk, in the family of linear estimates

x̂(ω) = x̂H(ω) = HTω [H ∈ Rm×k]

• The resulting linear estimate is nearly optimal among all
estimates, linear and nonlinear alike.
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♣ Assumption on noise: ξ is zero mean with unit covariance
matrix.
⇒ The risk of a linear estimate x̂H(ω) = HTω is given by

Risk2[x̂H|X ] = σ2Tr(HTH) + max
x∈X

Tr([B −HTA]xxT [BT −ATH])︸ ︷︷ ︸
Ψ(H)

.

♥ Note: Ψ is convex ⇒ building the minimum risk linear
estimate reduces to solving convex minimization problem

Opt∗ = min
H

[
Ψ(H) + σ2Tr(HTH)

]
. (∗)

But: Convex function Ψ is given implicitly and can be difficult
to compute, making (∗) difficult as well.
Fact: Basically, the only cases when (∗) is known to be easy
are those when
• X is given as a convex hull of finite set of moderate cardi-

nality
• X is an ellipsoid.
X is a box⇒ computing Ψ is NP-hard...
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min
H

{
σ2Tr(HTH) + max

x∈X
Tr([B −HTA]xxT [BT −ATH])︸ ︷︷ ︸

Ψ(H)

}
(∗)

♠ When Ψ is difficult to compute, we can to replace Ψ in
the design problem (∗) with an efficiently computable convex
upper bound Ψ+(H).
We are about to consider a family of sets X – ellitopes – for
which reasonably tight bounds Ψ+ are available.
♣ An ellitope is a bounded set X ⊂ Rn given as

X = {x ∈ Rn : ∃y ∈ RN , t ∈ T : x = Ry, yTSky � tk, 1 ≤ k ≤ K}

where
• R is a given n×N matrix,
• Sk are positive semidefinite matrices
• T is a convex compact subset of RK+ containing a positive

vector and monotone:

0 ≤ t′ ≤ t ∈ T ⇒ t′ ∈ T .

♠ Note: Every ellitope is a symmetric w.r.t. the origin convex
compact set.
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♠ Basic examples:
A. Intersection

⋂
i{x : ‖Aix‖2 ≤ 1} of finitely many

ellipsoids/elliptic cylinders centered at the origin
B. Intersection

⋂
i{x : ‖Aix‖pi ≤ 1 of finitely many

“`p balls/cylinders” centered at the origin, with 2 ≤ pi ≤ ∞
♣ Note: What follows straightforwardly extends from ellitopes
to their “matrix analogies” – spectratopes

X = {x ∈ Rn : ∃(y ∈ RN , t ∈ T ) : x = Ry, S2
k [y] � tkIdk, k ≤ K}

[Sk[y] : symmetric dk × dk matrices linearly depending on y]

Every ellitope is a spectratope, but not vice versa; e.g., the
matrix box {y ∈ Rm×n : spectral norm of y is ≤ 1} is a spec-
tratope, but not an ellitope.

♠ Ellitopes/spectratopes admit fully algorithmic calculus:
if Xi, 1 ≤ i ≤ I, are ellitopes/spectratopes, so are
•
⋂
iXi

• X1 × ...×XI
• Conv(

⋃
iXi)

• X1 + ...+ XI
• linear images of Xi
• inverse linear images of Xi under linear embeddings
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♣ Observation: It is easy to upper-bound the maximum of a
quadratic form xTQx over an ellitope

X = {x : ∃(t ∈ T , y) : x = Ry, yTSky ≤ tk, 1 ≤ k ≤ K}.

Specifically, whenever λ ≥ 0 satisfies

RTQR �
∑
k

λkSk,

we have

max
x∈X

xTQx ≤ φT (λ) := max
t∈T

λT t.
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♠ Corollary: Given an ellitope X and matricesA,B, consider
the convex optimization problem

Opt = min
λ≥0,H

{
φT (λ) + σ2Tr(HTH) :

[ ∑
k
λkSk BT −ATH

B −HTA I

]
� 0

}
The efficiently computable optimal solution (λ∗, H∗) to this
problem gives rise to the linear estimate

x̂H∗(ω) = HT
∗ ω

with risk not exceeding
√

Opt. This estimate is near-optimal
among all linear estimates:

Risk[x̂H∗|X ] ≤ 2
√

ln(5K) · inf
H

Risk[x̂H |X ]

[x̂H(ω) = HTω]

♠ Surprising fact: The linear estimate x̂H∗ is nearly optimal
among all estimates, linear and nonlinear alike.
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♣ Theorem. Let us associate with ellitope

X = {x : ∃(t ∈ T , y) : x = Ry, yTSky ≤ tk, k ≤ K}

the convex compact set

Q = {Q ∈ SN : Q � 0, ∃t ∈ T : Tr(SkQ) ≤ tk, k ≤ K},
and the quantity

M∗ = max
Q∈Q

√
Tr(BRQRTBT).

The linear estimate x̂H∗(ω) of Bx, x ∈ X , via observation
ω = Ax+ σξ, ξ ∼ N (0, Im), given by the optimal solution to
the convex optimization problem

Opt = min
λ≥0,H

{
φT (λ) + σ2Tr(HTH) :

[ ∑
k
λkSk BT −ATH

B −HTA I

]
� 0

}
satisfies the risk bound

Risk[x̂H∗|X ] ≤
√

Opt ≤

√√√√6 ln

(
8M2

∗K

Risk2
opt[X ]

)
Riskopt[X ],

where

Riskopt[X ] = inf
x̂(·)

sup
x∈X

√
Eξ∼N (0,Im)

{
‖Bx− x̂(Ax+ σξ)‖2

2

}
,

inf being taken with respect to all, linear and nonlinear alike,
estimates x̂(·), is the optimal minimax risk.
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♠ Explanation, Easy part: Consider the parametric convex
optimization problem

Opt(ρ) = max
Q�0,t∈T

{
Tr
(
B
[
Q−QAT(σ2I +AQAT)−1AQ

]
BT
)

:

Tr(SkQ) ≤ ρtk, k ≤ K
}

♥ Objective: Optimal expected ‖·‖22-risk of recoveryBη from
observationAη+σξ with ξ ∼ N (0, I) independent of random
Gaussian signal η ∼ N (0, Q).
♥ Constraints ensure that the probability for η ∼ N (0, Q)

not to belong to X goes to 0 exponentially fast (as Ke
− 1

3ρ) as
ρ→ +0

⇒ Minimax optimal risk Riskopt[X ] can be lower-bounded in
terms of Opt(·)
♠ Explanation, Miracle part: By conic duality, Opt(1) turns
out to be exactly the upper bound Opt on the squared risk
of the near-optimal linear estimate, and by trivial reasons
Opt(ρ) ≥ ρOpt(1)

⇒ Minimax optimal risk Riskopt[X ] can be lower-bounded in
terms of Opt and thus - in terms of the risk of the near-optimal
linear estimate.
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