1. Background
2. Hyper-parameter Optimization Methods
3. Distributed Computing
4. Experimental Results
Transformation of relevant data to high-quality descriptive and predictive models

Ex.: Neural Network
• How to determine model configuration?
• How to determine weights, activation functions?
BACKGROUND MODEL TRAINING – OPTIMIZATION PROBLEM

• Objective Function

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} L(w; x_i, y_i) + \lambda_1 \|w\|_1 + \frac{\lambda_2}{2} \|w\|_2^2 \]

• Loss, \(L(w; x_i, y_i) \), for observation \((x_i, y_i) \) and weights, \(w \)

• Stochastic Gradient Descent (SGD)

• Variation of Gradient Descent: \(w_{k+1} = w_k - \eta \nabla f(w_k) \)

• Approximate \(\nabla f(w_k) \) with gradient of mini-batch sample: \(\{x_{ki}, y_{ki}\} \)

\[\nabla f_t(w) = \frac{1}{m} \sum_{i=1}^{m} \nabla L(w; x_{ki}, y_{ki}) \]
BACKGROUND

MODEL TRAINING – OPTIMIZATION PARAMETERS (SGD)

• Learning rate η
 • Too high, diverges
 • Too low, slow performance

• Momentum μ
 • Too high, could “pass” solution
 • Too low, no performance improvement

• Regularization parameters λ_1 and λ_2
 • Too low, has little effect
 • Too high, drives iterates to 0

• Other parameters
 • Mini-batch size
 • Adaptive decay rate
 • Annealing rate
 • Communication frequency, ……
• Quality of trained model governed by so-called ‘hyper-parameters’
 No clear defaults agreeable to a wide range of applications

• Optimization options (SGD)

• Neural Network training options
 • Number of hidden layers
 • Number of neurons in each hidden layer
 • Random distribution for initial connection weights (normal, uniform, Cauchy)
 • Error function (gamma, normal, Poisson, entropy)
METHODS HOW TO FIND GOOD HYPER-PARAMETER SETTINGS?

• Traditional Approach: *manual tuning*
 Even with expertise in machine learning algorithms and their parameters, best settings are directly dependent on the data used in training and scoring

• Hyper-parameter Optimization: *Grid vs. Random vs. “Real” Optimization*

 ![Standard Grid Search](image1)
 ![Random Search](image2)
 ![Random Latin Hypercube](image3)
METHODS MANY CHALLENGES

Tuning objective, $T(x)$, is validation error score (to avoid increased overfitting effect)

Categorical / Integer Variables

Objective blows up

Flat-regions.

Node failure

Noisy/Nondeterministic c

Copyright © 2016, SAS Institute Inc. All rights reserved.
METHODS

OUR APPROACH – LOCAL SEARCH OPTIMIZATION (LSO)

Default hybrid search strategy:

1. **Initial Search: Latin Hypercube Sampling (LHS)**
2. **Global search: Genetic Algorithm (GA)**
 - Supports integer, categorical variables
 - Handles nonsmooth, discontinuous space
3. **Local search: Generating Set Search (GSS)**
 - Similar to Pattern Search
 - First-order convergence properties
 - Developed for continuous variables

All can be parallelized naturally
EXPERIMENTAL RESULTS

EXPERIMENT SETTINGS

• Decision tree:
 • Depth
 • Number of bins for interval variables
 • Splitting criterion

• Random Forest:
 • Number of trees
 • Number of variables at each split
 • Fraction of observations used to build a tree

• Gradient Boosting:
 • Number of trees
 • Number of variables at each split
 • Fraction of observations used to build a tree
 • L1 regularization
 • L2 regularization
 • Learning rate

• Neural Networks:
 • Number of hidden layers
 • Number of neurons in each hidden layer
 • LBFGS optimization parameters
 • SGD optimization parameters

SAS® Viya™

• Viya Data Mining and Machine Learning
• Small to medium sized datasets
EXPERIMENTAL RESULTS

EFFECTIVENESS OF THE DIFFERENT TUNING METHODS

- Gradient Boosting
 - 6 hyper-parameters
- 15 test problems
- Single 30% validation partition
- Single machine mode
- Run 10 times each
 - LSO (50x5 evaluations)
 - LHS (246 samples)
 - Random (246 samples)
- Averaged results

Average Improvement with Tuning
(Error reduction / Accuracy Increase)

Higher is better

<table>
<thead>
<tr>
<th></th>
<th>(\mu)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSO</td>
<td>10.661</td>
<td>2.193</td>
</tr>
<tr>
<td>LHS</td>
<td>11.085</td>
<td>2.324</td>
</tr>
<tr>
<td>Random</td>
<td>11.102</td>
<td>2.319</td>
</tr>
</tbody>
</table>
EXPERIMENTAL RESULTS

IMPACT ON THE DIFFERENT MACHINE LEARNING MODELS

- 13 test problems
- Single 30% validation partition
- Single machine mode
- Conservative default tuning process:
 - 5 Iterations
 - 10 configurations per iteration
- Run 10 times each
- Averaged results

Average Improvement After Tuning

<table>
<thead>
<tr>
<th>ML</th>
<th>Average Error % Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>5.2</td>
</tr>
<tr>
<td>GBT</td>
<td>5.0</td>
</tr>
<tr>
<td>RF</td>
<td>4.4</td>
</tr>
<tr>
<td>DT-P</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Higher is better
EXPERIMENTAL RESULTS

MODELS – TIME VS. ACCURACY

- 13 test problems
- Single 30% validation partition
- Single Machine mode
- Conservative default tuning process:
 - 5 Iterations
 - 10 configurations per iteration
- Run 10 times each
- Averaged results

<table>
<thead>
<tr>
<th>ML</th>
<th>Average % Error</th>
<th>Average Time (Sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>15.3</td>
<td>9.2</td>
</tr>
<tr>
<td>DT-P</td>
<td>13.9</td>
<td>12.8</td>
</tr>
<tr>
<td>RF</td>
<td>12.7</td>
<td>49.1</td>
</tr>
<tr>
<td>GBT</td>
<td>11.7</td>
<td>121.8</td>
</tr>
</tbody>
</table>
EXPERIMENTAL RESULTS

SINGLE PARTITION VS. CROSS VALIDATION

- For each problem:
 - Tune with single 30% partition
 - Score best model on test set
 - Repeat 10 times
 - Average difference between validation error and test error
 - Repeat process with 5-fold cross validation

- Cross validation for small-medium data sets
 - 5x cost increase for sequential tuning process
 - manage in parallel / threaded environment
• Default train, 9.6% error
• Iteration 1 – Latin Hypercube best, 6.2% error

• Very similar configuration can have very different error
• Best after tuning: 2.6% error
EXPERIMENTAL RESULTS

PERFORMANCE ABNORMALITY OF PARALLEL TRAINING

IRIS Forest Tuning Time
105 Train / 45 Validate

Credit Data Tuning Time
49k Train / 21k Validate
LSO FOR HYPER-PARAMETER TUNING

HYBRID – PARALLEL TRAINING AND PARALLEL TUNING

- Hybrid tuning:
 - 4 nodes each training
 - n concurrent training
CONCLUSION MANY TUNING OPPORTUNITIES AND CHALLENGES

- Initial Implementation
 - SAS® Viya™ Data Mining and Machine Learning
- Other search methods, extending hybrid solver framework
 - Bayesian / surrogate-based Optimization
 - New hybrid search strategies
- Selecting best machine learning algorithm
 - Parallel tuning across algorithms & strategies for effective node usage
 - Combining models
THANK YOU!

YAN.XU@SAS.COM