
 

 

Even More Efficient Generation and 
Selection of Virtual Populations in 
Quantitative Systems Pharmacology 
Models 

Theodore R. Rieger*, Richard J. Allen, and Cynthia J. Musante 
Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc., Cambridge, MA 
 
*Presenter 
 
Quantitative systems pharmacology (QSP) models mechanistically describe a 
biological system and the effect of drug treatment on system behavior [1]. Because 
these models rarely are identifiable from the available data, the uncertainty in 
physiological parameters may be sampled to create alternative parameterizations of 
the model, sometimes termed "virtual patients" (VPs). In order to reproduce the 
statistics of a clinical population, VPs are often weighted to form a virtual population 
that reflects the baseline characteristics of the clinical cohort [2]. 
 
Recently, we introduced a novel technique to efficiently generate VPs and, from this 
ensemble, demonstrated how to select a virtual population that matched the 
observed data without the need for weighting [3]. This new technique complements 
or improves upon previous methods both by eliminating the need for pre-defined 
parameter groupings [4] and by avoiding over-weighting of individual solutions [2]. 
 
While the first version of our algorithm has been tested successfully against several 
different QSP models [5], there remain several opportunities for improvement. The 
main focus of this project will be to improve the efficiency of initial VP generation. 
Currently, the algorithm requires the pre-computation of a large number of VPs so 
that an efficient selection process can take place to form the virtual population. In 
some cases, we have rejected over 1,000 VPs for each one that is accepted into the 
final virtual population. This inefficient generation process is acceptable as long as 
the generation of very large cohorts of VPs is not rate limiting.  
 
However, in more complicated models [6] the generation of 100,000+ VPs is 
infeasible due to computational cost. Using published models of lipoprotein 
metabolism [7]-[9] as examples for testing, the IMSM Workshop project team will 
identify and implement algorithms that may allow us to dramatically reduce the 
computational inefficiency of the initial VP generation step. Possible initial starting 
points include modification of the cost-function, or importance sampling techniques, 
such as implementing a Markov Chain Monte Carlo method [10], [11] or similar. 
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