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Statistical Models for Social Networks

Notation
A social networkis deÞned as a set ofn social ÒactorsÓ, a social
relationship between each pair of actors, and a set of variables on those
actors/pairs.

Yij =

!
1 relationship from actori to actor j
0 otherwise

call Y ! [Yij ]n! n a graph
a N = n(n ! 1) binary array

X be n " q matrix of actor variates

call (Y , X ) a network

The basic problem of stochastic modeling is to specify a distribution
for X , Y i.e., P(Y = y, X = x)
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The ERGM Framework for Network Modeling

Let Y be the sample space ofY e.g. { 0, 1} N

and X be the sample space ofX .
Model the multivariate distribution ofY givenX via:

P! (Y = y|X = x) =
exp{ ! ág(y|x)}

c(! , x, Y)
y # Y, x # X

Frank and Strauss (1986)

! # ! $ Rq q-vector of parameters

g(y|x) q-vector ofgraph statistics.
% g(Y |x) are jointly su" cient for the model

c(! , x, Y) distribution normalizing constant

c(! , x, Y) =
"

y" Y

exp{ ! ág(y|x)}



Simple model-classes for social networks

Homogeneous Bernoulli graph (Erdýos-R«enyi model)

Yij are independent and equally likely
with log-odds! = logit[ P! (Yij = 1)]

P! (Y = y) =
e!

!
i , j yij

c(! , x, Y)
y # Y

whereq = 1 , g(y) =
#

i ,j yij , c(! , x, Y) = [1 + exp( ! )]N

homogeneity means it is unlikely to be proposed as a model for real
phenomena



Dyad-independence models with attributes

Yij are independent but depend on dyadic covariates{ xk,ij }
q
k=1

P! (Y = y|X = x) =
e

! q
k=1 ! k gk (y|x)

c(! , x, Y)
y # Y

gk (y|x) =
"

i ,j

xk,ij yij , k = 1 , . . . , q

c(! , x, Y) =
$

i ,j

[1 + exp(
q"

k=1

! k xk,ij )]

Of course,
logit[P! (Yij = 1 |X = x)] =

"

k

! k xk,ij
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Some history of exponential family models for social
networks

Holland and Leinhardt (1981) proposed a general dyad independence
model

Ð Also an homogeneous version they refer to as the Òp1Ó model

P! (Y = y) =
exp{ "

#
i< j yij yji + #y++ +

#
i $i yi+ +

#
j %j y+ j }

&(" , $, %, #)

where! = ( " , $, %, #).

Ð# controls the expected number of edges
Ð" represent the expected tendency towardreciprocation
Ð$i productivity of nodei ; %j attractivenessof nodej

Much related work and generalizations
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Generative Theory for Network Structure

Actor Markov statistics
% Frank and Strauss (1986)

Ð motivated by notions of ÒsymmetryÓ and ÒhomogeneityÓ

ÐYij in Y that do not share an actor are
conditionally independent given the rest of the network

% analogous to nearest neighbor ideas in spatial modeling

Degree distribution:dk (y) = proportion of actors of degreek in y.

triangles: triangle(y) =
number of triads that form a complete sub-graph iny.
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Classes of statistics used for modeling

1) Nodal Markov statistics # Frank and Strauss (1986)

Ð motivated by notions of ÒsymmetryÓ and ÒhomogeneityÓ
Ð edges in Y that do not share an actor are

conditionally independent given the rest of the network
# analogous to nearest neighbor ideas in spatial statistics

¥ Degree distribution: d k( y) = proportion of nodes of degree k in y.

¥ k-star distribution: s k( y) = proportion of k-stars in the graph y.

¥ triangles: t 1( y) = proportion of triangles in the graph y.
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More General mechanisms motivated by conditional
independence

% Pattison and Robins (2002), Butts (2005)
% Snijders, Pattison, Robins and Handcock (2006)

ÐYuj and Yiv in Y are conditionally
independent given the rest of the network
if they could not produce a cycle in the network
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Figure 2: Partia l conditional dependencewhen four-cycle is created

(seeFigure 2). This partial conditional independence assumption statesthat
two possible edgeswit h four distinct nodesare conditionally dependent when-
ever their existencein the graph would createa four-cycle. One substantiv e
interpretation is that the possibility of a four-cycle establishesthe structural
basis for a Òsocial settingÓamong four individuals (Patt ison and Robins,
2002), and that the probabilit y of a dyadic tie between two nodes (here, i
and v) is a! ectednot just by the other ties of thesenodesbut alsoby other
ties within such a social set ting, even if they do not direct ly involve i and v.

A four-cycleassumption is a natural extensionof modeling based on tr i-
angles (three-cycles), and was Þrst used by Lazega and Pattison (1999) in
an examination of whether such larger cyclescould be observed in an empir-
ical sett ing to a greater extent than could be accounted for by parameters
for conÞgurations involving at most 3 nodes. Let us considerthe four-cycle
assumption alongside the Markov dependence. Under the Markov assump-
tion, Yiv is conditionally dependent on each of Yiu , Yuv , Yij and Yj v, because
theseedgeindicators sharea node. So if yiu = yj v = 1 (the precondition in
the four-cycle partial conditional dependence),then all Þve of these possible
edgescan be mutually dependent, and hence the exponential model (4) could
contain a parameter corresponding to the count of such conÞgurations. We
term this conÞguration, given by

yiv = yiu = yij = yuv = yj v = 1 ,

a two-triangle (seeFigure 3). It represents the edge yij = 1 as part of the
triadic setting yij = yiv = yj v = 1 as well as the setting yij = yiu = yj u = 1.

Motivated by this approach, we introduceherea generalization of triadic
structures in the form of graph conÞgurations that we term k-triangles. For
a non-directed graph, a k-triangle with base(i, j ) is deÞnedby the presence
of a baseedge i ! j together with the presenceof at least k other nodes
adjacent to both i and j . We denote a ÔsideÕof a k-triangle as any edge that
is not the base. The integer k is called the order of the k-triangle Thus a
k-triangle is a combination of k individual triangles,each sharing the same
edgei ! j . The conceptof a k-triangle can be seen as a triadic analogue of a

15



This produces features on conÞgurations of the form:

edgewise shared partner distribution:pk (y) =
proportion of edges between actors with exactlyk shared partners
k = 0 , 1, . . .

! " 9

2 ) Ot he r cond it ional ind ep en den ce stat ist ics
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k-tri angle fo r k = 5, i.e ., 5-t riangle

$ Ma rk S. Handco ck Stat istical Mo deling Wi t h ERG M "

Figure: The actors in the non-directed (i , j ) edge have 5 shared partners

dyadwise shared partner distribution:
dspk (y) = proportion of dyads with exactlyk shared partners
k = 0 , 1, . . .



Structural Signatures

Ð identify social constructs or features
Ð based on intuitive notions or partial appeal to substantive theory

Clusters of edges are oftentransitive:
Recalltriangle(y) is the number of triangles amongst triads

triangle(y) =
1

%g
3

&
"

{ i ,j ,k} " (g
3)

yij yik yjk

A closely related quantity is the
proportion of triangles amongst two-stars

C(y) =
3" triangle(y)
two&star(y)

mean clustering coe! cient

Figure:
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Exponential-family Random Network Models
Joint modeling of Y and X

Let N be the sample space ofY , X

Model the multivariate distribution ofY , X
via the form:

P! (Y = y, X = x) =
exp{ ! ág(y, x)}

c(! , N )
y, x # N

! # ! $ Rq q-vector of parameters

g(y, x) q-vector ofnetwork statistics.
% g(Y , X ) are jointly su" cient for the model

c(! , N ) distribution normalizing constant

c(! , N ) =
'

y, x" N
exp{ ! ág(y, x)}ádP0(y, x)



Interesting model-classes of ERNM

Relationship to ERGM and Random Fields

Let N (x) = { y : (x, y) # N } and N (y) = { x : (x, y) # N }

ERGM P(Y = y|X = x; ! ) =
1

c(! ; x)
e! áh(x,y) y # N (x)

Gibbs measure P(X = x|Y = y; ! ) =
1

c(! ; y)
e! áh(x,y) x # N (y)

The Þrst model is the ERGM for the network conditional on the
nodal attributes.

The second model is an exponential-family for the Þeld of nodal
attributes conditional on the network.



Relationship with ERGM

The model can be expressed as

P(X = x, Y = y|! ) = P(Y = y|X = x|! )P(X = x|! )

where

P(Y = y|X = x; ! ) =
1

c(! ; x)
e! áh(x,y) y # N (x)

P(X = x|! ) =
c(! ; x)
c(! , N )

x # X

The Þrst sub-model is the ERGM for the network conditional on the
nodal attributes.

The second sub-modelis the marginal representation of the nodal
attributes and is not necessarily an exponential-family with canonical
parameter! .

This decomposition makes it clear why the conditional modeling of
Y givenX via ERGM di#ers from the joint modeling ofY and X
via ERNM.



Separable ERGM and Field Models

Suppose the model can be expressed as

P(X = x, Y = y|! 1, ! 2) =
1

c(! 1, ! 2, N )
e! 1áh(x)+ ! 2ág(y) (y, x) # N . (1)

whereN = Y " X . Then

P(X = x|! 1) =
1

c1(! 1, X )
e! 1áh(x)

P(Y = y|! 2) =
1

c2(! 2, Y)
e! 2ág(y) .

The Þrst sub-model is a general exponential-family model for the
attributes (e.g., generalized linear models)

The second sub-model is an ERGM for the graph that has no
dependence on the nodal attributes.



Example: Joint Ising Models

SupposeX is univariate and binaryxi # { &1, 1} . One measure of
homophilyon x is

homophily(y, x) =
n"

i=1

n"

j =1

xi yi ,j xj (2)

A simple model for the network is

P(X = x, Y = y|! 1, ! 2) ' e! 1density (y)+ ! 2homophily (y,x) (y, x) # N .

wheredensity(y) = 1
n

#
i

#
j yi ,j

GLM P(Yi ,j = yi ,j |X = x, ! 1, ! 2) ' e! 1
1
n yi , j + ! 2xi yi , j xj y # { 0, 1} , x # X

Ising model P(X = x|Y = y, ! 2) ' e! 2
!

i

!
j xi yi , j xj (y, x) # N

So we have a simple joint Ising model



Model speciÞcation issues: Degeneracy

Joint Ising model:n = 20 with moderate homophily (mean-value=0.76):
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Figure: 100,000 draws from an Ising homophily network model
with ! 1 = 0 and ! 2 = 0 .13. Mean values are marked in red.



Model speciÞcation issues: Degeneracy

So standard homophily in ERGM leads to degeneracy in ERNM

Solution: regularized homophily

Supposex is categorical with category labels 1, . . . , K .

homophilyk,l (y, x) =
n"

i=1

n"

j =1

I (xi = k)yi ,j I (xj = l ). (3)

Let di ,k (y, x) =
#

i< j yij I (xj = k) be the number of edges
connecting nodei to nodes in categoryk.

rhomophilyk,l (y, x) =
"

i :xi = k

(
di ,l (y, x) & E## (

(
di ,l (Y , X )) (4)

whereE## (á) is the expectation conditional on the number of nodes in
each category ofx under the assumption thatX and Y are independent.



What happens when we Þt the model with our new homophily?



Comparison of Homophily Statistics
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Fitting Models to Partially Observed Social Network Data

Focus on the joint distribution ofZ = ( Y , X ).

Two types of data:
Observed relations and covariates (zobs = ( yobs, xobs)),
and information about the observation mechanism (D)
(e.g., indicators of relations and covariates sampled.

L(! , " ) " P(Zobs = zobs, D|! , " )

=
!

zunobs

P(Zobs = zobs, Zunobs = zunobs, D|! , " )

=
!

zunobs

P(D|Zobs = zobs, Zunobs = zunobs, " )P! (Zobs = zobs, Zunobs = zunobs)

! is the model parameter

' is the sampling parameter

When can we ÒignoreÓ the sampling process?
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Adaptive Sampling Designs
We call a sampling designadaptiveif:

P(D = d|Zobs, Zmis, ' ) = P(D = d|Zobs, ' ) ( z # Z .

that is, it uses information collected during the survey to direct
subsequent sampling, but the sampling design depends only on the
observed data.

adaptive sampling designs satisfy a condition called Òmissing at
randomÓ by Rubin (1976) in the context of missing data.

Result: standard network sampling designs such as conventional,
single wave and multi-wave link-tracing sampling designs are
adaptive

% Thompson and Frank (2000), Handcock and Gile (2007).
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When is sampling adaptive?

Examples of adaptive sampling:

Individual sample, sample based on observed things like race, sex,
and age that we know.

Link-tracing sample starting with an adaptive sample with follow-up
based on observed relations with others in the sample, as well as
things like race and sex and age.

Link-tracing with probability proportional to number of partners is
adaptive!

Examples of non-adaptive (not missing at random) sampling:

Individual sample based on unobserved properties of
non-respondents - like infection status or illicit activity.

Link-tracing sample starting where links are followed dependent on
unobserved properties of alters.



Adaptive Sampling Designs and their Amenable Models
DeÞnition: Consider a sampling design governed by parameter' # $
and a stochastic network modelP! (Y = y, X = x) governed by
parameter! # %. We call the sampling designamenable to the modelif
the sampling design is adaptive and the parameters' and ! are distinct.

Result: If the sampling design is amenable to the model the likelihood
for ! and ' is

L[! , ' |Zobs = zobs, D = d] ' L[' |D = d, Zobs = zobs]L[! |Zobs = zobs]

sampling design likelihood" face-value likelihood

sampling L[' |D = d, Zobs = zobs] = P(D|Zobs = zobs' )

network L[! |Zobs = zobs] =
"

zunobs

P! (Zobs = zobs, Zunobs = zunobs)
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Adaptive Sampling Designs and their Amenable Models

Result: If the sampling design isnot amenable to the model the
likelihood for! and ' is

L(! , " ) =
!

zunobs

P(D|Zobs = zobs, Zunobs = zunobs, " )P! (Zobs = zobs, Zunobs = zunobs)

and the design will need to be represented.

ClearlyP(D|Y , X , ' ) can be modeled when it is unknown.



Likelihood-based inference for ERNM
when partially observed

Consider the conditional distribution ofT givenTobs:

P! (Tunobs = t |Tobs = tobs) = exp[! ág(t + tobs) & &(! |tobs)] t # T (tobs)

whereT (tobs) = { t : t + tobs # T }

&(! |tobs) = log
"

u" T (tobs)

exp [! ág(u + tobs)].

Note that
L[! |Tobs = tobs] ' exp[&(! |tobs) & &(! )]

which can then be estimated by MCMC:

the Þrst term by a chain on the complete data overT and;

the second by a chain conditional ontobs overT (tobs).
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Likelihood-based inference for ERNM
when partially observed

In general, the observed data log likelihood ratio of (! , ( ) versus (! 0, ( 0) is

)(! , ( ) & )(! 0, ( 0) = log(
c(tobs, w, ! , ( )

c(tobs, w, ! 0, ( 0)
) & log(

c(! , T )
c(! 0, T )

)

= log(
"

tmiss

p(W = w|T = t , ( )
p(W = w|T = t , ( 0)

e(! $ ! 0)ág(t ) p(W = w|T = t , ( 0)e! 0ág(t )

c(tobs, w, ! 0, ( 0)
)

& log(
"

tmiss

e(! $ ! 0)ág(t ) e! 0ág(t )

c(! , T )
)

= log( E! 0," 0(
p(W = w|T , ( )
p(W = w|T , ( 0)

e(! $ ! 0)ág(T ) )|W = w, Tobs = tobs) (5)

& log(E! 0(e
(! $ ! 0)ág(T ) ))



Likelihood-based inference for ERNM
when partially observed

In general, the observed data log likelihood ratio of (! , ( ) versus (! 0, ( 0)
may be approximated by

)(! , ( ) & )(! 0, ( 0)

) log(
1
M

M"

i

p(w|t (i )
m , ( )

p(w|t (i )
m , ( 0)

e(! $ ! 0)ág(t (i )
m ) ) & log(

1
M

M"

i

e(! $ ! 0)ág(t (i ) ) ).



Likelihood-based inference for ERNM
when partially observed

ERGM case implemented inRpackagestatnet (Handcocket al 2003)
(http://statnet.org ).

ERNM case implemented inernm package (Fellows 2012).

http://statnet.org


Adolescent Peer Networks

The National Longitudinal Study of Adolescent Health
% www.cpc.unc.edu/projects/addhealth

Ð ÒAdd HealthÓ is a school-based study of the health-related
behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends

160 schools: Smallest has 69 adolescents in grades 7Ð12

www.cpc.unc.edu/projects/addhealth


Adolescent Peer Networks

The National Longitudinal Study of Adolescent Health
% www.cpc.unc.edu/projects/addhealth

Ð ÒAdd HealthÓ is a school-based study of the health-related
behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends

160 schools: Smallest has 69 adolescents in grades 7Ð12

www.cpc.unc.edu/projects/addhealth


! 10 ! 5 0 5 10

!
10

!
5

0
5

10

12

7 9

10

9

8

10

11

7

8

11

8

10

8

8

10

97

8

8

11

8

9
9

7

11

9

10

8

11

7

9

11

11

11

10

10

9

9

7

10

10

7

7 9

9

1111

8

12

9

9

10

7

7

9

7

11

9

7

12

7

8

9

11

11

7

8

12



White !"#" $%&'()"&* +Grade 7
Black !"#"$ %&'()"&* +
Hispanic !#,-)".- /)*0+
Asi an / Nativ e Am / Other !"#"$ %&'()" &*+
Race NA

Grade 8
Grade 9
Grade 10
Grade 11
Grade 12
Grade NA



Application to substance use in adolescent peer networks
Data: The National Longitudinal Study of Adolescent Health
Ð Model friendship network as a function of student characteristics

Form Name DeÞnition
Y Mean Degree Average degree of students
Y Log Variance of Degree The log variance of the student degrees
Y In Degree = 0 # of students with in degree 0
Y In Degree = 1 # of students with in degree 1
Y Out Degree = 0 # of students with out degree 0
Y Out Degree = 1 # of students with out degree 1
Y Reciprocity # of reciprocated ties
X Grade = 9 # of freshmen
X Grade = 10 # of sophomores
X Grade = 11 # of juniors
X , Y Within Grade Homophily Pooled homophily within grade
X , Y +1 Grade Homophily Pooled homophily between each grade

and the grade above it

Table: Model Terms



Application to substance use in adolescent peer networks

ö! Std. Error Z p&value
Mean Degree -217.02 7.81 -27.80 < 0.001

Log Variance of degree 25.07 9.06 2.77 0.006
In-Degree 0 2.62 0.50 5.20 < 0.001
In-Degree 1 1.05 0.40 2.62 0.009

Out-Degree 0 4.09 0.52 7.91 < 0.001
Out-Degree 1 1.93 0.45 4.25 < 0.001

Reciprocity 2.71 0.23 11.77 < 0.001
Grade = 9 1.46 0.62 2.37 0.018

Grade = 10 1.93 0.71 2.72 0.007
Grade = 11 2.08 0.59 3.54 < 0.001

Grade Homophily 4.34 0.46 9.41 < 0.001
+1 Grade Homophily 0.63 0.21 2.98 0.003

Table: ERNM Model with Standard Errors Based on the Fisher Information



Application to substance use in adolescent peer networks

We see that students in the same grade are much more likely to be
friends

The positive coe" cient for Õ+1 Grade HomophilyÕ indicates that
students also tend to form connections to the grades just below or
just above them.
Evaluating the goodness-of-Þt?

Simulate networks from the Þtted model, and visually compare them
to the observed network (Hunter, Goodreau, Handcock 2008).
Simulate network statistics from the model and compare them to the
observed network.



Model-Based Simulated High School

Simulated Network
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Model Diagnostics: Goodness-of-Þt
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Network Regression with endogenous nodal attributes

Let Z # { 0, 1} be a binary outcome variable (e.g., substance use) and
consider:

P(Z = z, X = x, Y = y|! , %, * ) =
1

c(%, ! , * )
ezáx# + ! ág(x,y)+ $áh(z,y) . (6)

So, conditional onY = y, %, * :

logodds(zi = 1 |z$ i , Xi = xi ) & logodds(zi = 1 |z$ i , Xi = x%
i )

= %(xi & x%
i )

wherez$ i represents the set ofz not includingzi , xi represents thei th
row of X .

So %have their usual interpretations (conditional on the rest of the
network)

The usual independence assumptions do not hold



Simple logistic regression of substance use on gender

What is the relationship between gender and substance use?

Logistic regression of substance use on gender:

% Std. Error Z p&value
Intercept -1.70 0.44 -3.84 < 0.001

Gender 1.18 0.57 2.09 0.037

Table: Simple Logistic Regression Model Ignoring Network Structure



Logistic Regression using Network Data

Bootstrap Asymptotic
! Std. Error Std. Error Z p! value

Mean Degree -215.50 8.32 8.15 -26.44 < 0.001
Log Variance of degree 24.46 8.80 8.91 2.75 0.006

In-Degree 0 2.68 0.55 0.48 5.55 < 0.001
In-Degree 1 1.07 0.43 0.41 2.60 0.009

Out-Degree 0 4.15 0.54 0.52 8.03 < 0.001
Out-Degree 1 1.94 0.50 0.45 4.31 < 0.001

Reciprocity 2.71 0.25 0.23 11.96 < 0.001
Grade Homophily 4.28 0.44 0.47 9.18 < 0.001

+1 Grade Homophily 0.62 0.21 0.21 2.99 0.003
Gender Homophily 0.78 0.24 0.24 3.27 0.001

Substance Homophily 0.76 0.25 0.25 3.02 0.003
Intercept -1.72 0.50 0.44 -3.91 < 0.001

Gender 0.92 0.55 0.51 1.79 0.073

Table: ERNM Model Inference



Model diagnostics for network regression

# of edges within substance categories
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Figure: Substance Use Homophily Diagnostics.
The values of the observed statistics are marked in red.
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Latent Class Modeling using ERNM

We observe the relational tiesY

Postulate the existence of a categorical nodal covariateX

Build an ERNM model based on complex statistics

Treat all X values as missing

A new variant of the stochastic block model (Wang and Wong 1987)
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Latent Class Modeling using ERNM
Example: Latent Cluster Model of SampsonÕs Monks

Expressed ÒlikingÓ between 18 monks within an isolated monastery
% Sampson (1969)

A directed relationship aggregated over a 12 month period before the
breakup of the cloister.

Sampson identiÞed three groups plus:
(T)urks, (L)oyal Opposition, (O)utcasts and (W)averers
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Latent Class Modeling using ERNM

We observe the relational tiesY

Postulate the existence of a categorical nodal covariateX

Assume the sample space ofX hasK = 18 categories

Build a model based on count, density and relative homophily terms

Treat all X values as missing using the above ideas

Term ö! öµ s.e.(ö! ) s.e.(öµ)
# of edges -0.58 88.23 0.14 7.48
Homophily 7.28 15.30 0.91 1.33
# in group 2 -0.02 6.95 1.31 0.99
# in group 3 -2.50 3.95 1.44 1.08

Table: Latent class model of SampsonÕs monks.

p(X |Y = yobs, ö! ) assign each monk with probability one to the
correct clusters.

Almost all mass goes on three groups.



Conclusions

Exponential-family random network models are
a powerful new way to model network data

Leads to a new approach to network regression

Leads to a new approach to latent variable modeling

Model speciÞcation and development are extensions of that for
ERGM, but require new perspectives


