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Statistical Models for Social Networks

Notation
A social networkis debned as a set of social OactorsO, a social
relationship between each pair of actors, and a set of variables on those
actors/pairs.
]
1 relationship from actoi to actor j
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! 0 otherwise

callY ! [Yj]n n agraph
aN = n(n! 1) binary array



Statistical Models for Social Networks

Notation
A social networkis debned as a set of social OactorsO, a social
relationship between each pair of actors, and a set of variables on those
actors/pairs.
!
V. 1 relationship from actoi to actor j
! 0 otherwise
callY ! [Yj]n n agraph
aN = n(n! 1) binary array
X ben" g matrix of actor variates
call (Y, X) a network

The basic problem of stochastic modeling is to specify a distribution
for X,Y i.e., P(Y = y,X = X)



The ERGM Framework for Network Modeling

Let Y be the sample space of e.g. {0, }N
and X be the sample space &f.
Model the multivariate distribution ofY givenX via:

exp(! @(y|x)}

PLY = yIX = X) = =0

y#Y, x#X

Frank and Strauss (1986)

I #!1 $ RY g-vector of parameters

g(y|x) g-vector of
% g(Y|x) are jointly su C|ent for the model

c(!,x,Y) distribution normallllzmg constant
c(t,x, V)= exq{!a@(y[x)}

y"Y



Simple model-classes for social networks

Homogeneous Bernoulli graph (Erdgs-Renyi model)

Y;; are independent and equally likely
with log-odds! = logit[ P (Yj = 1)]
e! ! ij Yi

Pi(Y=y)= cx.Y)

y#Y
# N
whereq =1, g(y)= ;¥ c(',x,Y)=[1+exp(!)]
homogeneity means it is unlikely to be proposed as a model for real
phenomena



Dyad-independence models with attributes

Yj are independent but depend on dyadic covariageg,j} -,

!
e L lkak(ylx)

P(Y =y[X=x)= c.xY)

y#Y



Dyad-independence models with attributes

Yj are independent but depend on dyadic covariageg,j} -,

!
e k=1 ' KOk(YIX)

PLY = yIX =)= =

y#Y

ok (ylx) = X iYi, k=1,..., q
i



Dyad-independence models with attributes

Yj are independent but depend on dyadic covariageg,j} -,

!
e L lkak(ylx)

P (Y = y[X=x)= c.xY) y#Y
O(yP¥) = Xiyi, k=1,..., q
i

$ ng
c(t,x,Y)=  [L+exp( i)l

i k=1

Of course, "
logit[P; (Yij =1|X = x)] = DX i

k



Some history of exponential family models for socia
networks

Holland and Leinhardt (1981) proposed a general dyad independence
model

P Also an homogeneous version they refer to as thO0Omodel
# # #
expl” ViVt Y o SiYie + 0 %Ya )
&",$,%#)

P(Y =y)=

where! = (",$, %#).

b# controls the expected number of edges
b" represent the expected tendency toward
b$; of nodei; % of nodej



Some history of exponential family models for socia
networks

Holland and Leinhardt (1981) proposed a general dyad independence
model

P Also an homogeneous version they refer to as thO0Omodel
# # #
expl” ViVt Y o SiYie + 0 %Ya )
&",$,%#)

P(Y =y)=

where! = (",$, %#).

b# controls the expected number of edges
b" represent the expected tendency toward
b$; of nodei; % of nodej

Much related work and generalizations



Generative Theory for Network Structure

Actor Markov statistics
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D motivated by notions of OsymmetryO and OhomogeneityO
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Generative Theory for Network Structure

Actor Markov statistics
% Frank and Strauss (1986)

D motivated by notions of OsymmetryO and OhomogeneityO
DY inY that do not share an actor are
conditionally independent given the rest of the network
% analogous to nearest neighbor ideas in spatial modeling

Degree distribution:dy (y) = proportion of actors of degree iny.
triangles: triangle(y) =
number of triads that form a complete sub-graph yn

_/\ f\,z A

tnan Ie two-star three star
= transmve triad



More General mechanisms motivated by conditional
independence

% Pattison and Robins (2002), Butts (2005)
% Snijders, Pattison, Robins and Handcock (2006)

BYy; andYj, inY are conditionally
independent given the rest of the network
if they could not produce a cycle in the network



More General mechanisms motivated by conditional
independence

% Pattison and Robins (2002), Butts (2005)
% Snijders, Pattison, Robins and Handcock (2006)

BYy; andYj, inY are conditionally
independent given the rest of the network
if they could not produce a cycle in the network

Partial conditional dependence when four-cycleis created



This produces features on conbgurations of the form:

edgewise shared partner distributiopi(y) =
proportion of edges between actors with exactly shared partners
k=0,1,...

i
Figure: The actors in the non-directed i, j) edge have 5 shared partners
dyadwise shared partner distribution:

dsp.(y) = proportion of dyads with exactlyk shared partners
k=0,1,...



Structural Signatures

b identify social constructs or features
b based on intuitive notions or partial appeal to substantive theory
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Structural Signatures

b identify social constructs or features
b based on intuitive notions or partial appeal to substantive theory

Clusters of edges are often
Recalltriangle(y) is the number of triangles amongst triads

triangle(y) = %8 i ViV
3 ik ()
A closely related quantity is the
proportion of triangles amongst two-stars

3" triangle(y)

Cly) = two& star(y)

_/\ J\é /\4

man Ie two-star three star
= transmve triad



Exponential-family Random Network Models

Let N be the sample space &f, X

Model the multivariate distribution ofY , X
via the form:

exp{! @y, x)}

PLY =y X == S

y, X#N
I #1 $ RY g-vector of parameters

o(y, x) g-vector of
% g(Y,X) are jointly su' cient for the model

c(!,N) distribution normalizing constant

N = el @y, X))oy, X)
Yy, X



Interesting model-classes of ERNM

Relationship to ERGM and Random Fields

Let N(x)={y:(X,y) # N} andN (y) = {x:(x,y) # N}

ERGM  P(Y = y|X = x;!) ﬁe! aY) y # N (x)

Gibbs measure  P(X = x|Y = y;!) ﬁe! DY) x # N (y)

The brst model is the ERGM for the network conditional on the
nodal attributes.

The second model is an exponential-family for the Peld of nodal
attributes conditional on the network.



Relationship with ERGM

The model can be expressed as

P(X=xY =y[l)= P(Y = y|X = x|")P(X = x|!)
where
P(Y =yX=x;!) = c(!l'x)e! atY)y # N (x)
PXX=x]!) = CC((!! ;Iil()) X # X

The brst sub-model is the ERGM for the network conditional on the
nodal attributes.

The second sub-modes the marginal representation of the nodal

attributes and is not necessarily an exponential-family with canonical
parameter! .

This decomposition makes it clear why the conditional modeling of
Y givenX via ERGM diers from the joint modeling off and X
via ERNM.



Separable ERGM and Field Models

Suppose the model can be expressed as

1 1 .&n 1,4
P(X = x,Y = y[ly, )= ———_g 1+ =a0) X)#N. (1
(X=xY =yllta) = s (v.%) #N. (1)
whereN =Y " X. Then
— | — 1 |1éh(X)
PX=x]l1) = 7c1('1X)e.
1 .
P(Y = y|!2) me! 28(y)

The brst sub-model is a general exponential-family model for the
attributes (e.g., generalized linear models)

The second sub-model is an ERGM for the graph that has no
dependence on the nodal attributes.



Example: Joint Ising Models
SupposeX is univariate and binary # {&1, 1}. One measure of
homophilyon x is

"n wn
homophily(y, x) = XiYi i % (2)
i=1 j=1

A simple model for the network is
P(X - X,Y - y|| 1 I 2) ' e! 1density (y)+ ! zhomophily (y,x) (y,x) #N.

_ ##
wheredensity(y) = & Vi,

GLM P(Yij = yiiIX=x14,12) ' ell%y‘*il“zxiy"ixj y#{0,1}, x# X

Ising model P(X =x|Y =y,1,) ' €2 i Y% (yx)#N

So we have a simple joint Ising model



Model specibcation issues: Degeneracy

Joint Ising model:n = 20 with moderate homophily (mean-value=0.76):

# of edges within x = 1 # of edges within x = -1

N L —

T T T 1
0 50 100 150 200

Frequency
0 20000

Frequency
0 20000

100 150 200
Count Count
# of edges between x =1 and x =-1 # of nodes with x =1

Frequency
6000
I
—
Frequency

0 4000
I -

Count Count

Figure: 100,000 draws from an Ising homophily network model
with '; =0 and !, = 0.13. Mean values are marked in red.



Model specibcation issues: Degeneracy

So standard homophily in ERGM leads to degeneracy in ERNM
Solution: regularized homophily

Supposex is categorical with category labels 1. ,K.
"n "n

homophily | (y. x) = 10 = Kyl 0g = 1). ®
i=1 j=1

#
Let di k(y,Xx) = i<j yi I (% = k) be the number of edges
connecting node to nodgs in( categork.
rhomophily, ,(y,x) = dii(y,x) & E¢ ( di (Y,X)) (4)

ixi=k

whereE; (§ is the expectation conditional on the number of nodes in
each category ok under the assumption thaK andY are independent.



What happens when we bt the model with our new homophily?



Comparison of Homophily Statistics

# of edges within group x = -1

# of edges within group x = 1

0.03 - 0.03 -
0.02 - 0.02 -
0.01 - 0.01-
0.00 1 U 1 1 1 0.00+ 1 U 1 1 1
0 50 100 150 200 0 50 100 150 200
# of edges from x=-1 to x=1 # of edges from x=1 to x=-1
0.08 - 0.08 -
0067 0.06 Model
2 .
g 0.04 - 0.04- MIsmg
k=] z] Regularized Homophily
0.02- 0.02-
0.00 W : : : 0.00 - / : : :
0 20 40 60 0 20 40 60
Regularized Homophily # of nodes with x = 1
0.4-
0.6~
0.3-
0.4~
0.2-
0.1- 0.2+
0.0- : : 0.0- : i :
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Fitting Models to Partially Observed Social Network De

Focus on the joint distribution oZ = (Y, X).

Two types of data:

Observed relations and covariate®gs = ( Yobs, Xobs)),
and information about the observation mechanisi)(
(e.g., indicators of relations and covariates sampled.
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Fitting Models to Partially Observed Social Network De

Focus on the joint distribution oZ = (Y, X).

Two types of data:

Observed relations and covariate®gs = ( Yobs, Xobs)),
and information about the observation mechanisi)(
(e.g., indicators of relations and covariates sampled.

Le,") " l?(zobs = Zobs, D[!,")

= P(Zobs = Zobs, Zunobs = Zunobs, D[, ")

Zt_mobs

= P(D|Zobs = Zobs, Zunobs = Zunobs, " )Pt (Zobs = Zobs, Zunobs = Zunobs)

Zunobs

I is the model parameter
' is the sampling parameter

When can we OignoreO the sampling process?



Adaptive Sampling Designs
We call a sampling desigadaptiveif:
P(D = d|Zobs, Zmis," ) = P(D = d|Zobs," ) (z#Z.

that is, it uses information collected during the survey to direct
subsequent sampling, but the sampling design depends only on the
observed data.

adaptive sampling designs satisfy a condition calledsding at
randomO by Rubin (1976) in the context of missing data.



Adaptive Sampling Designs
We call a sampling desigadaptiveif:
P(D = d|Zobs, Zmis," ) = P(D = d|Zobs," ) (z#Z.

that is, it uses information collected during the survey to direct
subsequent sampling, but the sampling design depends only on the
observed data.

adaptive sampling designs satisfy a condition calledsding at
randomO by Rubin (1976) in the context of missing data.

Result: standard network sampling designs such as conventional,
single wave and multi-wave link-tracing sampling designs are
adaptive

% Thompson and Frank (2000), Handcock and Gile (2007).



When is sampling adaptive?

Examples of adaptive sampling:
Individual sample, sample based on observed things like race, sex,
and age that we know.
Link-tracing sample starting with an adaptive sample with follow-up
based on observed relations with others in the sample, as well as
things like race and sex and age.
Link-tracing with probability proportional to number of partners is
adaptive!

Examples of non-adaptive (not missing at random) sampling:
Individual sample based on unobserved properties of
non-respondents - like infection status or illicit activity.
Link-tracing sample starting where links are followed dependent on
unobserved properties of alters.



Adaptive Sampling Designs and their Amenable Modkt

Debnition: Consider a sampling design governed by parametér $
and a stochastic network modé, (Y = y, X = x) governed by
parameter! # % We call the sampling desigamenable to the modef
the sampling design is adaptive and the parameterand! are distinct.

Result: If the sampling design is amenable to the model the likelihood
for! and' is

L['," |Zobs = Zobs, D = d]" L[' |D = d,Zobs = Zobs|LI[! |Zobs = Zobs]



Adaptive Sampling Designs and their Amenable Modkt

Debnition: Consider a sampling design governed by parametér $
and a stochastic network modé, (Y = y, X = x) governed by
parameter! # % We call the sampling desigamenable to the modef
the sampling design is adaptive and the parameterand! are distinct.

Result: If the sampling design is amenable to the model the likelihood
for! and' is

L['," |Zobs = Zobs, D = d]" L[ |D = d, Zobs = Zobs|L[! [Zobs = Zobs]
sampling design likelihoddface-value likelihood
sampling L[' |D = d, Zops = Zobs] = P(D[Zobs = Zobs' )

network L[! [Zobs = Zobs] = Pi (Zobs = Zobs, Zunobs = Zunobs)

Zunobs



Adaptive Sampling Designs and their Amenable Modkt

Result: If the sampling design iaot amenable to the model the
likelihood for! and' is

1
L(l ! ) = P(Dlzobs = Zobs, Zunobs = Zunobs, )P! (Zobs = Zobs, Zunobs = Zunobs)

Zunobs

and the design will need to be represented.

ClearlyP(D|Y, X," ) can be modeled when it is unknown.



Likelihood-based inference for ERNM
when partially observed
Consider the conditional distribution of givenT gps:
Pi (Tunobs = t]Tobs = tobs) = expl! ?-g(t + tobs) & &(! |tobs)] t# T (tobs)

whereT (tops) = {t (1t + tops # T}

&(! [tons) = log expl @(u+ tops)].

u'T (tobs)



Likelihood-based inference for ERNM
when partially observed

Consider the conditional distribution of givenT gps:
Py (Tunobs = t|Tobs = tobs) = exp[! @(t + tops) & &(! |tops)] t# T (tobs)
whereT (tops) = {t it + tops # T}

&(! [tons) = log expl @(u+ tops)].

u"'T (tobs)
Note that
L[' [Tobs = tobs] © exp[&(! |tons) & &(!)]

which can then be estimated by MCMC:
the Prst term by a chain on the complete data ovErand;
the second by a chain conditional dgys overT (tops).



Likelihood-based inference for ERNM
when partially observed

In general, the observed data log likelihood ratio bf () versus {o, (o) is

C(tobs:Wv! -()
C(tobs, W, !0, (0)

c(!,T)
c(lo, T)

(1 () &) (Mo (0) = log( ) & log( )

p(W = w|T =t,() (|$|O)@(t)p(W w|T = t, (O)e 033('[))

log(

B s W = WIT = t,(0) C(tobss W, !0, (0)
(®
S s10am €0
&Iog(t 1)
W = w|T
= 10(E (S PN = W T = ) (9

& log(E 0(e(' $! o)ag(T)))



Likelihood-based inference for ERNM
when partially observed

In general, the observed data log likelihood ratio bf () versus (o, (o)
may be approximated by

)1, () &) (Yo, (o)
"M

"M (i) _ |
) |Og(l w(ln;’()e(l $! O)a;'](tl(“'))) & log(i e(! $ 1 o)ég(t(l))).
M pwitd, (o) M



Likelihood-based inference for ERNM
when partially observed

ERGM case implemented iR packagestatnet (Handcocket al 2003)
(http://statnet.org ).

ERNM case implemented iarnm package (Fellows 2012).


http://statnet.org

Adolescent Peer Networks


www.cpc.unc.edu/projects/addhealth

Adolescent Peer Networks

The National Longitudinal Study of Adolescent Health
% www.cpc.unc.edu/projects/addhealth

D OAdd HealthO is a school-based study of the health-related
behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends
160 schools: Smallest has 69 adolescents in grades 7D12


www.cpc.unc.edu/projects/addhealth
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School Community Stratum 44 School Community Stratum 44
mutual friendships by Grade mutual friendships by Race

2208 Students 2208 Students

B Grade7 O White I"#" $%8&)"&* +

B Grade 8 W Black "#"$ %&()"&* +

@ Grade9 O Hispanic #,-)".- /)*0+

O Grade 10 B Asian/Native Am / Other !"#'$%&'()" &+

B Grade 11 B Race NA



Application to substance use in adolescent peer netwc

: The National Longitudinal Study of Adolescent Health

P Model friendship network as a function of student characteristics

Form Name Debpnition

Y Mean Degree Average degree of students

Y Log Variance of Degree The log variance of the student degret
Y In Degree =0 # of students with in degree 0

Y In Degree =1 # of students with in degree 1

Y Out Degree =0 # of students with out degree 0

Y Out Degree =1 # of students with out degree 1

Y Reciprocity # of reciprocated ties

X Grade =9 # of freshmen

X Grade = 10 # of sophomores

X Grade = 11 # of juniors

X,Y  Within Grade Homophily Pooled homophily within grade

XY +1 Grade Homophily Pooled homophily between each grade

and the grade above it




Application to substance use in adolescent peer netwc

% Std. Error Z p&value
Mean Degree -217.02 7.81 -27.80 <0.001

Log Variance of degree 25.07 9.06 2.77 0.006
In-Degree 0 2.62 0.50 5.20 <0.001

In-Degree 1 1.05 0.40 2.62 0.009
Out-Degree 0 4.09 0.52 7.91 <0.001
Out-Degree 1 1.93 0.45 4,25 <0.001

Reciprocity 2.71 0.23 11.77 <0.001

Grade =9 1.46 0.62 2.37 0.018
Grade = 10 1.93 0.71 2.72 0.007
Grade = 11 2.08 0.59 3.54 <0.001

Grade Homophily 4.34 0.46 9.41 <0.001

+1 Grade Homophily 0.63 0.21 2.98 0.003

Table: ERNM Model with Standard Errors Based on the Fisher Information



Application to substance use in adolescent peer netwc

We see that students in the same grade are much more likely to be
friends

The positive cot cient for O+1 Grade HomophilyO indicates that
students also tend to form connections to the grades just below or
just above them.

Evaluating the goodness-of-pt?

Simulate networks from the btted model, and visually compare them
to the observed network (Hunter, Goodreau, Handcock 2008).
Simulate network statistics from the model and compare them to the
observed network.



Model-Based Simulated High School

Simulated Network Observed Network
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Network Regression with endogenous nodal attribute

Let Z # {0, 1} be a binary outcome variable (e.g., substance use) and

consider:
1 Zaci+ L GO SEY) | (p)

= = = I 0*yY= ———
P(Zz=2X=x,Y=y|',%*) @)

So, conditional onY =y, %*:
Iogodds(zi = 1|z$i,Xi = Xi) & Iogodds(zi = 1|z$i,Xi = Xi%)
= %x &%
wherezg ; represents the set af not includingz, x; represents théth

row of X.
So %have their usual interpretations (conditional on the rest of the

network)
The usual independence assumptions do not hold



Simple logistic regression of substance use on gend

What is the relationship between gender and substance use?

Logistic regression of substance use on gender:

% Std. Error Z pé&value
Intercept -1.70 0.44 -3.84 <0.001
Gender 1.18 0.57 2.09 0.037

Table: Simple Logistic Regression Model Ignoring Network Structure



Logistic Regression using Network Data

Bootstrap  Asymptotic

I Std. Error  Std. Error Z p! value
Mean Degree -215.50 8.32 8.15 -26.44 <0.001
Log Variance of degree 24.46 8.80 8.91 2.75 0.006
In-Degree 0 2.68 0.55 0.48 5.55 <0.001
In-Degree 1 1.07 0.43 0.41 2.60 0.009
Out-Degree 0 4.15 0.54 0.52 8.03 <0.001
Out-Degree 1 1.94 0.50 0.45 431 <0.001
Reciprocity 2.71 0.25 0.23 1196 <0.001
Grade Homophily 4.28 0.44 0.47 9.18 <0.001
+1 Grade Homophily 0.62 0.21 0.21 2.99 0.003
Gender Homophily 0.78 0.24 0.24 3.27 0.001
Substance Homophily 0.76 0.25 0.25 3.02 0.003
Intercept -1.72 0.50 0.44 -3.91 <0.001
Gender 0.92 0.55 0.51 1.79 0.073

Table: ERNM Model Inference



Model diagnostics for network regression

# of edges within substance categories
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Figure: Substance Use Homophily Diagnostics.
The values of the observed statistics are marked in red.
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Latent Class Modeling using ERNM

We observe the relational tieg

Postulate the existence of a categorical nodal covariAte
Build an ERNM model based on complex statistics
Treat all X values as missing



Latent Class Modeling using ERNM

We observe the relational tieg

Postulate the existence of a categorical nodal covariAte

Build an ERNM model based on complex statistics

Treat all X values as missing

A new variant of the stochastic block model (Wang and Wong 1987)



Latent Class Modeling using ERNM
Example: Latent Cluster Model of SampsonOs Monks
Expressed OlikingO between 18 monks within an isolated monastery
% Sampson (1969)

A directed relationship aggregated over a 12 month period before the
breakup of the cloister.

Sampson identibed three groups plus:

(Turks, (L)oyal Opposition, (O)utcasts and (W)averers




Latent Class Modeling using ERNM

We observe the relational tieg

Postulate the existence of a categorical nodal covarite

Assume the sample space ¥fhasK = 18 categories

Build a model based on count, density and relative homophily terms
Treat all X values as missing using the above ideas

Term o] B se(b) se(p)

# of edges -0.58 88.23 0.14 7.48
Homophily 7.28 15.30 0.91 1.33
#ingroup 2 -0.02 6.95 1.31 0.99
#ingroup3 -250 3.95 1.44 1.08

Table: Latent class model of SampsonOs monks.

P(X|Y = Yobs, B) assign each monk with probability one to the
correct clusters.

Almost all mass goes on three groups.



Conclusions

Exponential-family random network models are
a powerful new way to model network data

Leads to a new approach to network regression
Leads to a new approach to latent variable modeling

Model specibcation and development are extensions of that for
ERGM, but require new perspectives



