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Overview 

•  Structured data vs. latent dependence structure 
Leveraging observed (noisy) structure for estimation 

•  This talk 
Inference from non-ignorable sampling designs 
Estimation of causal peer-influence effects (interference) 

•  Applications 
Analytics and marketing on social media platforms 
Online mechanisms that affect behavior online/offline  
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Agenda 

•  Inference with non-ignorable sampling designs 
1.  Theory 
2.  Inferential framework 

•  Estimation of the causal effects of interference, 
including peer-influence and peer-pressure 

•  Concluding remarks 



Motivating problems 

•  Surveys on social media platforms 
Potential market size estimation 

•  Surveys of hard-to-reach populations 
Cell phone users only (young, third-world countries) 
Epidemiology (drug-injection users, MSM) 
Healthcare (rare diseases, diseases with social stigma) 
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Network sampling designs 

•  Consider the problem of sampling from hard-to-
reach populations or on social media platforms 

Idea: leverage social structure to sample population 

•  Respondent-driven sampling (RDS) is a popular 
new sampling design that leverages individuals’ 
social network to obtain samples in this setting 
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An illustration of RDS 

 

•  This is not snowball sampling (Goodman, 1961) 
•  Is RDS ignorable? What role does the graph play 

in the classical inferential framework?  
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Classical inferential framework 

•  Y is response 

•  I is sampling design, implies Y=(YINC,YEXC) 
•  R is missing data mechanism, YINC=(YOBS,YMIS) 
•  Define YNOB=(YEXC,YMIS) 

•  X are pre-sampling covariates (e.g., phone book, 
voter registration lists, …) 

•  A quantity Q(Y,X) is the estimand of interest 
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Ignorable sampling designs 
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The technical challenge 

•  What role does the graph G play in the classical 
inferential framework? It is not there. 

•  G can be thought of providing node-specific 
covariates. These covariates are only observed for 
individuals in the sample – like the response 

•  Introduce X(G), post-sampling covariates. They 
are used to drive the sample, induce dependence 
on (and should be kept distinct from) the response 
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A richer notion of ignorability 
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The design I as a random variable 

•  In the classical framework I is a vector of 1s and 0s 
that indicate inclusion and exclusion 

•  In our setting I has a more complicated support 

A B
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The design I as a random variable 

•  In non-ignorable network sampling designs, the 
probability of the observed responses and graph 
depends on missing nodes and edges 

A B

DC
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Key remarks 

•  The graph plays a dual role, on Y and I  

•  The standard definition of ignorability and our extension 
apply to two different settings – post/missing vs pre/obsv  

•  Only if YNOB and XNOB are independent a-posteriori, we can 
distinguish between Y and G ignorability, but not generally 

•  If no homophily, P(Y|G)=P(Y), splitting Y, X(G) is notation; 
but homophily is the motivation for non-ignorable designs 

•  Ignorability of the sampling design is a condition that must 
be checked, given a joint model – it cannot be assumed 
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Theorems for popular designs 

1. Egocentric sampling (also simple random sampling) 
2. Snowball sampling 

–  Are ignorable 

3. Incomplete egocentric (subset of neighbors) 
4. Respondent-driven sampling 

–  Are not-ignorable 

5. Fixed vs. random population size N  
–  No effect on results 1-4 
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Remarks 

•  Currently popular Horvitz-Thompson estimators 
for RDS data are based on inclusion probabilities 

•  Inclusion probabilities are estimated using various 
strategies to correct degrees 

•  Our results suggest that valid inference requires 
augmenting the sample with both edges and nodes 
1.  Devise a reversible-jump MCMC scheme 
2.  Propose new Bayes estimators (given choices of Loss) 

CMSS at SAMSI 17 



 
 
 
 
 
•  R is fully observed 
•  G and Y are partially observed 
•  This defines a joint distribution P(α,γ,G,Y,I,R) 
 

Toward valid inference 
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True proportion 
of potential users 
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Motivating problems 

Randomized experiments on networks 

•  Obama for America 2012 campaign 

•  Leveraging peer-influence for 
Migrating consumer base from offline to online 
Increasing ROI by encouraging new product exploration 
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New families of causal estimands 

•  Prior work (Rosenbaum, Hodgens & Halloran) 
does not consider social structure explicitly 

•  Potential outcomes for individual i depend on the 
treatment assignment of its neighbors z-i 
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Constrained randomizations 

•  For δk to be estimable, we must observe potential 
outcomes with both z-i=0 and z-i≠0. This constrains 
randomizations that lead to valid estimates of δk 

•  We define insulated neighborhood randomizations 
(INR)  
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Theory 

•  We define Sharing Index (SI) as % of nodes that 
are shared neighbors of at least two other nodes 

Thm 1. Number of available INRs ∝ 1/SI 

Thm 2. INR introduces 

If we assume additive treatment effects or uniform 
peer-influence INR leads to unbiased estimates of δk  
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Take home points 

•  Paired measurements raise statistical problems 
where the familiar notions of variability, sampling 
designs, and causal inference are challenged  

•  Inference from network sampling designs 
Notion of non-ignorability with post-sampling covariates, 

inferential framework that leads to valid inference 

•  Causal inference with interference 
New estimands, constrained randomization, theory 
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