Design and analysis of experiments in the presence of network interference

Edo Airoldi

Department of Statistics Harvard University

Joint with Simon Lunagomez and Don Rubin

Overview

• Structured data vs. latent dependence structure Leveraging observed (noisy) structure for estimation

• This talk

Inference from non-ignorable sampling designs
Estimation of causal peer-influence effects (interference)

Applications

Analytics and marketing on social media platforms

Online mechanisms that affect behavior online/offline

Agenda

- Inference with non-ignorable sampling designs
 - 1. Theory
 - 2. Inferential framework
- Estimation of the causal effects of interference, including peer-influence and peer-pressure
- Concluding remarks

Motivating problems

- Surveys on social media platforms
 Potential market size estimation
- Surveys of hard-to-reach populations
 Cell phone users only (young, third-world countries)
 Epidemiology (drug-injection users, MSM)
 Healthcare (rare diseases, diseases with social stigma)

Network sampling designs

• Consider the problem of sampling from hard-toreach populations or on social media platforms

Idea: leverage social structure to sample population

• Respondent-driven sampling (RDS) is a popular new sampling design that leverages individuals' social network to obtain samples in this setting

An illustration of RDS

- This is not snowball sampling (Goodman, 1961)
- Is RDS ignorable? What role does the graph play in the classical inferential framework?

Agenda

- Inference with non-ignorable sampling designs
 - 1. Theory
 - 2. Inferential framework
- Estimation of the causal effects of interference, including peer-influence and peer-pressure
- Concluding remarks

Classical inferential framework

- Y is response
- I is sampling design, implies $Y=(Y_{INC}, Y_{EXC})$
- R is missing data mechanism, Y_{INC}=(Y_{OBS}, Y_{MIS})
- Define $Y_{NOB} = (Y_{EXC}, Y_{MIS})$
- X are pre-sampling covariates (e.g., phone book, voter registration lists, ...)
- A quantity Q(Y,X) is the estimand of interest

Ignorable sampling designs

A crucial notion is the one of ignorability of the sample mechanism. A sample mechanism I is called ignorable if:

$$Pr(Y_{NOB} \mid X, Y_{OBS}, R_{INC}, I) = Pr(Y_{NOB} \mid X, Y_{OBS}, R_{INC}).$$

An equivalent formulation of ignorability for I is the following:

$$Pr(I \mid X, Y, R_{INC}) = Pr(I \mid X, Y_{OBS}, R_{INC}).$$

If I does not have this property, it is called non-ignorable design.

The technical challenge

- What role does the graph G play in the classical inferential framework? It is not there.
- G can be thought of providing node-specific covariates. These covariates are only observed for individuals in the sample like the response
- Introduce X(G), post-sampling covariates. They are used to drive the sample, induce dependence on (and should be kept distinct from) the response

A richer notion of ignorability

Because of this need we introduce the notion of graph ignorability; We say that a sampling mechanism I is graph ignorable if

$$Pr(Y_{NOB}, X_{NOB} | Y_{OBS}, X_{OBS}, R_{INC}, I)$$

is equal to

$$Pr(Y_{NOB}, X_{NOB} | Y_{OBS}, X_{OBS}, R_{INC}).$$

An equivalent expression that may be easier to compute (or to manipulate) for the models we have in mind is:

$$\Pr\{I \mid Y, X, R_{INC}\} = \Pr\{I \mid Y_{OBS}, X_{OBS}, R_{INC}\}.$$

The mathematics are quite simple (just apply Bayes rule).

The design *I* as a random variable

- In the classical framework *I* is a vector of 1s and 0s that indicate inclusion and exclusion
- In our setting I has a more complicated support

The design *I* as a random variable

• In <u>non-ignorable</u> network sampling designs, the probability of the observed responses and graph depends on missing nodes and edges

Key remarks

- The graph plays a dual role, on *Y* and *I*
- The standard definition of ignorability and our extension apply to two different settings post/missing vs pre/obsv
- Only if Y_{NOB} and X_{NOB} are independent a-posteriori, we can distinguish between Y and G ignorability, but not generally
- If no homophily, P(Y|G)=P(Y), splitting Y, X(G) is notation; but homophily is the motivation for non-ignorable designs
- Ignorability of the sampling design is a condition that must be checked, given a joint model it cannot be assumed

Theorems for popular designs

- 1. Egocentric sampling (also simple random sampling)
- 2. Snowball sampling
 - Are ignorable
- 3. Incomplete egocentric (subset of neighbors)
- 4. Respondent-driven sampling
 - Are not-ignorable
- 5. Fixed vs. random population size N
 - No effect on results 1-4

Agenda

- Inference with non-ignorable sampling designs
 - 1. Theory
 - 2. Inferential framework
- Estimation of the causal effects of interference, including peer-influence and peer-pressure
- Concluding remarks

Remarks

- Currently popular Horvitz-Thompson estimators for RDS data are based on inclusion probabilities
- Inclusion probabilities are estimated using various strategies to correct degrees
- Our results suggest that valid inference requires augmenting the sample with both edges and nodes
 - 1. Devise a reversible-jump MCMC scheme
 - 2. Propose new Bayes estimators (given choices of Loss)

Toward valid inference

- R is fully observed
- G and Y are partially observed
- This defines a joint distribution $P(\alpha, \gamma, G, Y, I, R)$

Agenda

- Inference with non-ignorable sampling designs
- Estimation of the causal effects of interference, including peer-influence and peer-pressure
- Concluding remarks

Motivating problems

Randomized experiments on networks

- Obama for America 2012 campaign
- Leveraging peer-influence for
 Migrating consumer base from offline to online
 Increasing ROI by encouraging new product exploration

New families of causal estimands

- Prior work (Rosenbaum, Hodgens & Halloran) does not consider social structure explicitly
- Potential outcomes for individual i depend on the treatment assignment of its neighbors z_{-i}

$$\delta_k \equiv \frac{1}{|V_k|} \sum_{i \in V_k} {n_i \choose k}^{-1} \sum_{\mathbf{z} \in \mathbf{Z}(\mathcal{N}_i; k)} (Y_i(0, \mathbf{z}_{-i}) - Y_i(0, \mathbf{z}_{-i} = \mathbf{0}))$$

Constrained randomizations

- For δ_k to be estimable, we must observe potential outcomes with both $z_i=0$ and $z_i\neq 0$. This constrains randomizations that lead to valid estimates of δ_k
- We define insulated neighborhood randomizations (INR)

Theory

• We define Sharing Index (SI) as % of nodes that are shared neighbors of at least two other nodes

Thm 1. Number of available INRs $\propto 1/SI$

Thm 2. INR introduces $bias = SI \times (a - b)$

If we assume additive treatment effects or uniform peer-influence INR leads to unbiased estimates of δ_k

Agenda

- Inference with non-ignorable sampling designs
- Estimation of the causal effects of interference, including peer-influence and peer-pressure
- Concluding remarks

Take home points

- Paired measurements raise statistical problems where the familiar notions of variability, sampling designs, and causal inference are challenged
- Inference from network sampling designs
 Notion of non-ignorability with post-sampling covariates, inferential framework that leads to valid inference
- Causal inference with interference New estimands, constrained randomization, theory

Acknowledgements and pointers

CDC, Facebook, Nanigans, Obama for America 2012. J Blitzstein, XL Meng, M Katzoff, J Chang, C Marlow, D Eckles, R Ghani.

- 1. Valid inference with non-ignorable sampling designs, 2013. Lunagomez & Airoldi.
- 2. Estimating the causal effect of peer-influence, 2013. Airoldi & Rubin.
- 3. A survey of statistical network models, *Foundations & Trends in Machine Learning*, 2009. Goldenberg, Zheng, Fienberg & Airoldi.

