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Analysis of 5 Loxinr Treatment for Patients with
Osteoarthritis in Clinical Trial using Power Filter

Sourish Das∗ and Dipak Dey

Abstract

5 Loxinr is a new and novel treatment for the Osteoarthritis (OA) of knee. In
this paper, we present the efficacy study of 5 Loxinr treatment for OA and explain
the underlying mechanism of a treatment to be successful for treating OA such as 5
Loxinr. In a double-blind, randomized, placebo-controlled, clinical trial, the mod-
ulation of pro-inflammatory bio-molecules like tumor necrosis factor α (TNFα) and
interleukin-1β (IL-1β) were evaluated in the OA patients. We present the analy-
sis of association between TNFα and IL-1β with the effect of 5 Loxinr treatment
for OA. Based on this analysis, we describe the fundamental system of a success-
ful treatment for treating OA, such as 5 Loxinr; otherwise any new therapy for
OA in future would fail, if they fail to follow the mechanism. We accomplish this
by introducing the power filter (PF) for dynamic generalized linear models, which
extends the usual Kalman filter (KF) for dynamic linear models. We establish a
relationship between the KF and the PF as well. An information processing opti-
mality property of the PF is presented; which shows PF is optimum filter like KF.
This optimum property gives PF an edge over the other suboptimal filters, such as
extended Kalman filter.

KEY WORDS: Boswellia serrata; Dynamic model; Information processing; Kalman
filter; TNF alpha .

1 Introduction

Osteoarthritis (OA) is the most common form of inflammatory joint disease characterized
by articular cartilage degradation with an accompanying peri-articular bone response. OA
affects nearly 21 million people in United States, accounting for 25% visits to primary
care physicians (Felson, D. T, 2004). Clinical manifestations of OA of knee are pain in
and around the joint, stiffness of the joint after rest, crepitation on motion and limited
joint motion (Hochberg, M. C et al 1995). Recent recommendations for managing OA
focus on relieving pain and stiffness and improving physical function as important objec-
tive of treatment (Pendleton et al 2000). Currently available medication of OA for most
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cases include nonsteroidal anti-inflammatory drugs (NASIDs), including cyclo-oxygenase
II inhabitors. This can reduce pain and inflammation effectively. However, long-term use
of NASIDs has been found to be associated with adverse side-effect, including hyperten-
sion, congestive heart failure and renal insufficiency. Because of high incidence of adverse
events associated with currently available treatment, an effective and safer alternative
treatment for OA are needed.

In recent years, the gum resin extracted from an ancient herb Boswellia (Boswellia
serrata, often known as “Indian Frankincense”) has gained good attention as a potent
anti-inflammatory, anti-arthritic and analgesic agent (Wright, L.M. 2002). 5-Loxinr is
a novel treatment enriched with Boswellia serrata extract (US Patent 2004/0073060A1)
which confers a significant improvement in treating OA . Pertinent references are Roy, et
al. (2005) and Sengupta et al. (2008). Cell based in vitro studies and in vivo experiments
conducted in Sprague Dawley rats demonstrate that 5-Loxinr potentially inhibits the pro-
inflammatory cytokines such as tumor necrosis factor-α (TNFα). A recent study (Moxley
et al. 2007) showed an association with OA in hand and the human interleukin-1 (IL-1)
region, more specifically with IL-1β. Question is: can 5-Loxinr inhibits IL-1β also?

In the present research, a double-blind and placebo controlled clinical trial, was con-
ducted to evaluate the mechanism of the effectiveness of the 5-Loxinr for treating of OA
of knee. It is important to understand the mechanism of a successful treatment, such as
5 Loxinr, to prevent treatment failure. We assess the effectiveness of 5-Loxinr on the
symptoms of pain, joint stiffness, mobility in OA patients. We also look at the association
study of potent pro-inflammatory agent TNFα and IL-1β, which add the second line of
evidence in support of likely molecular mechanism of 5-Loxinr in reducing pain through
lowering the pro-inflammatory agent.

In this longitudinal study, each individual patients are followed over time and re-
sponses of interest, that is pain score in visual analogue scale (VAS) are recorded together
with covariates information of biomarker measurement for pro-inflammatory agent TNFα
and IL-1β. Here we have observed a group of 70 patients of OA, who are randomly as-
signed into two different levels of doses (either 100 mg/day or 250 mg/day) of 5 Loxinr

and placebo. The observations are taken at q(= 5) points in time, t1=Day 0, t2 = Day 7,
t3 = Day 30, t4 = Day 60 and t5 = Day 90. Each time we measure patients’ pain score in
VAS together with their biomarker measurement for TNFα and IL-1β, as covariates. The
major advantage of such longitudinal design is its capacity to separate the cohort effect
from time effect.

Although longitudinal data are not comparable to typical long chain time series data;
many ideas of analyzing time series data can be incorporated in analyzing such longitu-
dinal study. One of the common approaches to model time series of counts, proportions,
compositions and positive observations is exponential family state space dynamic model.
Several researchers, including West, Harrison, Migon (1985), Harvey and Fernades (1989)
and others, used exponential-conjugate family as the basis of Bayesian time series anal-
ysis. Many researchers used power steady model (PSM) of Smith (1979, 1981) as a basis
for state space modeling of non-Gaussian time series. Harvey and Fernandes (1989) ex-
tended the idea of PSM to include explanatory variable in GLM frame work using the
maximum likelihood method of fitting. Grunwald, Guttorp and Raftery (1993) have given
some general results for estimation and forecasting. If the goal is filtering, (estimating
an unobservable signal p(θt | Dt) for instance) Grunwald, Hamza and Hyndman (1997)
recommended to use PSM type Bayesian models.
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In this paper, we present the method for modeling longitudinal studies as state space
dynamic model. In order to achieve this we extend the horizon of PSM to the dynamic
generalized linear models (DGLM); hence naming it as “power filter” (PF) which extends
the usual “Kalman filter” (KF) for dynamic linear models (DLM). The format of the
paper is as follows. In section 2, we introduce the idea of PF for DGLM. In section 3,
we present the PF for binomial response longitudinal data with covariates information.
In section 4, we present the detail analysis of 5 Loxinr treatment using PF for dynamic
logistic regression model. Section 5 concludes the paper with brief discussion and in
appendix, we showed optimal property of PF and discuss the connection between KF and
PF.

2 Power Filter for Longitudinal Data

First we introduce the observe part of the longitudinal system. Suppose the distribution
of y

(t)
i belong to the natural exponential family with parameters θ

(t)
i and φ(t), i.e.,

f(y
(t)
i | θ(t)

i ) ∝ exp
{ 1

φ(t)

(
y

(t)
i θ

(t)
i − ψ(θ

(t)
i )

)}
, i = 1, ..., n;

where y
(t)
i is the longitudinal response at stage t, θ

(t)
i is the canonical parameter at stage

t, also known as state of nature and φ(t) is known as dispersion parameter. Now the
posterior distribution of θi at stage (t− 1) is

π
(
θ

(t−1)
i | y(t−1)

i

)
∝ exp

{ 1

τ
(t−1)
i

(
µ

(t−1)
0i θ

(t−1)
i − ψ(θ

(t−1)
i )

)}
,

where E
(
ψ′(θ(t−1)

i ) | y(t−1)
i

)
= µ

(t−1)
0i and τ

(t−1)
i is the corresponding convolution parame-

ter at stage (t− 1); see Diaconis and Ylvisker (1979) for clarification.

The marginal distribution

p(y
(s)
i | y(t−1)

i ) =

∫

Θ

f(y
(s)
i | θ(s)

i , y
(t−1)
i )π(θ

(s)
i | y(t−1)

i )dθ
(s)
i , (2.1)

(where s = t− 1 or t) is important since it does not condition on the unobservable state

θ
(s)
i . It is predictive distribution when s = t. The marginal mean E[y

(s)
i ] is defined using

equation (2.1) (with s = t−1 ) and is predictive mean when s = t. Following the Diaconis
and Ylvisker (1979) and Grunwald et al (1993) it follows that the marginal mean satisfies

E
[
y

(t−1)
i

]
= E

(
ψ′(θ(t−1)

i ) | y(t−1)
i

)
= µ

(t−1)
0i .

We introduce the system equation as,

ψ′
(
θ

(t)
i

)
= ρtψ

′(θ(t−1)
i

)
, (2.2)

where ρt is known quantity. One step predicted mean and variances are respectively

E
(
ψ′(θ(t)

i ) | y(t−1)
i

)
= ρtE

(
ψ′(θ(t−1)

i ) | y(t−1)
i

)
= ρtµ

(t−1)
0i = µ̃

(t)
0i
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and
V

(
ψ′(θ(t)

i ) | y(t−1)
i

)
= ρ2

t V
(
ψ′(θ(t−1)

i ) | y(t−1)
i

)
= ρ2

t V(t−1)i.

We define τ̃
(t)
i = (ρ2

t τ
(t−1)
i + at); where at ≥ 0 is a known constant. The prior distribution

of θi at stage t is defined as

π̃(θ
(t)
i ) = [π(θ

(t)
i )]δ, such that 0 ≤ δ ≤ 1,

where

π(θt
i) ∝ exp

{ 1

τ̃
(t)
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(
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(t)
0i θ

(t)
i − ψ(θ

(t)
i )

)}
.

Thus π̃(θ
(t)
i ) can be viewed as power prior, see Chen, Ibrahim and Shao (2000), Ibrahim,

Chen and Sinha (2003), where the data up to stage (t− 1) can be considered as past (or

historical) information, such that µ̃
(t)
0 is the prior mean or predictive mean at stage t with

prior convolution parameter
τ̃
(t)
i

δ
. Therefore, posterior distribution of θi at stage t is

π(θ
(t)
i | y(t)

i ) ∝ f(y
(t)
i | θ(t)

i )π̃(θ
(t)
i ) (2.3)

∝ exp
{ 1

τ
(t)
i

(
µ

(t)
0i θ

(t)
i − ψ(θ

(t)
i )

)}
.

The posterior mean at stage t is then given as

µ
(t)
0i = E

(
ψ′(θ(t)

i | y(t)
i )

)
= µ̃

(t)
0i +

τ̃
(t)
i

δφ(t) + τ̃
(t)
i

(y
(t)
i − µ̃

(t)
0i ). (2.4)

Since we use the idea of the power steady model and the power prior to update from
one step to another, we call this as power filter (PF). Note that filter mean equals the
prediction mean plus correction depending on how much the new observation differs from
its prediction. Also the posterior variance at stage t is

τ
(t)
i =

( 1

φ(t)
+

δ

τ̃
(t)
i

)−1

=
1

δ

[
τ̃

(t)
i − τ̃

(t)2
i

τ̃
(t)
i + δφ(t)

]
.

The systematic component of DGLM at stage t is

θ
(t)
i = x

(t)′
i β(t),

which in matrix notation is
θ(t) = X(t)β(t).

Under the full column rank assumption of X(t), we can write θ(t) as

θ(t) = P (t)θ(t) + (I − P (t))θ(t),

where P (t) = X(t)(X(t)′X(t))−1X(t)′ . Note that P (t) is linear transformation matrix rep-
resenting the orthogonal projection from n−dimensional space Rn onto canonical space
C(θ(t)), while (I − P (t)) represents the orthogonal projection of Rn onto the C⊥(θ(t)).
Hence we can write β(t) as

β(t) = (X(t)′X(t))−1X(t)′θ(t). (2.5)

Thus we can generate samples from the posterior distribution of β(t) using Monte Carlo
algorithm described below. Advantage of this algorithm is, as long as we know the pos-
terior distribution of θ(t), we do not need to know the posterior distribution of β(t).
Monte Carlo Algorithm:
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1. Suppose we are at the rth iteration of stage t. Generate sample θ
(t)r
i from π(θ

(t)
i | y(t)

i )
in (2.3) for i = 1, ..., n.

2. Calculate β(t)r = (X(t)′X(t))−1X(t)′θ(t)r for r = 1, 2, ..., N ; where N is the simulation
size.

Once we have the posterior samples of β(t), {β(t)r | r = 1, ..., N}; we can do all the neces-
sary inferences on β(t). Note that one can also implement the regular MCMC algorithm
to draw samples from π(β(t) | y(t), X(t)).

2.1 Information Processing and Choice of δ

The power parameter δ is playing an interesting role of “discount factor” by incorporat-
ing the extra uncertainty with the change. Such extra uncertainty provides the required
adaptibility and robustness, see West and Harrision (1997). Some researchers show con-
cern for the power steady model and power prior as well, because of the ambiguity em-
bedded in the choice of δ. Some approaches are available to go around this problem.
One approach, along the line of Ibrahim et al (2003), is as follows: assume δ as unknown
parameter and specify prior on δ. It can be shown that the PF minimizes E(Kπ), where
expectation is taken with respect to prior of δ. In this paper, we suggest the second
approach which is more appropriate for longitudinal study. Define

δ = f(| ti − tj |), i 6= j = 1, 2, ..., n such that

(i) 0 ≤ δ ≤ 1,

(ii) | ti − tj |→ 0 ⇒ δ → 1,

(iii) | ti − tj |→ ∞ ⇒ δ → 0.

Such specification of δ has a natural interpretation, because δ determines that how much
information should thrive from one stage to another. Clearly, δ = 0 means, no information
is borrowed from the previous stage; while δ = 1 implies that all the information is being
used from the previous time point. Hence we should define δ as a function of difference
between two time points. If time gap, between two observation, is small - then we should
borrow as much information as possible from the previous time point. However, if the time
gap is large then we should borrow less information from the previous time point. Based
on the above mentioned definition of δ, some functions {f(.) | f(| ti − tj |), | ti − tj |≥ 0}
could be considered as

1. f(| ti − tj |) = 1
2
− 1

π
arctan(log(| ti − tj |)), where π is universal constant 3.14159.

2. f(| ti − tj |) = 1
1+|ti−tj | ,

3. f(| ti − tj |) = exp{− | ti − tj |},

However, while designing the longitudinal study, one should decide the function in advance
or one can fit the model using different δ = f(| ti − tj |) and then apply Bayesian model
monitoring technique as described in West (1986) and West and Harrision (1997).
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2.2 Model Assessment

A simple method of monitoring the performance of a class of Bayesian models was in-
troduced by West (1986) using Bayes factor. However recent development of deviance
information criterion (DIC) (Spiegelhalter et al. 2002) provides us to measure the model
complexity and effective number of parameters in a model at time t. DIC at time t is

DIC(t) = 2D̂(t)
avg −D

(t)

θ̂
,

where D̂
(t)
avg = 1

L

∑L
l=1 D(y(t), θ

(t)
l ), θ

(t)
l ’s are the samples from the posterior distribution of

θ at time t and D(y(t), θ(t)) = −2.log f(y(t) | θ(t)) is the corresponding deviance function
of time t. Measures of model complexity at time t is:

pD(t) = D̂(t)
avg −D

(t)

θ̂
.

Note that intuitively we can say that as trial proceeds and observe more data on the
subjects, based on the Bayesian learning as we learn more about the system, the predictive
prior should be efficient enough to mimic the system accurately. As a result measure of
model complexity p

(t)
D should decease over time. But if the system experiences any change

then measure of model complexity will increase. Efficacy study of 5 Loxinr treatment
required dynamic logistic regression model to implement the analysis. In the next section
we present the PF method for dynamic logistic regression model.

3 Power Filter for Dynamic Logistic Regression Model

Here we present the PF for binomial response model. Observed part at stage t: Suppose

y
(t)
i ∼ Bin(n

(t)
i , p

(t)
i ), where θ

(t)
i = log

(
p
(t)
i

1−p
(t)
i

)
, such that φ(t) = 1 and ψ(θ

(t)
i ) = n

(t)
i log(1+

eθ
(t)
i ); n

(t)
i is known and we have,

f(y
(t)
i | θ(t)

i ) ∝ exp{y(t)
i θ

(t)
i − n

(t)
i log(1 + eθ

(t)
i )}.

Since we restrict ourselves within the natural exponential conjugate family model, the
posterior distribution at stage (t− 1) is:

p
(t−1)
i | y(t−1)

i ∼ Beta(a
(t−1)
i , b

(t−1)
i ),

which in turn,

π(θ(t−1) | y(t−1)
i ) ∝ exp{ 1

τ
(t−1)
i

(µ
(t−1)
0i θ

(t−1)
i − n

(t−1)
i log(1 + eθ

(t−1)
i )},

where τ
(t−1)
i =

n
(t−1)
i

a
(t−1)
i +b

(t−1)
i

, µ
(t−1)
oi =

n
(t−1)
i a

(t−1)
i

a
(t−1)
i +b

(t−1)
i

= n
(t−1)
i E(p

(t−1)
i | y(t−1)

i ); i.e., E(p
(t−1)
i |

y
(t−1)
i ) =

a
(t−1)
i

a
(t−1)
i +b

(t−1)
i

. The marginal predictive distribution is the beta-binomial distribu-

tion and the system equation of the model from (2.2) is n
(t)
i p

(t)
i = ρtn

(t−1)
i p

(t−1)
i , where ρt

is a known constant. Hence, E(p
(t)
i | y(t−1)

i ) = ρt
n

(t−1)
i

n
(t)
i

E(p
(t−1)
i | y(t−1)

i ) =
µ̃

(t)
0i

n
(t)
i

and

V ar(n
(t)
i p

(t)
i | y(t−1)

i ) = ρ2
t V ar(n

(t−1)
i p

(t−1)
i | y(t−1)

i ) = ρ2
t V(t−1)i.
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This implies V ar(p
(t)
i | y

(t−1)
i ) = ρ2

t
n

(t−1)2
i

n
(t)2
i

V ar(p
(t−1)
i | y

(t−1)
i ). The updated convolution

parameter at stage t is: τ̃
(t)
i = (ρ2

t τ
(t−1)
i +at), at ≥ 0 is a known constant and the updated

prior distribution of θi at stage t is:

π̃(θ
(t)
i ) ∝ exp

{ δ

τ̃
(t)
i

((µ̃
(t)
0i θ

(t)
i − n

(t)
i log(1 + eθ

(t)
i ))

}
,

where δ is the precision parameter such that δ = f(| ti − tj |), 0 ≤ δ ≤ 1. The posterior
distribution at stage t is:

π(θ
(t)
i | y(t)

i ) ∝ exp
{(

y
(t)
i +

δµ̃
(t)
0i

τ̃
(t)
i

)
θ

(t)
i −

(
1 +

δ

τ̃
(t)
i

)
log(1 + eθ

(t)
i )

}
,

where the posterior mean at stage t from (2.4) is:

E(p
(t)
i | y(t)

i ) =
µ̃

(t)
0i

n
(t)
i

+
τ̃

(t)
i

δ + τ̃
(t)
i

(y
(t)
i

n
(t)
i

− µ̃
(t)
0i

n
(t)
i

)
.

Thus for longitudinal studies, we have the dynamic logistic regression model as: log
(

p
(t)
i

1−p
(t)
i

)
=

θ
(t)
i = x

(t)′
i β(t). We can obtain samples from the posterior distribution of θ

(t)
i and can use

the Monte Carlo algorithm, as describe in the section 2, to generate samples from the
posterior distribution of β(t). Along the same line we can easily develop the PF method
for dynamic Poisson regression model for count response longitudinal data. In appendix
B we also established a relationship between power filter and Kalman filter.

In the next section we presented the analysis of the efficacy study of 5 Loxinr treat-
ment with the association of TNFα and IL-1β for patients with OA of knee using the PF
for the dynamic logistic regression model.

4 Analysis of the Efficacy Study of 5 Loxinr

The objective of this study was to reveal if 5 Loxinr is effective in reducing the pain
and reveal the mechanism of its success. Pain score VAS lies between 0 and 100. So we
categorize the pain score as strong and mild pain using the following scheme:

y
(t)
i =

{
1 if VAS score for ith patient is greater than 50 at time point t,

0 otherwise.

The dynamic logistic regression model for our case is,

logit
(
p

(t)
i

)
= β

(t)
1 + β

(t)
2 I(Low dose) + β

(t)
3 I(High dose)

+ β
(t)
4 log(TNFα

(t)
i ) + β

(t)
5 log(IL1β

(t)
i )

+ β
(t)
6 log(TNFα

(t)
i )× log(IL1β

(t)
i )

where I(A) = 1 if the patient i belongs to group A or 0 otherwise. We implement the
analysis of this study using the PF method for the dynamic logistic regression model. We
fit the model using all three different choices of δ mentioned in section 2.1 and we also
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fit the model by fixing the δ to be equal to 1. By fixing δ to be equal to 1, we are not
allowing additional variability in the prior. We consider month as an unit of time for this
analysis.

It is clear from figure 1, that for the model with δ = 1, DIC(t) decreases quickly
after first month. However, p

(t)
D , the measure of model complexity over time, diminishes

most quickly for the model with δ = exp{− | ti − tj |}, which shows the robustness and
adaptability of the model to the data. From this point all the analysis, we presented in
this paper, are based on the model with δ = exp{− | ti − tj |}.

Based on the analysis as presented in the Table 1, we can say that by the 7th day of
the treatment the high dose of 5 Loxinr treatment is significantly effective in reducing
the pain. By the end of the first month of treatment both the low and high doses are
significantly effective in reducing the pain. Again if we look at the figure 2, we can
conclude that 5 Loxinr treatment is effective in reducing the pain from OA of knee. By
the end of the study, we found that effect of TNFα over the pain is statistically significant
with 95% credible interval (1.085, 2.707) which does not include 0. In addition a positive
estimate shows that there is a positive association between the pain from OA of knee and
TNFα. We also found similar and significantly positive association between the pain from
OA of knee and IL-1β. The most interesting feature we found from this analysis is that
by the end of the study, the interaction effect between TNFα and IL-1β has a statistically
significant effect over the pain from OA of knee. In order to understand the behavior of the
statistically significant interaction effect between TNFα and IL-1β, we plot the interaction
response surface for baseline and day 90 in figure 3. It is clear that at the end of the study
period, patients with lower levels of both TNFα and IL-1β have lower probability of high
pain. However if patient experiences higher level of any one of TNFα or IL-1β then
those patients have higher probability of stronger pain. An additional regular repeated
measure analysis (not presented here because of space constrained) and corresponding
figure 4 from that analysis confirms that 5 Loxinr statistically significantly reduce both
pro-inflammatory agent TNFα and IL-1β. Therefore we can successfully conclude that 5
Loxinr treatment reduces pain by reducing the pro-inflammatory agent TNFα and IL-1β
simultaneously.

5 Conclusion

In this paper, we presented the method for modeling longitudinal studies as state space
dynamic model. We implement this by introducing the PF for DGLM, which extends the
usual KF for dynamic linear models. We establish a relationship between the KF and
the PF. We showed (in appendix) that for a longitudinal design, PF yields 100% efficient
Zellner’s information processing rule. More importantly, we presented the analysis of the
efficacy study of 5 Loxinr, which is enriched with an extract of ancient herb Boswellia
Serrata. We implemented the analysis using the PF for dynamic logistic regression model.
We presented the analysis of association between two important pro-inflammatory agent
TNFα and IL-1β with the effect of 5 Loxinr treatment for OA of knee. We also ex-
plained the underlying mechanism of successful treatment, such as 5 Loxinr; otherwise
any new therapy in future would fail, if they fail to follow the mechanism. We showed
that any treatment would be effective if it can reduce the levels of both TNFα and IL-1β
simultaneously. If therapy fails to reduce any one of them then that might leads to treat-
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ment failure. An additional regular repeated measure ANOVA analysis confirms that 5
Loxinr significantly reduce the levels of both TNFα and IL-1β. This leads us to conclude
that 5 Loxinr treatment reduces pain in OA of knee by reducing the pro-inflammatory
agents TNFα and IL-1β simultaneously in patients. Therefore, in order to avoid treat-
ment failure, in future any new therapy for OA should try to reduce the TNFα and IL-1β
simultaneously.

Appendix A: Optimality of Power Filter and Informa-

tion Processing

The main idea of PF is to propagate information from one stage to another. The posterior
distribution at stage t is:

π(θ(t) | y(t)) ∝ f(y(t) | θ(t))π̃(θ(t))

∝ f(y(t) | θ(t))[π(θ(t))]δ, such that 0 ≤ δ ≤ 1.

We consider two extreme scenarios. If δ = 0 then

π0(θ
(t) | y(t)) ∝ f(y(t) | θ(t)),

and if δ = 1 then
π1(θ

(t) | y(t)) ∝ f(y(t) | θ(t))π(θ(t)).

Clearly, π0 is not propagating any information from the previous stage and π1 is propa-
gating all the information from the previous stage. Now we assume the power parameter
δ is fixed. Later we will relax this assumption. The PF can be justified as the minimizer
of convex sum of Kullback Leibler (KL) divergence between the posterior densities π0 and
π1.
Definition of KL divergence: If p and q are two densities with respect to Lebesgue measure,
then KL-divergence between p and q is defined as

KL(p, q) =

∫
log

(p(θ)

q(θ)

)
p(θ)dθ.

Theorem 5.1 The density π ≡ π(θ(t)) that minimizes

Kπ = (1− δ)KL(π, π0) + δ KL(π, π1)

is
πopt ∝ f(y(t) | θ(t))π(θ(t))δ.
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Proof: We can write,

Kπ = (1− a)K(π, π0) + a K(π, π1)

= (1− a)

∫
π(θ(t))log

(
π(θ(t))

π0(θ(t))

)
dθ(t) + a

∫
π(θ(t))log

(
π(θ(t))

π1(θ(t))

)
dθ(t)

=

∫
π(θ(t))log

(
π(θ(t))

π0(θ(t))

)1−a

dθ(t) +

∫
π(θ(t))log

(
π(θ(t))

π1(θ(t))

)a

dθ(t)

=

∫
π(θ(t))log

(
π(θ(t))

π0(θ(t))1−aπ1(θ(1))a

)
dθ(t)

= K

(
π(θ(t)),

π0(θ
(t))1−aπ1(θ

(t))a

C

)
− log(C),

where C =
∫

π0(θ
(t))1−aπ1(θ

(t))a is the normalizing constant. Now Kπ is minimized when

πopt =
1

C
f(y(t) | θ(t))π(θ(t))δ.

Following Zellner(1988, 2002), the functional that analyzes the information processing
for any longitudinal study is:

∆[π(θ(t) | y(t))] = Output Information− Input Information

=

∫
π(θ(t))log

(
π(θ(t))

)
dθ(t) +

∫
π(θ(t))log

(
h(y(t))

)
dθ(t)−

w1

∫
π(θ(t))log

(
f(y(t) | θ(t))

)
dθ(t) − w2

∫
π(θ(t))log

(
π∗(θ(t))

)
dθ(t),

where π∗(θ(t)) is any prior density of θ at stage t, π(θ(t)) is proper probability density at
stage t, 0 ≤ w1 ≤ 1 and 0 ≤ w2 ≤ 1. In our case we choose w1 = 1 and w2 = δ and
h(y(t)) =

∫
f(y(t) | θ(t))π∗(θ(t))dθ(t) is free of θ and

∫
π(θ(t))dθ(t) = 1

∆[π(θ(t) | y(t))] =

∫
π(θ(t))log

(
π(θ(t))

)
dθ(t) + log

(
h(y(t))

) −
∫

π(θ(t))log
(
f(y(t) | θ(t))

)
dθ(t) − δ

∫
π(θ(t))log

(
π∗(θ(t))

)
dθ(t).

We can write log
(
h(y(t))

)
as

log
(
h(y(t))

)
= (1− δ)log(h0(y(t))) + δlog(h1(y(t))),

where h0(y(t)) =
∫

f(y(t) | θ(t))dθ(t) and h1(y(t)) =
∫

f(y(t) | θ(t))π∗(θ(t))dθ(t). Hence we
can write ∆[π(θ(t))] as

∆[π(θ(t))] = (1− δ)

∫
π(θ(t))log

(π(θ(t))h0(y(t))

f(y(t)|θ(t))

)
dθ(t) + δ

∫
π(θ(t))log

( π(θ(t))h1(y(t))

f(y(t)|θ(t))π∗(θ(t))

)
dθ(t)

= (1− δ)

∫
π(θ(t))log

( π(θ(t))

π0(θ(t))

)
dθ(t) + δ

∫
π(θ(t))log

( π(θ(t))

π1(θ(t))

)
dθ(t) = Kπ.

This shows that ∆[π(θ(t))] and Kπ have the same minimizer and summarizing these in
the following theorem as:

Theorem 5.2 For any longitudinal design, the power filter yields 100% efficient Zellner’s
Information Processing Rule (ZIPR).
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Appendix B: Relation Between Power Filter and Kalman

Filter

Here we establish the relationship between PF for DGLM and KF for DLM. First we
present the observed part at stage t. Suppose y

(t)
i ∼ Normal(θ

(t)
i , φ(t)), i.e.,

f(y
(t)
i | θ(t)

i ) ∝ exp
{ 1

φ(t)

(
y

(t)
i θ

(t)
i − θ

(t)2
i

2

)}
.

In matrix notation, Y (t) ∼ Normal(θ(t), Φ(t)). The posterior distribution at stage (t− 1)
is

π(θ(t−1) | y(t−1)
i ) ∝ exp

{ 1

τ
(t−1)
i

(
µ

(t−1)
0i θ

(t−1)
i − θ

(t−1)2
i

2

)}
,

where

E
(
ψ′(θ(t−1)

i ) | y(t−1)
i

)
= µ

(t−1)
0i ⇒ E

(
θ

(t−1)2
i | y(t−1)

i

)
= µ

(t−1)
0i

and τ
(t−1)
i is the dispersion parameter at stage (t − 1). We obtain the system equation

of the PF same as that of the KF from Meinhold and Singpurwalla (1983), i.e., system

equations for KF is θ
(t)
i = ρtθ

(t−1)
i , where ρt is known constant and the updated mean

and variances are E(θ
(t)
i | y

(t−1)
i ) = ρtE(θ

(t−1)
i | y

(t−1)
i ) = ρtµ

(t−1)
0i = µ̃

(t)
0i and V ar(θ

(t)
i |

y
(t−1)
i ) = ρ2

t V ar(θ
(t−1)
i | y

(t−1)
i ) = ρ2

t τ
(t−1)
i . We can present the same in matrix notation

as, V ar(θ(t) | y(t−1)) = ρtΣ
(t−1)
τ ρ′t. Now we have τ̃

(t)
i = (ρ2

t τ
(t−1)
i + at), at ≥ 0 is known

constant. The prior distribution of θi at stage t is:

π̃(θ
(t)
i ) ∝ exp

{ δ

τ̃
(t)
i

(
µ̃

(t)
0i θ

(t)
i − θ

(t)2
i

2

)}
,

where δ is the precision parameter, 0 ≤ δ ≤ 1. In matrix notation, the prior distribution
at stage t is: θ(t) ∼ N(µ̃

(t)
0 , Rt), where Rt = δ−1[ρtΣ

(t−1)
τ ρ′t +At]. Note that δ = 0 will lead

to non-informative improper prior distribution for stage t. The posterior distribution at
stage t is:

π(θ
(t)
i | y(t)

i ) ∝ exp
{(y

(t)
i

φ(t)
+

δµ̃
(t)
0i

τ̃
(t)
i

)
θ

(t)
i −

( 1

φ(t)
+

δ

τ̃
(t)
i

)θ
(t)2
i

2

}
,

where θ
(t)
i ∼ N(µ

(t)
0i , τ

(t)
i ) such that µ

(t)
0i = µ̃

(t)
0i +

τ̃
(t)
i

τ̃
(t)
i +δφ(t)

(
y

(t)
i − µ̃

(t)
0i

)
and τ

(t)
i = 1

δ

[
τ̃

(t)
i −

τ̃
(t)2
i

τ̃
(t)
i +δφ(t)

]
. Therefore, in matrix notation, the posterior at stage t is: θ(t) ∼ N(µ

(t)
0 , Σ(t)),

where µ
(t)
0 = µ̃

(t)
0 +Rt

(
δΦ(t) +Rt

)−1(
Y (t)− µ̃

(t)
0

)
, and Σ(t) = δ−1

[
Rt−R′

t

(
Rt +δΦ(t)

)−1
Rt

]
.

Now if y
(t)
i ∼ N(θ

(t)
i , τ (t)), such that θ

(t)
i = x

(t)′
i β(t), i.e., θ(t) = X(t)β(t) and δ = 1.

Then following Menihold and Singpurwalla (1983), we have the Kalman filter as β
(t)
0 =

β̃
(t)
0 + RtX

′
t(Φ

t + XtRtX
′
t)
−1(Y (t) −X(t)β̃

(t)
0 ) and Σ

(t)
β = Rt −R′

tX
′
t(Vt + XtRtX

′
t)
−1XtR

′
t.
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Appendix C: Power Filter for Dynamic Poisson Re-

gression Model

Here we present the power filter for Poisson response model. Observed part at stage t:

Suppose y
(t)
i ∼ Poisson(λ

(t)
i ), such that θ

(t)
i = log

(
λ

(t)
i

)
and φ(t) = 1, ψ(θ

(t)
i ) = eθ

(t)
i .

Hence we have,

f(y
(t)
i | θ(t)

i ) ∝ exp
{
y

(t)
i θ

(t)
i − eθ

(t)
i

}
.

The posterior distribution at stage (t− 1) is: π(θ(t−1) | y(t−1)
i ) ∝ exp

{
1

τ
(t−1)
i

(µ
(t−1)
0i θ

(t−1)
i −

eθ
(t)
i )

}
,

where

E
(
ψ′(θ(t−1)

i ) | y(t−1)
i

)
= µ

(t−1)
0i ⇒ E

(
eθ

(t−1)
i | y(t−1)

i

)
= µ

(t−1)
0 ⇒ E(λ

(t−1)
i | y(t−1)

i ) = µ
(t−1)
0i

and τ
(t−1)
i is the convolution parameter at stage (t − 1). The predictive distribution is

negative binomial and the system equation of the model from (2.2) is:

eθ
(t)
i = ρte

θ
(t−1)
i ⇒ λ

(t)
i = ρtλ

(t−1)
i , where ρt is known constant.

Similar to logistic regression model, it can be shown that E(λ
(t)
i | y(t−1)

i ) = µ̃
(t)
0i and

V ar(λ
(t)
i | y(t−1)

i ) = ρ2
t V ar(λ

(t−1)
i | y(t−1)

i ).

Now τ̃ (t) = (ρ2
t τ

(t−1)
i + at), at ≥ 0 is known constant. Hence prior distribution of θi at

stage t is:

π̃(θ
(t)
i ) ∝ exp

{ δ

τ̃
(t)
i

(µ̃
(t)
0i θ

(t)
i − eθ

(t)
i )

}
,

where δ is the precision parameter, with 0 ≤ δ ≤ 1. Now posterior distribution at stage t
is

π(θ
(t)
i | y(t)

i ) ∝ exp
{(

y
(t)
i +

δµ̃
(t)
0i

τ̃
(t)
i

)
θ

(t)
i −

(
1 +

δ

τ̃
(t)
i

)
eθ

(t)
i

}
,

where the posterior mean at stage t from (2.4) is:

E(λ
(t)
i | y(t)

i ) = µ̃
(t)
0i +

τ̃
(t)
i

δ + τ̃
(t)
i

(
y

(t)
i − µ̃

(t)
0i

)
.

Hence, for the dynamic Poisson regression model log
(
λ

(t)
i

)
= θ

(t)
i = x

(t)′
i β(t), we can

implement the Monte Carlo algorithm to generate samples from the posterior distribution
of β(t).

Hurricane activity in Atlantic ocean

Suppose y(t) denotes number of storms that reached hurricane intensity on a particular
year t in Atlantic ocean. Observed part at stage t: Suppose y(t) ∼ Poisson(λ(t)). The

12



posterior distribution of λ at stage (t − 1) is Gamma(a(t−1), b(t−1)). Now the system
equation of the dynamic Poisson model from (2.2) is:

eθ(t)

= ρte
θ(t−1) ⇒ λ(t) = ρtλ

(t−1), where ρt is known constant.

Here choose ρt = 1, i.e., we assume the rate of occurrence of hurricane at year t is same as
that of previous year. Hence, E(λ(t) | y(t−1)) = ρt

a(t−1)

b(t−1) = µ̃
(t)
0 . In order to determine the

value of power parameter δ, we again use the Cauchy type function δ = 1
2
− 1

π
arctan(log(|

ti − tj |)), π is universal constant 3.14159. Then the posterior distribution at stage t is

π(λ(t) | y(t)) ∝ exp
{

(y(t) + δa(t−1))eλ(t) − (1 + δb(t−1))λ(t−1))
}

∝ exp
{

a(t)exp{λ(t)} − b(t)λ(t)
}

,

where a(t) = y(t) + δa(t−1) and b(t) = 1 + δb(t−1) and posterior mean at stage t from (2.4)
is:

E(λ(t) | y(t)) = µ̃
(t)
0 +

τ̃ (t)

δ + τ̃ (t)

(
y(t) − µ̃

(t)
0

)
.

We consider the satellite era of 1980 to 2007 for this analysis. Red line plot in figure
5 and in figure 6 presents the observed total number of hurricanes for a particular year.
Blue line plot represents corresponding predictive and posterior mean and dashed line
represents the corresponding 95% predictive and credible interval. Figure 5 presents the
predictive and posterior inference for total number of storms that reaches the hurricane
intensity in the Atlantic ocean; when we fixed the power parameter as δ = 1. It is clear
that if we don’t allow δ to be flexible; regular filter technique (when δ = 1) will take care
of trend part and ignore the variability of the data. However, in figure 6, when we allow
δ to be flexible and PF kicks in - it is clear that most of the time observed number of
hurricanes falls well within the 95% predictive interval. This indicates that power filter
method can take care of the high variability in the data well.
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Table 1: Estimates and 95% credible interval of the regression parameters from the dy-
namic logistic regression model for pain in 5 Loxinr study

Baseline Day 7 Day 30 Day 60 Day 90
Intercept -2.5399 -26.6535 1.5186 -1.0358 -8.3357

(-41.821,36.549) (-67.161,11.232) (-8.963,11.757) (-6.166, 4.231) (-12.076,-4.637)
Low dose -0.03318 -0.4898 -0.5484 -0.4941 -0.6018

(-0.906,0.875) (-1.131, 0.152) (-0.917,-0.149) (-0.707, -0.254) (-0.765,-0.439)
High dose -0.1648 -0.9294 -0.980 -0.8307 -0.8434

(-1.047,0.713) (-1.592,-0.276) (-1.367,-0.593) (-1.068,-0.587) (-1.057,-0.636)
TNFα 0.5049 5.5150 -0.2066 0.2022 1.8864

(-7.1824, 8.2667) (-2.006, 13.517) (-2.449, 2.049) ( -0.932, 1.332) ( 1.085, 2.707 )
IL-1β 1.4983 8.9364 0.0594 0.5656 3.7256

(-11.383,14.349) (-3.731, 22.496) (-3.556, 3.699) (-1.423, 2.544) (2.320, 5.173)
TNFα× -0.2576 -1.7931 -0.0077 -0.0769 -0.7953

IL-1β (-2.806, 2.315) (-4.463, 0.716) (-0.793, 0.782) ( -0.510, 0.354) (-1.110, -0.490)
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Figure 1: Left window: DIC over time for models with different choices of δ. d1 = 1,
d2 = 0.5 − (arctan{log(| ti − tj |)}/π), d3 = 1/(1 + (| ti − tj |)), d4 = exp{− | ti − tj |}.
Right widow: pD(t) : Measure of Bayesian complexity over time for the same four different
models.
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Figure 2: Comparison of the effect of treatment (5 Loxinr with low or high dose) and
control (placebo) over the probability of high pain during the study period.
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Figure 3: Interaction response surface at baseline and end of the study period.

17



0 20 40 60 80

80
10

0
12

0
14

0
16

0

Days

T
N

F
a

Expected TNFa

Placebo
Low Dose
High Dose

0 20 40 60 80

10
15

20
25

Days

IL
−

1b

Expected IL−1b

Placebo
Low Dose
High Dose
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dose of 5 Loxinr) group during the study period.
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Figure 5: Predictive and Posterior Inference of the Atlantic Ocean when we force δ = 1.
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Figure 6: Predictive and Posterior Inference of the Atlantic Ocean.
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