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A CONCISE PROOF OF KRUSKAL’S THEOREM ON TENSOR

DECOMPOSITION

JOHN A. RHODES

Abstract. A theorem of J. Kruskal from 1977, motivated by a latent-class
statistical model, established that under certain explicit conditions the ex-
pression of a 3-dimensional tensor as the sum of rank-1 tensors is essentially
unique. We give a new proof of this fundamental result, which is substantially
shorter than both the original one and recent versions along the original lines.

1. Introduction

In [10], J. Kruskal proved that, under certain explicit conditions, the expression
of a 3-dimensional tensor (i.e., a 3-way array) of rank r as a sum of r tensors of
rank 1 is unique, up to permutation of the summands. (See also [8, 9].) This result
contrasts sharply with the well-known non-uniqueness of expressions of matrices of
rank at least 2 as sums of rank-1 matrices. The uniqueness of this tensor decom-
position is moreover of fundamental interest for a number of applications, ranging
from Kruskal’s original motivation by latent-class models used in psychometrics, to
chemistry and signal processing, as mentioned in [11] and its references. In these
fields, the expression of a tensor as a sum of rank-1 tensors is often referred to as the
Candecomp or Parafac decomposition. Recently, Kruskal’s theorem has been used
as a general tool for investigating the identifiability of a wide variety of statistical
models with hidden variables [1, 2].

As noted in [11], Kruskal’s original proof was “rather inaccessible,” leading a
number of authors to work toward a shorter and more intuitive presentation. This
thread, which continued to follow the basic outline of Kruskal’s approach in which
his ‘Permutation Lemma’ plays a key role, culminated in the proof given in [11]. In
this paper, we present a new and more concise proof of Kruskal’s theorem, Theorem
3 below, that follows an entirely different approach. While the resulting theorem is
identical, the alternative argument given here offers a new perspective on the role
of Kruskal’s explicit condition ensuring uniqueness.

While Kruskal’s theorem gives a sufficient condition for uniqueness of a decom-
position, the condition is known in general not to be necessary. Of particular note
are recent independent works of De Lathauwer [4] and Jiang and Sidiropoulos [6],
which give a different, though in some ways more narrow, criterion that can ensure
uniqueness. See also [12] for the connection between these works.
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It would, of course, be highly desirable to obtain conditions (more involved than
Kruskal’s) that would ensure the essential uniqueness of the expression of a rank
r tensor as a sum of rank-1 tensors under a wider range of assumptions on the
size and rank of the tensor. Note that both Kruskal’s condition and that of [4, 6]
can be phrased algebraically, in terms of the non-vanishing of certain polynomials
in the variables of a natural parameterization of rank r tensors. This algebraic
formulation allows one to conclude that generic rank r tensors of certain sizes
have unique decompositions. Having explicit understanding of these polynomial
conditions is essential for certain applications, such as in [1]. The general problem
of determining for which sizes and ranks of generic tensors the decomposition is
essentially unique, and what explicit algebraic conditions can ensure uniqueness,
remains open.

2. Notation

Throughout, we work over an arbitrary field.
For a matrix such as Mk, we use mk

j to denote the jth column, m̄k
i to denote

the ith row, and mk
ij the (i, j)th entry. We use 〈S〉 to denote the span of a set of

vectors S. With [r] = {1, 2, 3, . . . , r}, we denote by Sr the symmetric group on [r].
Given matrices Ml of size sl × r, the matrix triple product [M1, M2, M3] is an

s1 × s2 × s3 tensor defined as a sum of r rank-1 tensors by

[M1, M2, M3] =

r∑

i=1

m1
i ⊗ m2

i ⊗ m3
i ,

so

[M1, M2, M3](j, k, l) =

r∑

i=1

m1
jim

2
kim

3
li.

A matrix A of size t× sl acts on an s1 × s2 × s3 tensor T ‘in the lth coordinate.’
For example, with l = 1

(A ∗1 T )(i, j, k) =

s1∑

n=1

ainT (n, j, k),

so that A ∗1 T is of size t × s2 × s3. One then easily checks that

A ∗1 [M1, M2, M3] = [AM1, M2, M3],

with similar formulas applying for actions in other coordinates.

Definition. The Kruskal rank, or K-rank, of a matrix is the largest number j such
that every set of j columns is independent.

Definition. We say a triple of matrices (M1, M2, M3) is of type (r; a1, a2, a3) if
each Mi has r columns and the K-rank of Mi is at least r − ai.

In a slight abuse of notation, we will say a product [M1, M2, M3] is of type
(r; a1, a2, a3) when the triple (M1, M2, M3) is of that type.

Note that with this definition, type (r; a1, a2, a3) implies type (r; b1, b2, b3) as
long as ai ≤ bi for each i. Thus ai is a bound on the gap between the K-rank of
the matrix Mi and the number r of its columns. Intuitively, when the ai are small
it should be easier to identify the Mi from the product [M1, M2, M3].

We will not need to be explicit about the number of rows in any of the Mi,
though type (r; a1, a2, a3) of course implies Mi has at least r − ai rows
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3. The proof

We begin by establishing a lemma that generalizes a basic insight that has been
rediscovered many times over the years, in which matrix diagonalizations arising
from matrix slices of a 3-dimensional tensor are used to understand the tensor
decomposition. A few such instances of the appearance of this idea include [3,
7], and other such references are mentioned in [5] where the idea is exploited for
computational purposes.

Lemma 1. Suppose (M1, M2, M3) is of type (r; 0, 0, r−1); N1, N2, N3 are matrices
with r columns; and [M1, M2, M3] = [N1, N2, N3]. Then there is some permutation
σ ∈ Sr such that the following holds:

Let I ⊆ [r] be any maximal subset (with respect to inclusion) of indices with the
property that 〈{m3

i }i∈I〉 is 1-dimensional. Then

(1) 〈{mj
i}i∈I〉 = 〈{nj

σ(i)}i∈I〉, for j = 1, 2, 3 and

(2) I is also maximal for the property that 〈{n3
σ(i)}i∈I〉 is 1-dimensional.

Proof. That (M1, M2, M3) is of type (r; 0, 0, r − 1) means M1, M2 have full column
rank, and M3 has no zero columns.

Choose some vector c that is not orthogonal to any of the columns of M3, so
that cT M3 has no zero entries. Then

A = cT ∗3 [M1, M2, M3] = [M1, M2, c
T M3] = M1 diag(cT M3)M

T
2

is a matrix of rank r. Since

A = cT ∗3 [N1, N2, N3] = [N1, N2, c
T N3] = N1 diag(cT N3)N

T
2 ,

N1 and N2 must also have rank r, and cT N3 has no zero entries. These two
expressions for A also show that the span of the columns of Mj is the same as that
of the columns of Nj for j = 1, 2. Expressing the columns of Mj and Nj in terms
of a basis given by the columns of Mj, we may henceforth assume M1 = M2 = Ir,
the r × r identity, and N1, N2 are invertible. Thus A = diag(cT M3).

Now let Si denote the slice of [M1, M2, M3] = [N1, N2, N3] with fixed third

coordinate i, so Si is an r × r matrix. Recalling that m̄
j
i and n̄

j
i denote the ith

rows of Mj and Nj , we have

Si = diag(m̄3
i ) = N1 diag(n̄3

i )N
T
2 .

Note the matrices

SiA
−1 = diag(m̄3

i ) diag(cT M3)
−1 = N1 diag(n̄3

i ) diag(cT N3)
−1N−1

1 ,

for various choices of i, commute. Thus their (right) simultaneous eigenspaces are
determined. But from the two expressions for SiA

−1 we see its α-eigenspace is
spanned by the set

{ej = m1
j | m3

i,j/(cT m3
j) = α},

and also by the set

{n1
j | n3

i,j/(cT n3
j) = α}.

A simultaneous eigenspace for the SiA
−1 is thus spanned by the set {ej}j∈I

where I is a maximal set of indices with the property that if j, k ∈ I, then

m3
i,j/(cT m3

j) = m3
i,k/(cT m3

k), for all i.
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This condition is equivalent to m3
j and m3

k being scalar multiples of one another.
Such a set I is therefore exactly of the sort described in the statement of the lemma.
As the simultaneous eigenspaces are also spanned by similar sets defined in terms
of the columns of N1, one may choose a permutation σ so that claim 2 holds, as
well as claim 1 for j = 1.

The case j = 2 of claim 1 is similarly proved using the transposes of A and
the Si. As the needed permutation of the columns of the Nj in the two cases of
j = 1, 2 is dependent only on the maximal sets I, a common σ may be chosen.
Finally, the case j = 3 follows from equating eigenvalues in the two expressions
giving diagonalizations for SiA

−1, to see that for all i

m3
i,j/c

Tm3
j = n3

i,σ(j)/c
Tn3

σ(j),

so m3
j and n3

σ(j) are scalar multiples of one another. �

This lemma quickly yields a special case of Kruskal’s theorem, when two of the
matrices in the product are asumed to have full column rank.

Corollary 2. Suppose (M1, M2, M3) is of type (r; 0, 0, r − 2); N1, N2, N3 are ma-
trices with r columns; and [M1, M2, M3] = [N1, N2, N3]. Then there exists some
permutation matrix P and invertible diagonal matrices Di with D1D2D3 = Ir such
that Ni = MiDiP .

Proof. Since (M1, M2, M3) is also of type (r; 0, 0, r − 1), we may apply Lemma 1.
As in the proof of that lemma, we may also assume M1 = M2 = Ir. But M3 has
K-rank at least 2, so every pair of columns is independent. Thus the maximal sets
of indices in Lemma 1 are all singletons. Thus with P acting to permute columns
by σ, the one-dimensionality of all eigenspaces shows there is a permutation P and
invertible diagonal matrices D1, D2 with Ni = MiDiP = DiP for j = 1, 2.

Thus [M1, M2, M3] = [N1, N2, N3] implies

[Ir, Ir, M3] = [D1P, D2P, N3] = [D1, D2, N3P
T ] = [Ir, Ir, N3P

T D1D2],

which shows M3 = N3P
T D1D2. Setting D3 = (D1D2)

−1, we find N3 = M3D3P .
�

We now use the lemma to give a new proof of Kruskal’s Theorem in its full
generality. Note that the condition on the ai stated in the following theorem is
equivalent to Kruskal’s condition in [10] that (r− a1)+ (r− a2)+ (r− a3) ≥ 2r +2.

Theorem 3 (Kruskal, [10]). Suppose (M1, M2, M3) is of type (r; a1, a2, a3) with
a1 + a2 + a3 ≤ r − 2; N1, N2, N3 are matrices with r columns, and [M1, M2, M3] =
[N1, N2, N3]. Then there exists some permutation matrix P and invertible diagonal
matrices Di with D1D2D3 = Ir such that Ni = MiDiP .

Proof. We need only consider a1 + a2 + a3 = r − 2. We proceed by induction on r,
with the case r = 2 (and 3) already established by Corollary 2. We may also assume
a1 ≤ a2 ≤ a3, We may furthermore restrict to a2 ≥ 1, since the case a1 = a2 = 0 is
established by Corollary 2.

We first claim that it will be enough to show that, for some 1 ≤ i ≤ 3, there is
some set of indices J ⊂ [r], 1 ≤ |J | ≤ r − ai − 2, and a permutation σ ∈ Sr such
that

(1) 〈{mi
j}j∈J 〉 = 〈{ni

σ(j)}j∈J 〉.
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To see this, if there is such a set J , assume for convenience i = 1 (the cases
i = 2, 3 are similar), and the columns of Mi, Ni have been reordered so that σ = id
and J = [s]. Let Π be a matrix with nullspace the span described in equation (1).
Then

[ΠM1, M2, M3] = Π ∗1 [M1, M2, M3] = Π ∗1 [N1, N2, N3] = [ΠN1, N2, N3].

But since the first s columns of ΠM1 and ΠN1 are zero, these triple products can
be expressed as triple products of matrices with only r− s columns. That is, using
the symbol ‘˜’ to denote deletion of the first s columns,

[ΠM̃1, M̃2, M̃3] = [ΠÑ1, Ñ2, Ñ3].

For i = 2, 3, since Mi has K-rank ≥ r−ai, the matrix M̃i has K-rank ≥ min(r−
ai, r − s). Since the nullspace of Π is spanned by the first s columns of M1, and

M1 has K-rank ≥ r − a1, ones sees that ΠM̃1 has K-rank ≥ r − s − a1, as follows:

For any set of r − s − a1 columns of ΠM̃1, consider the corresponding columns
of M1, together with the first s columns. This set of r − a1 columns of M1 is
therefore independent, so the span of its image under Π is of dimension r − s− a1.

This span must then have as a basis the chosen set of r − s − a1 columns of ΠM̃1,

which are therefore independent. Thus [ΠM̃1, M̃2, M̃3] is of type (r − s; a1, b2, b3),
where bi = max(0, ai − s) for i = 2, 3. Note also that s ≤ r − a1 − 2 implies
a1 + b2 + b3 ≤ r − s − 2.

We may thus apply the inductive hypothesis to [ΠM̃1, M̃2, M̃3] = [ΠÑ1, Ñ2, Ñ3],
and, after an allowed permutation and scalar multiplication of the columns of the

Ni, conclude that M̃i = Ñi for i = 2, 3. But this means we can now take the
set J described in equation (1) to be a singleton set {j}, with j > s, and i = 2.
Again applying the argument developed thus far implies that, allowing for a possible
permutation and rescaling, all but the jth columns of M3 and N3 are identical. As
m3

j = n3
j , this shows M3 = N3. Applying this argument yet again, with i = 3,

and varying choices of j, then shows M1 = N1 and M2 = N2, up to the allowed
permutation and rescaling. The claim is thus established.

We next argue that some set of columns of some Mi, Ni meets the hypotheses
of the above claim.

Let Π3 be any matrix with nullspace 〈{n3
i }1≤i≤a1+a2

〉, spanned by the first a1+a2

columns of N3. Let Z be the set of indices of all zero columns of Π3M3. Since every
set of r − a3 = a1 + a2 + 2 columns of M3 is independent, |Z| ≤ a1 + a2. Note also
that at least 2 columns of Π3M3 are independent, since the span of any a1 + a2 + 2
columns of Π3M3 is at least 2 dimensional.

Let S1,S2 be any disjoint subsets of [r] such that |S1| = a2, |S2| = a1, Z ⊆
S1 ∪S2 = S, and S excludes at least two indices of independent columns of Π3M3.
Let Π1 = Π1(S1) be any matrix with nullspace 〈{m1

i }i∈S1
〉, and let Π2 = Π2(S2)

be any matrix with nullspace 〈{m2
i }i∈S2

〉.
Now consider

[Π1M1, Π2M2, Π3M3] = Π3 ∗3 (Π2 ∗2 (Π1 ∗1 [M1, M2, M3]))

= Π3 ∗3 (Π2 ∗2 (Π1 ∗1 [N1, N2, N3]))) = [Π1N1, Π2N2, Π3N3].

By the specification of the nullspace of Π3, the columns of all Ni with indices in
[a1 + a2] can be deleted in this last product. In the first product, one can similarly
delete the columns of the Mi with indices in S, due to the specifications of the



6 JOHN A. RHODES

nullspaces of Π1 and Π2. Using ‘˜’ to denote the deletion of these columns, we
have

(2) [Π1M̃1, Π2M̃2, Π3M̃3] = [Π1Ñ1, Π2Ñ2, Π3Ñ3],

where these products involve matrix factors with r − a1 − a2 = a3 + 2 columns.

The matrix Π1M̃1 in fact has full column rank. To see this, note that it can
also be obtained from M1 by (a) first deleting columns with indices in S2, then (b)
multiplying on the left by Π1, and finally (c) deleting the columns arising from those
in M1 with indices in S1. Since M1 has K-rank at least r − a1, step (a) produces
a matrix with r − a1 columns, and full column rank. Since the nullspace of Π1 is
spanned by certain of the columns of this matrix, step (b) produces a matrix whose
non-zero columns are independent. Step (c) then deletes all zero columns to give a

matrix of full column rank. Similarly, the matrix Π2M̃2 has full column rank.

Noting that Π3M̃3 has no zero columns since Z ⊆ S, we may thus apply Lemma
1 to the products of equation (2). In particular, we find that there is some σ ∈ Sr

with σ([r] r S) = [r] r [a1 + a2] such that if I is a maximal subset of [r] r S with
respect to the property that 〈{Π3m

3
i }i∈I〉 is 1-dimensional, then

(3) 〈{Πjm
j
i}i∈I〉 = 〈{Πjn

j

σ(i)}i∈I〉

for j = 1, 2, 3.
Since we chose S to exclude indices of two independent columns of Π3M3, there

will be such a maximal subset I of [r] r S that contains at most half the indices.
We thus pick such an I with |I| ≤ ⌊(r − a1 − a2)/2⌋ = ⌊a3/2⌋ + 1, and consider
two cases:

Case a1 = 0: Then S2 = ∅, and Π2 has trivial nullspace and thus may be taken
to be the identity. Since a3 ≥ a2 ≥ 1, this implies |I| ≤ a3 = r − a2 − 2. The sets
{m2

i }i∈I and {n2
σ(i)}i∈I therefore satisfy the hypotheses of the claim.

Case a1 ≥ 1: Note that |I| + a2 + 1 ≤ ⌊a3/2⌋ + a2 + 2 < a2 + a3 + 2 = r − a1,
so for any index k, the columns of M1 indexed by I ∪ S1 ∪ {k} are independent.
This then implies that for j = 1 the spanning set on the left of equation (3) is
independent, so the spanning set on the right is as well. Thus the set {n1

σ(i)}i∈I

is also independent. Note next that equation (3) implies that, for i ∈ I, there are
scalars bi

j , c
i
k such that

(4) n1
σ(i) −

∑

j∈I

bi
jm

1
j =

∑

k∈S1

ci
km

1
k.

Now for any p ∈ S1, q ∈ S2, let

S′
1 = (S1 r {p}) ∪ {q}, S′

2 = (S2 r {q}) ∪ {p}.

Choosing Π′
1 and Π′

2 to have nullspaces determined as above by the index sets
S′

1 and S′
2, and applying Lemma 1 to [Π′

1M1, Π
′
2M2, Π3M3] = [Π′

1N1, Π
′
2N2, Π3N3],

similarly shows that for some permutation σ′ and any i′ ∈ I there are scalars di′

k , f j
k

such that

(5) n1
σ′(i′) −

∑

j∈I

di′

j m1
j =

∑

l∈S′

1

f i′

l m1
l .

Note that since the same Π3 was used, the set I is unchanged here, and σ and
σ′ must have the same image on I. Picking i′ ∈ I so that σ′(i′) = σ(i), and
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subtracting equation (4) from (5) shows
∑

j∈I

(bi
j − di′

j )m1
j =

∑

k∈S1r{p}

(f i′

k − ci
k)m1

k + f i′

q m1
q − ci

pm
1
p.

But since the columns of M1 appearing in this equation are independent, we see
that f i′

q = ci
p = 0. By varying p, we conclude that n1

σ(i) ∈ 〈{m1
i }i∈I〉. Thus

〈{n1
σ(i)}i∈I〉 ⊆ 〈{m1

i }i∈I〉. Since both of these spanning sets are independent, and

of the same cardinality, their spans must be equal. Since |I| ≤ r − a1 − 2, the set
I satisfies the hypotheses of the claim.

�
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