Inference for non-Stationary, non-Gaussian, Irregularly-Sampled Processes

Robert Wolpert
Duke Department of Statistical Science wolpert@stat.duke.edu

SAMSI | ASTRO Opening WS Aug 22-26
2016 Aug 24 Hamner Conference Center, RTP, NC
(1) Introduction

Easy Time Series Examples

(2) Extension 1: Irregular Sampling
(3) Extension 2: Non-Gaussian
(4) Extension 3: Non-Stationary
(5) Wrap-up

Outline

(1) Introduction

Easy Time Series Examples
(2) Extension 1: Irregular Sampling
(3) Extension 2: Non-Gaussian
(4) Extension 3: Non-Stationary
(5) Wrap-up

Basic Ideas

The entire talk in one slide:

- Basic idea 1: Even if we only observe events Y_{i} at discrete times $\left\{t_{i}\right\}$, we can model these as observations $Y\left(t_{i}\right)$ of a process $Y(t)$ that is well-defined (if un-observed) in continuous time. This overcomes the "regularly-spaced observations" limitation.

Basic Ideas

The entire talk in one slide:

- Basic idea 1: Even if we only observe events Y_{i} at discrete times $\left\{t_{i}\right\}$, we can model these as observations $Y\left(t_{i}\right)$ of a process $Y(t)$ that is well-defined (if un-observed) in continuous time. This overcomes the "regularly-spaced observations" limitation.
- Basic idea 2: Almost anything you can do with Gaussian distributions can also be one with other Infinitely-Divisible (ID) distributions, such as Poisson, Negative Binomial, Gamma, α-Stable, Cauchy, Beta Process. Some of these feature discrete (integer) values, and some feature heavy tails, offering a wider range of behavior than is possible with Gaussian time series or processes.

Basic Ideas

The entire talk in one slide:

- Basic idea 1: Even if we only observe events Y_{i} at discrete times $\left\{t_{i}\right\}$, we can model these as observations $Y\left(t_{i}\right)$ of a process $Y(t)$ that is well-defined (if un-observed) in continuous time. This overcomes the "regularly-spaced observations" limitation.
- Basic idea 2: Almost anything you can do with Gaussian distributions can also be one with other Infinitely-Divisible (ID) distributions, such as Poisson, Negative Binomial, Gamma, α-Stable, Cauchy, Beta Process. Some of these feature discrete (integer) values, and some feature heavy tails, offering a wider range of behavior than is possible with Gaussian time series or processes.
- Basic idea 3: Start with Stationary processes (like the Ornstein-Uhlenbeck process) or processes with Stationary increments (like Brownian Motion), then extend to non-stationary processes (like Diffusions).

Outline

(1) Introduction

Easy Time Series Examples

(2) Extension 1: Irregular Sampling

(3) Extension 2: Non-Gaussian
(4) Extension 3: Non-Stationary
(5) Wrap-up

Easy TS Example: AR(1)

Fix $\mu \in \mathbb{R}, \sigma^{2}>0$, and $\rho \in(0,1)$.
Draw $X_{0} \sim \operatorname{No}\left(\mu, \sigma^{2}\right)$.
For times $t=1,2, \cdots$, set

$$
\begin{aligned}
X_{t} & :=\rho X_{t-1}+\zeta_{t} \\
& =\rho^{t} X_{0}+\sum_{s=0}^{t-1} \zeta_{t-s} \rho^{s}=\sum_{s=0}^{\infty} \zeta_{t-s} \rho^{s}
\end{aligned}
$$

with Normal innovations $\left\{\zeta_{t}\right\} \stackrel{\text { iid }}{\sim} \operatorname{No}\left((1-\rho) \mu,\left(1-\rho^{2}\right) \sigma^{2}\right)$
Like most commonly-studied Time Series models, this features:

- Regularly-spaced observation times $t=0,1,2,3, \ldots$;
- Gaussian marginal distributions $X_{t} \sim \operatorname{No}\left(\mu, \sigma^{2}\right)$;
- Stationary distributions, with autocorrelation $\operatorname{Corr}\left(X_{s}, X_{t}\right)=\rho^{|t-s|}$.

Gaussian AR(1) Time Series: Equally-Spaced

Outline

(1) Introduction

Easy Time Series Examples
(2) Extension 1: Irregular Sampling
(3) Extension 2: Non-Gaussian
(4) Extension 3: Non-Stationary
(5) Wrap-up

Extension 1: Continuous Time

Set $\lambda:=-\log \rho>0$ and let $\zeta(d s)$ be a random measure assigning to disjoint intervals (a_{i}, b_{i}] independent random variables

$$
\zeta((a, b]) \sim \operatorname{No}\left((b-a) \lambda \mu,(b-a) 2 \lambda \sigma^{2}\right) .
$$

Now take $X_{0} \sim \operatorname{No}\left(\mu, \sigma^{2}\right)$ and for $t>0$ set

$$
X_{t}:=X_{0} e^{-\lambda t}+\int_{0}^{t} e^{-\lambda(t-s)} \zeta(d s)=\int_{-\infty}^{t} e^{-\lambda(t-s)} \zeta(d s)
$$

to find a process for all $t>0$ (or all $t \in \mathbb{R}$) with the exact same joint distribution at $t \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$, with

- Irregularly-spaced observation times $\left\{t_{i}\right\} \subset \mathbb{R}_{+}$;
- Gaussian marginal distributions $X_{t} \sim \operatorname{No}\left(\mu, \sigma^{2}\right)$;
- Stationary distributions, with autocorrelation $\operatorname{Corr}\left(X_{s}, X_{t}\right)=\rho^{|t-s|}$.

Gaussian AR(1) Time Series: Equally-Spaced

O-U Process with Regularly-Spaced Observations

O-U Process with Irregularly-Spaced Observations

Inference 1: Continuous Time

Inference is easy- MLEs or conjugate Bayes estimators are readily available, as is LH for arbitrary observation pairs $\left\{\left(X_{t_{i}}, t_{i}\right)\right\}$ because $s<t \Rightarrow$

$$
X_{t} \mid\left\{X_{u}: u \leq s\right\} \sim \operatorname{No}\left(\mu+\left(X_{s}-\mu\right) \rho, \sigma^{2}\left(1-\rho^{2}\right)\right), \quad \rho:=e^{-\lambda|t-s|}
$$

so with Metropolis-Hastings we can sample posterior for any prior $\pi\left(\mu, \sigma^{2}, \lambda\right)$.

Easy extension to $\operatorname{AR}(p)$:

$$
X_{t}+a_{1} X_{t-1}+\ldots+a_{p} X_{t-p}:=\zeta_{t}
$$

For example, by expressing as a vector $\operatorname{AR}(1)$ for $\mathbf{X}_{t}=\left[X_{t}, X_{t-1}, \cdots, X_{t-p+1}\right]^{\prime}:$

$$
\mathbf{X}_{t}:=R \mathbf{X}_{t-1}+\zeta_{t}
$$

for some $a \in \mathbb{R}^{p}$

Extension 1: Continuous Time, More Broadly

Any stationary $\operatorname{AR}(p)$ has a $\mathrm{MA}(\infty)$ representation:

$$
p(L) X(t)=\zeta_{t}
$$

for the left-shift operator $L X(t):=X(t-1)$ and the polynomial

$$
p(z)=1+\sum_{j=1}^{p} a_{j} z^{j}=1+a_{1} z+\cdots+a_{p} z^{p} .
$$

If $p(z)$ has all its roots outside the unit circle, then

$$
\begin{aligned}
& \frac{1}{p(z)}=1+\sum_{i=1}^{\infty} b_{i} z^{i}=1+b_{1} z+b_{2} z^{2}+\cdots \\
& X(t)=\frac{1}{p}(L)\left(\zeta_{t}\right) \quad=\zeta_{t}+b_{1} \zeta_{t-1}+b_{2} \zeta_{z-2}+\cdots
\end{aligned}
$$

Under suitable conditions, this has a continuous version

$$
X(t) \quad=\int_{-\infty}^{t} b(t-s) \zeta(d s)
$$

for all $t \geq 0$, with the same distribution at times $t \in \mathbb{N}_{0}$.

Outline

(1) Introduction

Easy Time Series Examples
(2) Extension 1: Irregular Sampling
(3) Extension 2: Non-Gaussian
(4) Extension 3: Non-Stationary
(5) Wrap-up

Extension 2: Non-Gaussian

Just as $\operatorname{AR}(p)$ Time Series

$$
X_{t}=\rho^{t} X_{0}+\sum_{s=0}^{t-1} \zeta_{t-s} \rho^{s}
$$

can be constructed with any iid innovations $\left\{\zeta_{s}\right\}$, so too for the continuous-time version

$$
X_{t}:=X_{0} e^{-\lambda t}+\int_{0}^{t} e^{-\lambda(t-s)} \zeta(d s)
$$

The random measure $\zeta(d s)$ can be anything that is "iid" in the sense that:

- For disjoint sets $A_{i} \subset \mathbb{R}$, the $\operatorname{RVs}\left\{\zeta\left(A_{i}\right)\right\}$ are indep;
- The $\{\zeta(a, b]\}$ distributions only depend on $(b-a)$.

For example, can have

$$
\begin{aligned}
& \zeta(a, b] \sim \operatorname{No}\left(\mu(b-a), \sigma^{2}(b-a)\right) \\
& \zeta(a, b] \sim \operatorname{Ga}(\alpha(b-a), \beta) \\
& \zeta(a, b] \sim \operatorname{St}_{A}(\alpha, \beta, \gamma(b-a), \delta(b-a))
\end{aligned}
$$

Ornstein-Uhlenbeck
Positive, Expo. Tails
Heavy (Pareto) Tails

Extension 2: Non-Gaussian

The two conditions

- For disjoint sets $A_{i} \subset \mathbb{R}$, the $\operatorname{RVs}\left\{\zeta\left(A_{i}\right)\right\}$ are indep;
- The $\{\zeta(a, b]\}$ distributions only depend on $(b-a)$.
require that each $\zeta(A)$ should be Infinitely Divisible, or ID.
Examples:

ID Continuous	ID Discrete	Not ID
Normal	Poisson	Binomial
Gamma	Negative Binomial	Beta
α-Stable	$p_{i} \propto \frac{1}{(i+a)(i+b)}$	Uniform

Extension 2: Non-Gaussian

But what about Autocorrelated Count Data?

- Binned photon counts in satellite Gamma Ray detectors?
- Binned photon counts in particle accelerator detectors?
- Seismic event counts?
- Pyroclastic flow counts?
- Rockfall counts near active volcano?
- Failures of complex systems?
- Rare disease case counts?
$\operatorname{AR}(p)$ and its continuous versions wouldn't respect Integer Nature of data. If $X_{t} \in \mathbb{Z}$, and $|\rho|<1$, then

$$
X_{t+1}=\rho X_{t}+\zeta_{t+1} \notin \mathbb{Z}
$$

Alternatives?

Extension 2: Non-Gaussian

Here's a way to construct, and make inference in,

- stationary (for now) process X_{t} with
- continuous time $t \in \mathbb{R}_{+}$for any
- non-Gaussian marginal Infinitely Divisible (ID) dist'ns including both continuous dist'ns $\left(\mathrm{Ga}(\theta, \beta), \mathrm{St}_{\mathrm{A}}(\alpha, \beta, \theta, \delta)\right.$, etc.) and discrete count distributions $(\operatorname{Po}(\theta), \mathrm{NB}(\theta, p)$, etc.)

Extension 2: Non-Gaussian

Here's a way to construct, and make inference in,

- stationary (for now) process X_{t} with
- continuous time $t \in \mathbb{R}_{+}$for any
- non-Gaussian marginal Infinitely Divisible (ID) dist'ns including both continuous dist'ns $\left(\mathrm{Ga}(\theta, \beta), \mathrm{St}_{\mathrm{A}}(\alpha, \beta, \theta, \delta)\right.$, etc.) and discrete count distributions $(\operatorname{Po}(\theta), \mathrm{NB}(\theta, p)$, etc.)

In fact, except for the special cases of Gaussian and Poisson, we can do this in many ways.

Extension 2: Non-Gaussian

Here's a way to construct, and make inference in,

- stationary (for now) process X_{t} with
- continuous time $t \in \mathbb{R}_{+}$for any
- non-Gaussian marginal Infinitely Divisible (ID) dist'ns including both continuous dist'ns $\left(\mathrm{Ga}(\theta, \beta), \mathrm{St}_{\mathrm{A}}(\alpha, \beta, \theta, \delta)\right.$, etc.) and discrete count distributions $(\operatorname{Po}(\theta), \mathrm{NB}(\theta, p)$, etc.)

In fact, except for the special cases of Gaussian and Poisson, we can do this in many ways. Let's look at an example.

Ex 2: Negative Binomial Example

AR(1)-like Negative Binomial Process
Based on Random Measure $\mathcal{N}(d x d y) \sim \operatorname{NB}(\alpha d x d y, \beta)$ on \mathbb{R}^{2}

AR(1)-like Negative Binomial Process

Properties:

- $X_{t} \sim \mathrm{NB}(\alpha, \beta)$ for all $t ;$
- $\operatorname{Corr}\left(X_{s}, X_{t}\right)=\exp (-\lambda|t-s|)$.

AR(1)-like Negative Binomial Process

Properties:

- $X_{t} \sim \mathrm{NB}(\alpha, \beta)$ for all t;
- $\operatorname{Corr}\left(X_{s}, X_{t}\right)=\exp (-\lambda|t-s|)$.

Does this characterize the joint distribution of $\left\{X_{t_{i}}\right\}$?

AR(1)-like Negative Binomial Process

Properties:

- $X_{t} \sim \mathrm{NB}(\alpha, \beta)$ for all t;
- $\operatorname{Corr}\left(X_{s}, X_{t}\right)=\exp (-\lambda|t-s|)$.

Does this characterize the joint distribution of $\left\{X_{t_{i}}\right\}$?
Nope. Here's a different process, the Branching NB:

- Immigration at rate ι;
- Birth at rate β;
- Death at rate δ;

$$
\begin{aligned}
X_{t+\epsilon} & = \begin{cases}X_{1}+1 & \text { with probability } o(\epsilon)+\epsilon\left(\iota+\beta X_{t}\right) \\
X_{1} & \text { with probability } o(\epsilon)+1-\epsilon\left(\iota+(\beta+\delta) X_{t}\right. \\
X_{1}-1 & \text { with probability } o(\epsilon)+\epsilon \delta X_{t}\end{cases} \\
& \sim \mathrm{NB}(\alpha, p), \text { with autocovariance } \exp (-\lambda|t-s|) .
\end{aligned}
$$

AR(1)-like Negative Binomial Process

Are these two processes the same?

AR(1)-like Negative Binomial Process

Are these two processes the same?
Nope.

- The Random Measure NB process has jumps of all possible non-zero magnitudes $\Delta X_{t}:=\left[X_{t}-X_{t-}\right] \in \mathbb{Z} \backslash\{0\}$, while the Branching NB process has only jumps of $\Delta X_{t}= \pm 1$;
- The Branching NB process is Markov, so for $s<t$

$$
\mathrm{P}\left[X_{t} \in A \mid \mathcal{F}_{s}\right]=\mathrm{P}\left[X_{t} \in A \mid X_{s}\right]
$$

while the Random Measure NB process isn't: if it has a jump $\Delta X_{s}=7$, for example, then sooner or later there must follow a jump $\Delta X_{t}=-7$, so $\mathrm{P}\left[X_{t}=3 \mid X_{s}=10\right]$ depends on the history \mathcal{F}_{s}, not just the value X_{s}.

- The Random Measure NB process is multivariate ID, while Branching NB process is not.

AR(1)-like Negative Binomial Process

Are these the only two?

AR(1)-like Negative Binomial Process

Are these the only two?
Oh no.

- A discrete time $\operatorname{AR}(1)$-like Markov process exists for any ID distribution and any "auto-correlation" ρ, based on Thinning:

$$
\begin{aligned}
Z & \sim f(z \mid \lambda, \phi)=X+Y, \\
X & \sim f(x \mid \rho \lambda, \phi) \Perp Y \sim f(y \mid \bar{\rho} \lambda, \phi) \quad[\bar{\rho}:=(1-\rho)] \\
X \mid & Z \sim f(x \mid z, \rho, \lambda, \phi)=f(x \mid \rho \lambda, \phi) f(z-x \mid \bar{\rho} \lambda, \phi) / f(z \mid \lambda, \phi)
\end{aligned}
$$

- Given $\left\{X_{m}: m \leq n\right\} \sim f(x \mid \lambda, \phi)$, draw

$$
\xi_{n+1} \sim f\left(\xi \mid X_{n}, \rho, \lambda, \phi\right) \Perp \eta_{n+1} \sim f(\eta \mid \bar{\rho} \lambda, \phi)
$$

and set

$$
X_{n+1}:=\xi_{n+1}+\eta_{n+1} \sim f(x \mid \lambda, \phi) .
$$

- A continuous-time version exists too.

AR(1)-like Negative Binomial Process

Random Measure $\mathrm{NB}(\alpha=10, \mathrm{p}=0.67, \lambda=1)$

Branching NB $(\alpha=10, p=0.67, \lambda=1)$

Continuous Thin NB $(\alpha=10, p=0.67, \lambda=1)$

AR(1)-like Negative Binomial Process

Larry Brown (U Penn) \& I found six different AR(1)-like (also $\operatorname{AR}(p)$-like) processes for each ID distribution, with subtly different properties:

- Markov?
- Are all finite-dimensional marginals ID?
- In continuous time, are paths continuous? Increments ± 1 ? Or bigger?
- Time-reversible?

In Wolpert \& L. D. Brown (2016+) we present a complete class theorem characterizing all Markov Infinitely-Divisible Stationary Time-Reversible Integer-Valued ("MISTI") Processes.

Let's look at a motivating example (not Astro, sorry!).

Motivation for a Negative Binomial series...

Rockfall counts at Soufriére Hills Volcano, Montserrat

Stationary?

Looks a little patchy; maybe we can find a homogeneous subset. Looks like 1997 might be a less patchy year...

Subset, just the 1997 Rockfalls

Poisson fit is horrible...

Histogram of 1997 Rockfall Counts with $\operatorname{Po}(\lambda=48.01)$ Overlay

Negative Binomial fit is great.

Histogram of 1997 Rockfall Counts with $\mathrm{NB}(\alpha=1.32, \mathrm{p}=0.03)$ Overlay

But not IID, need autocorrelation

Autocorrelation, 1997 Rockfalls

Partial autocorrelation, 1997 Rockfalls

We (esp. Jianyu Wang '13) built a regression model based on one of the AR(1)-like NB models above, to relate
\rightarrow (easily counted) rockfall counts to
\rightarrow (hard to measure) subsurface volcanic magma flows,
to improve volcanic hazard forecasting.

Related issues were addressed by Mary Beth Broadbent ('14) in constructing NPB light curve models for Gamma Ray Bursts, with the help of astronomers Tom Loredo and Jon Hakkila (Thanks!).

A shout out about Another cool modeling idea:

Robert Lund (Clemson) and his student Yunwei Cui (2009) found an interesting new way to model stationary integer-valued time series and processes using Renewal Theory. In discrete time their method (unlike ours) is able to model negative autocorrelation and cyclic behavior. If you have negatively-autocorrelated integer data, look into it.

Outline

(1) Introduction

Easy Time Series Examples
(2) Extension 1: Irregular Sampling
(3) Extension 2: Non-Gaussian
(4) Extension 3: Non-Stationary
(5) Wrap-up

Extension 3: Non-Stationary

You might have noticed that the rockfall counts don't look stationary

SO, we are implementing random time-change.

Extension 3: Non-Stationary

Begin with stationary process $X(t) \cdots$
Then, construct random time-change model $t \rightarrow R_{t}$ and set

$$
Y_{t}:=X\left(R_{t}\right)
$$

We used:

$$
R_{t}=\int_{0}^{t} \lambda(s) d s
$$

with two-level

$$
\lambda(s)= \begin{cases}\lambda_{+} & s_{i}<s \leq t_{i} \\ \lambda_{-} & t_{i}<s \leq s_{i+1}\end{cases}
$$

for uncertain levels $0<\lambda_{-}<\lambda_{+}<\infty$ and transition times $s_{1}<t_{1}<s_{2}<t_{2}<\ldots$.

Extension 3: Non-Stationary

Extension 3: Non-Stationary

A work in progress, wish us luck.

Outline

(1) Introduction

Easy Time Series Examples
(2) Extension 1: Irregular Sampling
(3) Extension 2: Non-Gaussian
(4) Extension 3: Non-Stationary
(5) Wrap-up

Wrap-up

Conclusions:

- Statistical methods are available for data that are non-Stationary, or non-Gaussian, or irregularly sampled, or all three.
- They're not built into SAS.
- BUT, together, Astronomers and Statisticians can build problem-specific tools to support estimation and prediction and (especially Bayesian) inference,
- using routine simulation-based computational methods.

Thanks!

Thanks to the Organizers, to the National Science Foundation (MPS, PHY, GEO), and to SAMSI's 2016-17 Program on

Statistical, Mathematical and Computational Methods for Astronomy (ASTRO)

Glad to see you here!

