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The Big Picture
We’ve found > 3000 

planets, and counting.

We’re measuring their properties. 
(Mass, radius, atmospheres, 

orbits, host stars, …)

. . . so what’s the physics involved?  
(How do they form, interact with 
their surroundings, change via 

which physical processes?)

Habitable 
exoplanets?

Earth’s place in 
the Universe . . .
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The 
Observed 
Population

. . . so what’s the physics involved?  
(How do they form, interact with 
their surroundings, change via 

which physical processes?)



Deterministic planet formation 
model with physical parameters 
α (disk mass, viscosity…): 

f(M,P,…|α)
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Deterministic planet formation 
model with physical parameters 
α (disk mass, viscosity…): 

f(M,P,…|α)
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The 
Observed 
Population

From the outset: 
1) distributions of 

planet properties,
2) inference on α,
3) model comparison 

(f1 vs f2 vs f3).

The Big Picture



Deterministic planet formation 
model with physical parameters 
α (disk mass, viscosity…): 

f(M,P,…|α)
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The 
Observed 
Population

From the outset: 
1) distributions of 

planet properties,
2) inference on α,
3) model comparison 

(f1 vs f2 vs f3).

The Big Picture

Straightforward, right?



f(Mtrue,Ptrue,…|α)
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The 
Observed 
Population

From the outset:  
1) distributions of 

planet properties, 
2) inference on α, 
3) model comparison 

(f1 vs f2 vs f3).

Large Measurement Uncertainty

Mtrue, Ptrue, …



f(Mtrue,Ptrue,…|α)
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The 
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From the outset:  
1) distributions of 

planet properties, 
2) inference on α, 
3) model comparison 

(f1 vs f2 vs f3).

Large Measurement Uncertainty

Mtrue, Ptrue, …
Multiple levels → hierarchical 

modeling



f(Mtrue,Ptrue,…|α)
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The 
Observed 
Population

From the outset:  
1) distributions of 

planet properties, 
2) inference on α, 
3) model comparison 

(f1 vs f2 vs f3).

Large Measurement Uncertainty

Mtrue, Ptrue, …
Multiple levels → hierarchical 

modeling

Bayesian →



What is Hierarchical 
Bayesian Modeling (HBM)?

p(θ|x) ∝ p(x|θ) p(θ)
posterior likelihood prior

“Regular” Bayes:

Observables

Parameters

Population
Parameters

Observables

Individual 
Parameters
Mtrue, Ptrue, …

Mobs, Pobs, …

“What is the probability 
that θ has some value, 

given the data?”

Arises naturally when want to make scientific inferences 
about a population based on many individuals.

p(α,θ|x) ∝ p(x|θ,α) p(θ|α) p(α)
posterior likelihood prior

Hierarchical Bayes:



HBM for Exoplanets
Hogg et al. 2010  
(orbital eccentricities) 

Morton & Winn, 2014  
Campante et al. 2016 

(angle between stellar spin & planet’s orbit) 

Foreman-Mackey et al, 2014  
(Kepler occurrence rates) 

Demory 2014  
(geometric albedos) 

 

Rogers 2015  
(rocky-gaseous transition) 

Wolfgang & Lopez, 2015  
(super-Earth composition distribution) 

Shabram et al. 2016  
(short-period eccentricity distribution) 

Wolfgang, Rogers, & Ford, 2016  
Chen & Kipping, submitted 

(mass-radius relationship)

All are some variation on this  
3-level structure:  

2013 SAMSI workshop on 
analyzing Kepler data 

(from Wolfgang et al. 2016)



HBM for Exoplanets
Hogg et al. 2010  
(orbital eccentricities) 

Morton & Winn, 2014  
Campante et al. 2016 

(angle between stellar spin & planet’s orbit) 

Foreman-Mackey et al, 2014  
(Kepler occurrence rates) 

Demory 2014  
(geometric albedos) 

 

Rogers 2015  
(rocky-gaseous transition) 

Wolfgang & Lopez, 2015  
(super-Earth composition distribution) 

Shabram et al. 2016  
(short-period eccentricity distribution) 

Wolfgang, Rogers, & Ford, 2016  
Chen & Kipping, submitted 

(mass-radius relationship)

More recently: full HBM 
using JAGS or own 

hierarchical MCMC code; 
many people moving to 

STAN

Already have posteriors 
for the observables? 
Can use importance 

sampling in multi-level 
models (Hogg et al. 2010)



Example: Planet HBM Results
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Mass-radius “relation”: Wolfgang, Rogers, & Ford, 2016
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Mass-radius “relation”: Wolfgang, Rogers, & Ford, 2016

So what’s next?



Now: BIC, 
qualitative

f(Mtrue,Ptrue,…|α)
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The 
Observed 
Population

On the Theory Side

Mtrue, Ptrue, …

There are many 
competing theories;  
like to quantitatively 
compare which is a 

better fit to data.

Next: Nested Sampling?  
Need your help!



Now: parametric 
functions, little theory

f(Mtrue,Ptrue,…|α)
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The 
Observed 
Population

More on the Theory Side

Mtrue, Ptrue, …

Planet formation is 
complicated, and 
f(M…|α) involves 

expensive computer 
simulations.

Next: incorporate 
emulator functions



Emulators: An example

- compositions of individual 
super-Earths (fraction of mass 
in a gaseous envelope: fenv) 

Internal Structure Models

Population-wide Distributions

Likelihood

Wanted to understand BOTH:

Sub-Neptune compositions: Wolfgang & Lopez, 2015

- the distribution of this 
composition parameter 
over the Kepler 
population (μ, σ).

Now: internal structure models 
described by power laws

Next: internal structure models 
described by nonparametric/
marginally parametric distributions
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The 
Observed 
Population

On the Data Side

Mtrue, Ptrue, …

Harder

Harder Harder



Now: ignore p(detect) 
or cut stellar sample 

f(Mtrue,Ptrue,…|α)
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The 
Observed 
Population

On the Data Side

Mtrue, Ptrue, …

Non-trivial detection 
functions are present 

in the observed 
population 

Next: characterize 
and include p(detect)

Harder

Harder Harder



Example: Including p(det)
p(det) characterized by 

injecting synthetic 
transit signals in data 
and running detection 

algorithm on them 
(Petigura et al. 2014)

Grid of recovery fraction 
vs. radius and period 

Kepler occurrence rates: Foreman-Mackey et al. 2014

Incorporated with 
inferred occurrence rate 
(Poisson point process)



Example: Including p(det)
p(det) characterized by 

injecting synthetic 
transit signals in data 
and running detection 

algorithm on them 
(Petigura et al. 2014)

Grid of recovery fraction 
vs. radius and period 

Kepler occurrence rates: Foreman-Mackey et al. 2014

Incorporated with 
inferred occurrence rate 
(Poisson point process)

But p(det) not 
always known . . . 

or even 
characterizable!



More on the Data Side

f(Mtrue,Ptrue,…|α)
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The 
Observed 
Population

Mtrue, Ptrue, …

Harder

Harder
Harder

Mass, radius, period is not 
what we actually observe, 

and current likelihoods 
p(Mobs|Mtrue) very simple



More on the Data Side

f(Mtrue,Ptrue,…|α)
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The 
Observed 
Population

Mtrue, Ptrue, …

Harder

Harder
Harder

Mass, radius, period is not 
what we actually observe, 

and current likelihoods 
p(Mobs|Mtrue) very simple

Next: inference on 
population directly from 
RVs vs. time, flux vs. time



Even more on the Data Side
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But we don’t actually 
observe RVs vs. time or 
flux vs. time either . . . 
our real data is light on 

a detector



Even more on the Data Side
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But we don’t actually 
observe RVs vs. time or 
flux vs. time either . . . 
our real data is light on 

a detector

Next next: > 3 level 
HBMs, inference straight 
from the actual data



Next: Super-Earth Compositions
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Understanding selection effects in mass-radius space:
Wolfgang, Jontof-Hutter, & Ford, in prep.

figure courtesy of 
Daniel Jontof-Hutter

But how exactly to evaluate the 
hierarchical model with unknown 

number of non-detections?



Next: Super-Earth Compositions
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Characterizing Joint Mass-Radius-Flux Distribution: 
Wolfgang, Jontof-Hutter, Rogers & Ford, in prep.



Next: Super-Earth Compositions
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Characterizing Joint Mass-Radius-Flux Distribution: 
Wolfgang, Jontof-Hutter, Rogers & Ford, in prep.

Fc

But many options for 
parameterizations … 
hierarchical model 

comparisons?  
Poisson point process?



Internal Structure Models

Population-wide Distributions

Likelihood

Initial Sub-Neptune compositions: Wolfgang & Lopez, in prep.

Next: Super-Earth Compositions

Need emulator 
function more 
accurate than 

power laws but still 
computationally 

“easy”.



Summary:
Where we are:

~ a dozen exoplanet astronomers  
working on very simple hierarchical models  
describing distributions of planet properties

Where we can go this year at SAMSI:
1) Incorporate survey detection efficiency
2) Develop emulator functions to include 

computationally expensive theoretical 
simulations directly into HBM 

3) Compare different theoretical models 
via hierarchical model comparison

4) Implement more realistic likelihoods: 
inference from lower-level data


