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Irregularly spaced time series/spatial data

• Consider the irregularly spaced time series:
• Note that the length of the time intervals ≈ 50 and the

sample size ≈ 25.
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Irregularly spaced spatial data

• Locations of ground based monitoring stations in the US for
the Air Quality Index (AQI).
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Some important characteristics of irregularly

spaced Time Series/spatial data

• Typically,
S = the “size” of the domain of observations

is different from
n = the sample size.

In the time series case, S = the length of the time interval
where the observations are taken;
In the spatial case, S = area/volume of the sampling region

• The locations of the time points OR spatial locations (in the
spatial data case) do not fall on a regular grid.

• Distribution of these data-locations are also NOT
always uniform !

• In the spatial case, the shape of the sampling region can be
non-convex.
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Effects

• Each of these factors complicate sampling properties
of estimators that we know when the data are regularly
spaced !

• Inference tools must be adapted/developed to deal with the
complications!

• I will describe some known results and methodology that are
available in a spatial framework, in d ≥ 1-dimensions.

• The time series case will follow as a special case, with d = 1.
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Framework -I : Sampling Region

• Let D0 be an open connected subset of (−1/2, 1/2]d,
containing the origin and let λn →∞ as n→∞.

• The sampling region Dn is obtained by ‘inflating’ D0 by a
multiplicative factor λn, i.e., Dn = λnD0.
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Framework -II : Sampling Design

• Let Xk
iid∼ f(x), k ≥ 1, where f(x) is a continuous, positive

probability density function on D0.

• We assume that the sampling sites s1, · · · , sn are obtained by
the relation: si ≡ sin = λnxi, 1 ≤ i ≤ n.
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The Framework : Some Remarks

• This serves as a convenient formulation to study sampling
behaviors.

• Here:

S ≡ Sn = the size of the sampling region = λdn · vol.(D0).
n = the sample size .

• We suppose that a continuous parameter spatial process
{Z(s) : s ∈ Rd} are observed at locations {s1, . . . , sn}.

• Data: {Z(s1), . . . , Z(sn)}.
• Also, suppose that the Z(·)-process is stationary and has

enough finite moments.

• Let Z(s) = µ and Z̄n = n−1
∑n

i=1 Z(si).
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Statistical Properties

• Properties of estimators like Z̄n depends critically on the
relative orders of n and λn.

• The main cases are:

Case I: λn = O(1) as n→∞. (Infill)
Case II: λn →∞ as n→∞. (Increasing Domain)

• Within Case II, we have

Case II.1: n/λdn → c∗ ∈ (0,∞) (Pure Increasing Domain or
PID)
Case II.2: n/λdn →∞ (Mixed Increasing Domain or MID)

• Technically, n/λdn → 0 is a possibility, but leads to
uninteresting/simple results, like the independent case.
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Statistical Properties : Infill case

• Under Case I: λn = O(1) as n→∞. (Infill), estimators like
Z̄n are not consistent :

Theorem
If Z(·) is mean-square continuous and λn → λ0 ∈ (0,∞), then

Z̄n →
∫
D
Z(λ0s)f(s)ds, in L2, a.s.

• Here Z̄n has a random limit !!

• Although the estimation task is difficult, one gets consistent
prediction under Case I.

• See Lahiri (1996; Sankhya), Stein (1990, 1991, ....AoS), Stein
(1999; Springer) & the references therein!
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Statistical Properties : Case II λn →∞

• First consider the standard case of a regular grid!

Theorem
(The Regular grid case:) Suppose that λn →∞, D0 = [−1/2, 1/2]d

and the data-locations lie on the integer grid. Then, under some
weak dependence condition,

√
n
[
Z̄n − µ

]
→d N

(
0, σ2

∞

)
where σ2

∞ =
∑

i∈Zd Cov(Z(0), Z(i)) = (2π)dφ̃(0), and φ̃(·) is the
(folded) spectral density of the Z(·) process.
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Statistical Properties : Case II λn →∞

• In the irregularly spaced case, we have the following (Lahiri
(2003; Sankhya, Series A)):

Theorem
(The irregularly spaced case:) Suppose that Z(·) is SOS with
ACvF γ(·) and spectral density φ(·) and that some suitable weak
dependence conditions hold. Let n/λdn → c∗ ∈ (0,∞]. Then,√

λdn

[
Z̄n − µ

]
→d N

(
0, σ2

∞

)
where σ2

∞ = c−1∗ γ(0) + [
∫
f 2](2π)dφ(0).

• Thus, the asymptotic variance depends on the spatial
sampling density f and the PID/MID constasnt c∗.
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Statistical Properties : Case II λn →∞

Remarks:

• The rate is determined by the volume of the sampling region
- not by the sample size!

• Confidence intervals will have widths of the order 1√
vol.(Dn)

,

not of the usual order 1√
n
.

• Estimation of the asymptotic standard error is more difficult.

• Suitable variants of the Spatial Block Bootstrap are
known to provide valid estimators of the (asymptotic)
variance, automatically under either of the scenarios
(PID/MID). (See Lahiri and Zhu (2006; AoS)).
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Implications for spectrum estimation

Definition
The scaled Discrete Fourier Transform (DFT) of the sample
{Z(s1), . . . Z(sn)} is given by, for ω ∈ IRd,

dn(ω) = λd/2n n−1
n∑
j=1

Z(sj) exp
(
ιω

′
sj

)
,

where ι =
√
−1.

• Write dn(ω) = Cn(ω) + ιSn(ω).

• Then, Cn(ω) and Sn(ω) are respectively the cosine and sine
transforms of the sample.
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Joint distribution of the DFTs

Theorem
Suppose that for j = 1, · · · , r, r ∈ N, {ωjn} are sequences
satisfying ωjn → ωj ∈ IRd \ {0} and ωj ± ωk 6= 0 for all
1 ≤ j 6= k ≤ r. Then,

[Cn(ω1n), Sn(ω1n), · · · , Cn(ωrn), Sn(ωrn)]
′

d−→ N

0,

A1I2 02×2 · · · 02×2
· · · · · · · · · · · ·
02×2 02×2 · · · ArI2

 , a.s. (PX),

where 2Aj = c−1∗ γ(0) +
∫
f 2 · (2π)dφ(ωj).
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Remarks

• Irregular spacings do NOT necessarily kill the
asymptotic independence property of DFTs
that is well-known in the equi-spaced time series case !

• The spectrum is now over Rd, not over [−π, π]d.

• Estimation of the spectrum using the periodogram requires
slight adjustments, as implied by the theorem.

• Specifically, instead of using the raw periodogram

In(ω) ≡
∣∣∣dn(ω)

∣∣∣2, one must use the bias corrected

periodogram, given by

Ĩn(ω) = In(ω)− c−1∗ γ̂n(0), ω ∈ Rd,

particularly when λdn � n.
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Estimation of the Covariance Function

• Nonparametric estimation of the covariance function of the
Z(·)-process over Rd (in the MID case) is addressed by

Hall, Fisher & Hoffman (1994; AoS) for the time series case
(d = 1), and by
Hall and Patil (1994; PTRF) for the spatial case (d ≥ 2).

• Steps include

Estimation of the spectral density using kernel smoothing
Fourier inversion to define the covariance estimator.

• The resulting estimator is non-negative definite!!!
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Estimation of the Covariance Function

Theorem
Suppose that n/λdn →∞ (– the MID case). Then, under the given
framework, for any a > 0,

λdn

∫
‖h‖≤a

[γ̂n(h)− γ(h)]2dh→d

∫
‖h‖≤a

W (h)2dh

where W (·) is a zero mean Gaussian process on Rd with
continuous sample paths.

• The most important aspect of this result is that the rate of
convergence, namely λ

−d/2
n , is as good as that of estimating a

finite dimensional parameter!!
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Part 2

Methodological aspects
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Inference methodology for irregularly spaced

spatial data

• The Central Limit Theorem can be used to derive asymptotic
distributions of asymptotically linear statistics, such as the
(pseudo-) MLE, LS-estimators, etc.

• Estimation of the asymptotic variance is a difficult problem -
variants of Block Bootstrap methods that adapt to the
irregularly spaced case are available, as pointed out earlier!!

• We now describe a recent approach to nonparametric
likelihood based inference, known as the

Empirical Likelihood

that bypasses the need for direct variance estimation.
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Introduction/Motivation/Background

• Consider a parametric model {f(·; θ) : θ ∈ Θ} and let
X1, . . . , Xn be iid, X1 ∼ f(·; θ0).

For example, X1, . . . , Xn be iid, X1 ∼ N(θ, 1), θ ∈ Θ = R.

Then, f(x; θ) = exp(−(x−θ)2/2)√
2π

, x ∈ R.

• The (parametric) likelihood function for θ is

Ln(θ) =
n∏
i=1

f(Xi; θ).
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Normal Likelihood
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Parametric Likelihood

• An estimator of θ is given by

θ̂ = argmax logL(θ),

the maximum likelihood estimator!

• Under some regularity conditions, Wilk’s theorem asserts
that

−2 logRn(θ0)→d χp

where Rn(θ0) is the likelihood ratio statistic (LRT) for
testing H0 : θ = θ0.
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Normal log-likelihood : Based on 100 observations

• Calibration of the test H0 : θ = θ0 can be done using the
Chi-squared limit!

• The LRT can also be inverted to get a confidence set for θ!!
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Q

Can we define a likelihood without a parametric model ?
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Empirical Likelihood

• Empirical Likelihood (EL) of Owen (1988) is a method that
defines a likelihood for certain population parameters
without requiring a parametric model.

• Let X1, . . . , Xn be iid with mean µ ∈ R. The EL for µ is

L(µ) = sup
{ n∏
i=1

πi : πi ≥ 0,
∑

πi = 1,
∑

πiXi = µ
}

• i.e., L(µ) gives the max likelihood for a µ ∈ R from discrete
distributions supported on {X1, . . . , Xn} ≡ X .
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Empirical Likelihood

• The unconstrained maximum is at πi = n−1 for all i.

• Thus, the EL ratio statistic for testing H0 : µ = µ0 is

Rn(µ0) =
Ln(θ0)

n−n
.

• Under some mild regularity conditions, Owen (1988;
Biometrika) proved a version of Wilk’s Theorem:

−2 logRn(µ0)→d χ2
1.
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Empirical Likelihood

• EL methodology has been extended to deal with more
general parameters.

• An important work by Qin and Lawless (1994; AoS)
formulated EL for parameters defined by Estimating
Equations, and proved a Chi-sq limit law.

• It allows parameters satisfying a moment condition like:

Eψ(X1, θ) = 0.

for some function ψ : Rd × Rp → Rp.

• For example, with d = p = 1, ψ(x, θ) = x− θ corresponds to
θ =the population mean!
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Some advantages of using the EL

• It is a nonparametric method - it does NOT require the
statistician to specify a model (and hence, there is no model
misspecification error)!

• It does NOT require explicit variance estimation to
construct a CI/test !
Contrast this with the usual approach based on large sample
distribution of the M-estimator:

√
n(θ̂n − θ0) →d N(0, τ 2)

where τ 2 = [Eψ(X1; θ0)
2] · [Eψ′(X1; θ0)]

−2.

• It allows for a distribution free calibration, as the limit
distribution is known (viz., χ2

p.)
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Literature Review

Some more references on the EL method under independence are
given by

• Owen (2001; Chapman & Hall) - monograph

• Chen and Hall (1993; AoS) : Quantiles

• Qin and Lawless (1994; AoS : Estimating Equations

• DiCiccio, Hall and Romano (1996; AoS) : Bartlett
Corrections

• Bertail (2006; Bernoulli) : Semiparametric models

• Lahiri and Mukhopadhyay (2012; AoS) : Penalized EL
in increasing dimensions p� n,
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EL under dependence : Some technical issues

• Under dependence, the standard EL fails in the sense that
the limit involves population parameters.

• Kitamura (1997; AoS) introduced Block EL (BEL) for
time series data and established Wilk’s Phonomenon.

• Let X1, . . . , Xn be a stationary time series with mean µ ∈ IR.

• Let X̄1,L = L−1
∑L

i=1Xt, X̄2,L = L−1
∑L+1

i=2 Xt, . . ., denote the
successive block averages, for some L ≈ nδ, δ ∈ (0, 1).
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Construction of the BEL for time series

• M = 1 gives the maximum overlapping version

• M > 1 can be used to reduce computational burden
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EL under dependence : Some technical issues

• The maximum overlapping BEL for µ is defined as

Lbel(µ) = sup
{ N∏
i=1

πi : πi ≥ 0,
∑

πi = 1,
∑

πiX̄i` = µ
}

where N = n− L+ 1.

• Kitamura (1997) established Wilk’s Phonomenon for the
BEL: Under some regularity conditions,

−2A logRbel(µ0)→d χ1,

where A scale adjustment involving known quantities.

• Note that the limit is distribution free (Chi-squared).
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EL under dependence

Q: How do we extend the EL to spatial data?
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Construction of the BEL for spatial data

• The idea is to use d-dimensional block averages to define the
BEL for µ, as in the time series case!
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EL in the frequency domain

• For parameters related to the covariance structure of
a spatial process, a more suitable approach to formulate the
EL in the frequency domain!!

• Monti (1997; Biometrika) first considered EL for time
series in the frequency domain, which was refined and
extended by Nordman and Lahiri (2006; AoS) .

• Extension to the spatial case with irregularly spaced data
locations has been done recently by Bandopadhyay,
Nordman and Lahiri (2015; AoS).
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EL for spatial data

• As noted before, it does not require variance estimation
- which can be a nightmare for spatial processes (e.g, recall
that for a spatial process Z(·) observed at n data-locations,

Var(Z̄) ≈ σ∗2λ−dn

where σ∗2 = g
(
φ(·), vol(Dn)

n
, f
)

.

• Further, the EL does not require the spatial process to
be Gaussian to produce valid inference !!!

• No (parametric) model formulation is needed !
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...

Thank you!!
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