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[rregularly spaced time series/spatial data

e Consider the irregularly spaced time series:
e Note that the length of the time intervals ~ 50 and the
sample size ~ 25.
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Irregularly spaced spatial data

e Locations of ground based monitoring stations in the US for
the Air Quality Index (AQI).
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Some important characteristics of irregularly

spaced Time Series/spatial data

e Typically,
S = the “size” of the domain of observations
is different from
n = the sample size.
e In the time series case, S = the length of the time interval
where the observations are taken;
o In the spatial case, S = area/volume of the sampling region

e The locations of the time points OR spatial locations (in the
spatial data case) do not fall on a regular grid.

e Distribution of these data-locations are also NOT
always uniform !

e In the spatial case, the shape of the sampling region can be
non-convex.
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¢ Each of these factors complicate sampling properties
of estimators that we know when the data are regularly
spaced !

e Inference tools must be adapted/developed to deal with the
complications!

e [ will describe some known results and methodology that are
available in a spatial framework, in d > 1-dimensions.

e The time series case will follow as a special case, with d = 1.
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Framework -1 : Sampling Region

e Let Dy be an open connected subset of (—1/2,1/2]¢,
containing the origin and let \,, — oo as n — oo.

e The sampling region D,, is obtained by ‘inflating’ Dy by a
multiplicative factor A,, i.e., D, = A,/ D,.

i)
=
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Framework -II : Sampling Design
o Let X;, % f (x), k> 1, where f(x) is a continuous, positive

probability density function on D.

e We assume that the sampling sites s, - , s, are obtained by
the relation: s; = s;, = A%, 1 <171<n.

e
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The Framework : Some Remarks

e This serves as a convenient formulation to study sampling
behaviors.
e Here:
o S =S, = the size of the sampling region = \? - vol.(Dy).
e n = the sample size .

e We suppose that a continuous parameter spatial process
{Z(s) : s € R} are observed at locations {sy,...,s,}.

e Data: {Z(s1),...,Z(sn)}
e Also, suppose that the Z(-)-process is stationary and has
enough finite moments.

o Let Z(s)=pand Z, =n"1Y"  Z(si).
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Statistical Properties

e Properties of estimators like Z,, depends critically on the
relative orders of n and \,,.
e The main cases are:
o Case I: \, = O(1) as n — oo. (Infill)
o Case II: \,, — oo as n — oo. (Increasing Domain)
e Within Case II, we have
o Case I1.1: n/\% — ¢, € (0,00) (Pure Increasing Domain or
PID)
o Case I1.2: n/\% — oo (Mixed Increasing Domain or MID)
e Technically, n/A\? — 0 is a possibility, but leads to
uninteresting /simple results, like the independent case.
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Statistical Properties : Infill case

e Under Case I: A, = O(1) as n — oo. (Infill), estimators like
Z,, are not consistent :

Theorem

If Z(-) is mean-square continuous and \, — Ao € (0,00), then

Zn—>/Z()\Os)f(s)ds, in L?, a.s.
D

e Here Z, has a random limit !!

e Although the estimation task is difficult, one gets consistent
prediction under Case I.

e See Lahiri (1996; Sankhya), Stein (1990, 1991, ....AoS), Stein
(1999; Springer) & the references therein!
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Statistical Properties : Case II A\, — o0

e First consider the standard case of a regular grid!

Theorem

(The Regular grid case:) Suppose that \, — oo, Dy = [—1/2,1/2]¢
and the data-locations lie on the integer grid. Then, under some
weak dependence condition,

VA2~ ] 5 N (0,02)

where 02, =Y iz Cov(Z(0), Z(i)) = (2m)%6(0), and ¢(-) is the
(folded) spectral density of the Z(-) process.
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Statistical Properties : Case II A\, — o0

e In the irregularly spaced case, we have the following (Lahiri
(2003; Sankhya, Series A)):

Theorem

(The irreqularly spaced case:) Suppose that Z(-) is SOS with
ACVF ~(-) and spectral density ¢(-) and that some suitable weak
dependence conditions hold. Let n/\¢ — ¢, € (0,00]. Then,

\/)\_g[Zn — u} —d N(O, ai)

where o3, = ¢;17(0) + [ [ f*](2m)?$(0).

e Thus, the asymptotic variance depends on the spatial
sampling density f and the PID/MID constasnt c,.
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Statistical Properties : Case II A\, — o0

Remarks:

e The rate is determined by the volume of the sampling region
- not by the sample size!

1

e Confidence intervals will have widths of the order Wyenl

not of the usual order \/Lﬁ
e Estimation of the asymptotic standard error is more difficult.

e Suitable variants of the Spatial Block Bootstrap are
known to provide valid estimators of the (asymptotic)
variance, automatically under either of the scenarios
(PID/MID). (See Lahiri and Zhu (2006; AoS)).
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Implications for spectrum estimation

The scaled Discrete Fourier Transform (DFT) of the sample
{Z(s1),... Z(sn)} is given by, for w € RY,

dp(w) = A2t i Z(s;) exp (Lw'sj) )

j=1

where = /—1.

o Write d,(w) = Cp(w) + 1S, (w).
e Then, C,(w) and S, (w) are respectively the cosine and sine
transforms of the sample.

S.N. Lahiri (NCSU)



Joint distribution of the DFT's

Theorem

Suppose that for j=1,--- ,r,r € N, {w;,} are sequences
satisfying wj, — w; € R*\ {0} and w; + wy, # 0 for all
1<j#k<r. Then,

/

[Cr(win), Sn(Win), -, Cn(Wrn), Sn(wWrn)]

; ALy Ogxa -+ Ogyo
— N 0, , @.S. (PX)a
O2x2 O2x2 -+ Al

where 2A; = ¢'v(0) + [ f2- (27m)%(w;).
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Remarks

e Irregular spacings do NOT necessarily kill the
asymptotic independence property of DFT's

that is well-known in the equi-spaced time series case !
e The spectrum is now over R?, not over [—m, 7%

e Estimation of the spectrum using the periodogram requires
slight adjustments, as implied by the theorem.

e Specifically, instead of using the raw periodogram

2
I(w) = ‘dn(w)‘ , one must use the bias corrected

periodogram, given by
I(w) = L (w) — ¢,'4,(0), weRY,

particularly when \¢ < n.
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Estimation of the Covariance Function

e Nonparametric estimation of the covariance function of the
Z(+)-process over R? (in the MID case) is addressed by

o Hall, Fisher & Hoffman (1994; AoS) for the time series case
(d=1), and by
o Hall and Patil (1994; PTRF) for the spatial case (d > 2).

e Steps include
e Estimation of the spectral density using kernel smoothing

e Fourier inversion to define the covariance estimator.

e The resulting estimator is non-negative definite!!!
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Estimation of the Covariance Function

Theorem

Suppose that n/\4 — oo (~ the MID case). Then, under the given
framework, for any a > 0,

A / ) =yt [y

[hl|<a

where W (-) is a zero mean Gaussian process on R® with
continuous sample paths.

e The most important aspect of this result is that the rate of
—d/2 . L
convergence, namely A\, ", is as good as that of estimating a
finite dimensional parameter!!
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Methodological aspects
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Inference methodology for irregularly spaced

spatial data

e The Central Limit Theorem can be used to derive asymptotic
distributions of asymptotically linear statistics, such as the
(pseudo-) MLE, LS-estimators, etc.

e Estimation of the asymptotic variance is a difficult problem -
variants of Block Bootstrap methods that adapt to the
irregularly spaced case are available, as pointed out earlier!!

e We now describe a recent approach to nonparametric
likelihood based inference, known as the

Empirical Likelihood

that bypasses the need for direct variance estimation.
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Introduction /Motivation /Background

e Consider a parametric model {f(-;0) : 0 € ©} and let
Xla c. 7Xn be lld, Xl ~ f(, 90)
o For example, Xi,..., X, beiid, X; ~ N(0,1), 6 € © =R.
2
Then, f(z;0) = W, r €R.
e The (parametric) likelihood function for 0 is

n

Lo(0) = ] £(X:56).

=1
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Normal Likelihood
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Parametric Likelihood

e An estimator of € is given by
0 = argmax log L(6),

the mazimum likelihood estimator!

e Under some regularity conditions, Wilk’s theorem asserts
that
—2log R,,(60) = x,

where R, (6y) is the likelihood ratio statistic (LRT) for
testing Hy : 0 = 6.
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Normal log-likelihood : Based on 100 observations

e Calibration of the test Hy : # = 0y can be done using the
Chi-squared limit!
e The LRT can also be inverted to get a confidence set for 6!!

/\ threshold

log likelihood
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Can we define a likelihood without a parametric model ?
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Empirical Likelihood

e Empirical Likelihood (EL) of Owen (1988) is a method that
defines a likelihood for certain population parameters
without requiring a parametric model.

o Let Xq,..., X, beiid with mean y € R. The EL for p is

L(p) —sup{ﬁm D> 0727@- = 1,27@)(} :u}
i=1

e ie., L(p) gives the max likelihood for a 1 € R from discrete
distributions supported on {X3,..., X} = X.
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Empirical Likelihood

e The unconstrained maximum is at m; = n~! for all 7.

e Thus, the EL ratio statistic for testing Hy : u = pyo is

LH(QO)

n—n

Ro(ho) =

e Under some mild regularity conditions, Owen (1988;
Biometrika) proved a version of Wilk’s Theorem:

—2log R, (110) —d X?-
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Empirical Likelihood

e EL methodology has been extended to deal with more
general parameters.

e An important work by Qin and Lawless (1994; AoS)
formulated EL for parameters defined by Estimating
Equations, and proved a Chi-sq limit law.

e It allows parameters satisfying a moment condition like:
Ey(Xy,6) =0.

for some function 1 : R x RP — RP.

e For example, with d = p =1, ¢(z,0) = x — 0 corresponds to
f =the population mean!
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Some advantages of using the EL

e It is a nonparametric method - it does NOT require the
statistician to specify a model (and hence, there is no model
misspecification error)!

e It does NOT require explicit variance estimation to
construct a CI/test !

Contrast this with the usual approach based on large sample
distribution of the M-estimator:

Vb, —0)) —* N(0,7%)

where 72 = [E(X1;600)?] - [EY'(X1;00)]72.
e It allows for a distribution free calibration, as the limit
distribution is known (viz., x3.)
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Literature Review

Some more references on the ELL method under independence are
given by

e Owen (2001; Chapman & Hall) - monograph

e Chen and Hall (1993; AoS) : Quantiles

e Qin and Lawless (1994; AoS : Estimating Equations

e DiCiccio, Hall and Romano (1996; AoS) : Bartlett
Corrections

e Bertail (2006; Bernoulli) : Semiparametric models

e Lahiri and Mukhopadhyay (2012; AoS) : Penalized EL
in increasing dimensions p > n,
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under dependence : Some technical issues

e Under dependence, the standard EL fails in the sense that
the limit involves population parameters.

e Kitamura (1997; AoS) introduced Block EL (BEL) for
time series data and established Wilk’s Phonomenon.

e Let Xy,..., X, be a stationary time series with mean p € IR.
o Let Xy =L"" Zle Xy, Xop =L} ij; X, ..., denote the
successive block averages, for some L ~ n°, § € (0,1).
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Construction of the BEL for time series

e M =1 gives the maximum overlapping version

e M > 1 can be used to reduce computational burden
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under dependence : Some technical issues

e The maximum overlapping BEL for 1 is defined as

N
LBEL(,u) = sup { Hm s >0, Zm = 1,2%)@[ = ,u}
=1

where N =n — L + 1.

e Kitamura (1997) established Wilk’s Phonomenon for the
BEL:  Under some regularity conditions,

—2Alog RPEL (119) =7 x4,

where A scale adjustment involving known quantities.
e Note that the limit is distribution free (Chi-squared).
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EL under dependence

Q: How do we extend the EL to spatial data?
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Construction of the BEL for spatial data

e The idea is to use d-dimensional block averages to define the
BEL for pu, as in the time series case!
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EL in the frequency domain

e For parameters related to the covariance structure of
a spatial process, a more suitable approach to formulate the
EL in the frequency domain!!

e Monti (1997; Biometrika) first considered EL for time
series in the frequency domain, which was refined and
extended by Nordman and Lahiri (2006; AoS) .

e Extension to the spatial case with irregularly spaced data
locations has been done recently by Bandopadhyay,
Nordman and Lahiri (2015; AoS).
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EL for spatial data

e As noted before, it does not require variance estimation
- which can be a nightmare for spatial processes (e.g, recall
that for a spatial process Z(-) observed at n data-locations,

Var(Z) =~ o*?\,¢

where o2 = g((), YLPuL f).
e Further, the EL does not require the spatial process to
be Gaussian to produce valid inference !!!

e No (parametric) model formulation is needed !
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Thank you!!
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