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Introduction

@ Chandra and XMM-Newton X-ray telescope data:
@ spatial coordinates of photon detections
e photon energy (Pl channel)
@ Telescope response: recorded photon positions are spread out according to the point
spread function (PSF)

Source: XMM-Newton release notes



Introduction

@ PSFs overlap for sources near each other

@ Aim: inference for number of sources and their intensities, positions and spectral
distributions

@ Key points of method:
(i) coherent Bayesian quantification of uncertainties
(i) obtain posterior distribution of number of sources
(iii) use spectral information

Y [107]
130 135
. !

125
L

120
L

11‘5 1é0 1‘25 1é0
X [10
Example photon assignment for XMM
observation of FK and FL Agr

Chandra observation of the Orion Nebula Cluster



Spatial Data: Bayesian Data Generating Model



Spatial Data: Bayesian Data Generating Model

Observed quantities:
N = total # photons (fix)
(zi,v:) = spatial coordinates of photon ¢



Spatial Data: Bayesian Data Generating Model

Observed quantities:
N = total # photons (fix)
(zi,v:) = spatial coordinates of photon ¢

Model:



Spatial Data: Bayesian Data Generating Model

Observed quantities:
N = total # photons (fix)
(zi,v:) = spatial coordinates of photon ¢

Model:
# sources: K ~ Pois(k)



Spatial Data: Bayesian Data Generating Model

Observed quantities:
N = total # photons (fix)
(z4,v:) = spatial coordinates of photon ¢

Model:
True relative brightness: (wo, ..., wk)|K ~ Dirichlet(1,...,1)
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Spatial Data: Bayesian Data Generating Model

Observed quantities:
N = total # photons (fix)
(z4,v:) = spatial coordinates of photon ¢

Model:
Counts: (no,...,nk)|w, N ~ Multinomial(V; (wo, . .., wk))



Spatial Data: Bayesian Data Generating Model

Observed quantities:
N = total # photons (fix)
(z1,y:) = spatial coordinates of photon i

Model:
Positions:  p;|K ~ Uniform overimage, forj =1,2,..., K
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Spatial Data: Bayesian Data Generating Model

Observed quantities:
N = total # photons (fix)
(zi,y:) = spatial coordinates of photon ¢

Model:
Photon coords: (xi,y:)|source j, m; ~ PSF; centred at p;
Background: (z4,y:)|background ~  Uniform over the image
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Spectral Data Model
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Spectral Data Model

Additionally observed:
e; = Pl channel of photon ¢

Model:
Photon energy: e;|source j, aj, B; ~ Gamma(ay, 3;) forj=1,2,..., K
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Spectral Data: Bayesian Data Generating Model

Additionally observed:
e; = Pl channel of photon 4

Model:
Photon energy: ei|source j, a;, B; ~ Gamma(ay, B;) forj=1,2,..., K
Background: e;|background ~ Uniform(0, Emax)

Density

VRN

Pl Channel
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Computation: RIMCMC

@ Final output: joint posterior distribution of all the parameters

@ How we get there: RUIMCMC that combines algorithms of Richardson & Green 1997
and Wiper et al. 2001

Is this tractable?
@ Knowledge of the PSF makes things much easier

@ Inference is insensitive to the prior K ~ Pois(x) e.g. for 20 simulated datasets each
with 10 sources we have the following mean posterior distributions . . .
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Simulation Study: Example

@ 100 datasets simulated for each configuration
@ Analysis with spatial-only model and full model
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Simulation Study: PSF (King 1962)
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@ King density has Cauchy tails

@ Gaussian PSF leads to over-fitting in real data

@ ‘Source region’: the region defined by PSF density greater than 10% of the maximum
(essentially a circle with radius 1)
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Simulation Study: Spatial Data

Source separation: d = 0.5, 1, 1.5, 2

15/39



Simulation Study: Spatial Data

Source separation: d = 0.5, 1, 1.5, 2

16/39



Simulation Study: Spatial Data

Source separation: d = 0.5, 1, 1.5, 2

17/39



Simulation Study: Spatial Data

Source separation: d = 0.5, 1, 1.5, 2
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Simulation Study: Spatial Data

Relative intensity:

@ Bright source:
ny ~ POiS(mbrigm = 1000)

@ Faint source:
ng ~ Pois(mint = 1000/7)

where r = 50, 10, 5, 2, 1

Mpright = 1000 Miaint = 20
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Simulation Study: Spatial Data

Relative intensity:

@ Bright source:
ny ~ POiS(mbrigm = 1000)

@ Faint source:
ng ~ Pois(mint = 1000/7)

where r = 50, 10, 5, 2, 1

Mpright = 1000 Mg = 100
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Simulation Study: Spatial Data

Relative intensity:

@ Bright source:
ny ~ POiS(mbrigm = 1000)

@ Faint source:
ng ~ Pois(mint = 1000/7)

where r = 50, 10, 5, 2, 1

Mpright = 1000 Mg = 200
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Simulation Study: Spatial Data

Relative intensity:

@ Bright source:
ny ~ POiS(mbrigm = 1000)

@ Faint source:
ng ~ POiS(mfaim = 1000/7‘)

where r = 50, 10, 5, 2, 1

Mpright = 1000 Mg = 500
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Simulation Study: Spatial Data

Relative intensity:

@ Bright source:
ny ~ POiS(mbrigm = 1000)

@ Faint source:
ng ~ POiS(mfaim = 1000/7‘)

where r = 50, 10, 5, 2, 1

Mpright = 1000 Mggie = 1000
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Simulation Study: Spatial Data

Relative background:

. . o . image area
no ~ Pois (b % avg # faint source photons in faint source region x 9 )

source region area

b=1,0.1,0.01, 0.001

Faint source region photons
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Simulation Study: Spatial Data
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Simulation Study: Spatial Data

Relative background:

. . . . image area
no ~ Pois (b % avg # faint source photons in faint source region x 9 )
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Simulation Study: Spectral Data
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Mean Posterior Positions (Strong Background, b=1)

@ Red = bright sources, blue = faint source
@ d = separation, r = relative intensity
@ Size of dots o posterior probability of two sources

Spatial—only model (b = 1)
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Mean Posterior Positions (Strong Background, b=1)

@ Red = bright sources, blue = faint source
@ d = separation, r = relative intensity
@ Size of dots o posterior probability of two sources

Full model (b = 1)
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Data Analyses

Paper gives two data analyses:
@ Briefly: XMM data — binary source, FK and FL Agr

g
8 1 — Bright S Bright
o | - Faint 8 71 ---- Faint
8 © © ]
a ° g
= N S -
8 S 8 |
5]
o a
S ]
] o -- - o
3.10 3.15 3.20 0.00460  0.00470  0.00480  0.00490
115 120 125 130 aj B

X [101]

@ Focus: Chandra image

Chandra observation of the Orion Nebula Cluster
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Posterior distribution of K
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Follow-up Spectral Analysis using CIAO/Sherpa v4.6

@ Each iteration of our algorithm probabilistically assigns every photon to a source or the

background

@ Our assignments can be used to repeatedly perform more detailed spectral analysis

@ The resulting histogram of spectral parameter fits enable us to quantify uncertainty
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Temporal Extension

@ Concept: for variable sources, modeling temporal data should further help separation
@ Need a simple but flexible lightcurve model

@ One idea: Poisson process with piecewise constant rate ... as in Bayesian Blocks
(Scargle 1998, Scargle et al. 2013):
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How to implement the MCMC?

To allocate photons, we need to take account of our uncertainties about the underlying
lightcurves. Computationally:
@ MCMQC iterations must update lightcurve models

@ How to propose “nearby” models? Starting approach:

@ Run Bayesian blocks on all data and then fix the breakpoints
@ Set priors on the block heights and then update the heights in each MCMC iteration

Moving block heights
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@ More in the spirit of Bayesian blocks, we could also allow the breakpoints to move left
or right
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How to implement the RUIMCMC?

@ RJMCMC will add further challenges

@ When we “split” an existing source we will need to split its lightcurve model into two
(stochastically)
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Extensions

Scalability:
@ Divide up image into sub-images e.g. Safarzadeh et al. (2014)

@ Sample sub-images multiple times and combine posterior estimates ... or the
posterior distributions themselves e.g. Minsker et al. (2014)

Additional improvements / directions:
@ Instrument effects e.g. varying PSF
@ Separation of extended sources and point sources
@ Binning and LSST data
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Thanks!
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