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Central Theme: Statistical + Computational Efficiency

High Dimensional Regression.

@ In typical high dimensional regression problems we have
response y; € R (i = 1, .., n) associated with a high
dimensional predictor vector x; € RP.

@ p is very big and n is moderate—"large p, small n" problem.

@ Occurs routinely in many Biomedical applications.

@ Dimensionality reduction is critical.

Object Oriented Regression I
@ Answering complex inferential questions can lead to massive

dimensional regression.
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Detecting Voxels in Diseased Brain

(a) MRI machine (b) cross section MRI
scan

Tensor predictor: Resting state fMRI for 550 people (some
patients, some normal).

scalar predictors: volume of the brain, sex, smoking during
pregnancy.

Response: Binary indicator whether diseased or not.
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Penalized Optimization:Unsatisfactory Predictive
Performance

¥(+) = convex penalty function, ¢ = tuning parameter

argmin >0 (yvi — x'v)? + CZle 1(~j) — Penalized Opt.
¥

@ LASSO (Tibshirani, 1996), Elastic Net (Zhou et al., 2005),
tons of other variants.

e Efficient convex optimization algorithms (Hastie, 2003;
Friedman, 2010) to produce point prediction for high
dimensional regression.

@ Unsatisfactory predictive uncertainty.
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Bayesian Shrinkage Prior

(Statistically Inefficient)

p(B)
00 01 02 03 04 05

v~ 8

R B I R e g heavy tailed density.

@ Important shrinkage priors, Bayesian Lasso (Park et al., 2008;
Hans, 2009), Horseshoe (Carvalho et al., 2009), Generalized
Double Pareto (Armagan et al., 2013).
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Bayesian High Dim. Reg.:Unsuitable in High Dimension

@ Bayesians choose sparsity-favoring priors on « concentrating
around an S-sparse vector vy € ZP.

Spike & Slab Prior (Computationally Inefficient)

vj ~ moo + (1 —m)g, gis a cont. density.

Serious Drawbacks of Penalization and Shrinkage

> p=p1 X pp X - pp, each p; = 64 typically, implies massive
dimensional regression with close to half a million predictors
= Infeasibility

» Misses out on wealth of information that the tensor valued
brain images carry.

@ Important snrinkdge priors, Ddyesidi Ldsso (Fdrk €L di., ZUvo,
Hans, 2009), Horseshoe (Carvalho et al., 2009), Generalized
Double Pareto (Armagan et al., 2013).
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Tensor Regression Model with PARAFAC Decomposition

Data Model

y=(X,B) +z'v +¢,¢ ~N(0,0%)

rank-R PARAFAC decomposition of B for dimension reduction

— —3
1 s W2 WRr s
— v V2 vV
= 4 1 + Z ‘4 + V4 R
8 qi 5 uR

For D > 3, need a better notation = B = Ele B(lr) 0---0 ﬁg)

BJ(.r) € %P, o denotes outer product between vectors.
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Tensor Regression Model with PARAFAC Decomposition

Data Model

y=(X,B) +z'v +¢,¢ ~N(0,0%)

rank-R PARAFAC decomposition of B for dimension reduction
Advantages

» Number of parameters needed to model is RZJ-Zl pj as

opposed to HJ'D:1 p; = Dimension Reduction.

> Keeps spatial structure of X intact = potentially better
inference.

For D > 3, need a better notation = B = 25:1 B(lr) 0---0 ﬁ(Dr)

BJ(.r) € %P, o denotes outer product between vectors.
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Frequentist Tensor Regression (Zhou et al. 2013, 2014):

¥(+) = convex penalty function, { = tuning parameter

arg m|n Z (yi — (X;,B) — zj-’)/)2 +C Y
7,3

Issues with Frequentist Tensor Regression (FTR)

Choice of R is adhoc.

Result depends heavily on the tuning parameter (. Choice of
the tuning parameter is also uncertain.

Prediction and inference can be improved.
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Multiway Shrinkage Prior for B (Guhaniyogi et al. 2015)

I o

| Exchangable shrinkage acrossr}

BJ(.r) ~ N(0, W;.T¢,), ¢,'s rank specific parameters. Shrinkage
across ranks: (@1, ..., r) ~ Dirichlet(a1, ..., ag).

(c) ;=02 (d) @i =0.3 (e) @i =05
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Multiway Dirichlet Generalized Double Pareto Prior

(M-DGDP)

Shrinkage within every rank

wirk ~ Exp(A},/2),  Air ~ Ga(ay, by), 7 ~ IG(ar, by)
Integrating out W,

id.d

ﬁj(;()|>\jrv¢rv7— ~ DE()\J,«/\/W), 1 S k S pjr

. r . . .
ie. Bj(k) | &r, 7 marginally follows GDP shrinkage prior.
D



General Theoretical Setup: Guhaniyogi et al., 2015

@ True Model
(f()/|891) =N (<X7 391)’02))

Class of tensor reg. models fitted to the data

KL metric ball of radius € around the truth
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General Theoretical Setup: Guhaniyogi et al., 2015

@ True Model
(f(Y|B?1) =N (<X7 391)’02))

Class of tensor reg. models fitted to the data

KL metric ball of radius € around the truth

B ={Bn: 130 KL(f(yi|BY), f(yi|Bn)) < €} = Neighborhood

Posterior Consistency

N,(#5) — 0 under B as. asn— oc. (1)

[1, posterior distribution given y1, ...., y,.
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Posterior Consistency Results, Guhaniyogi et al. 2015

The posterior is consistent under the following assumptions.
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B(,)7 = Zf’:l 6(1),(,:) 0---0 5(/)3(;,) follows rank-R® decomposition.
(Structure on the true coefficients)
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Posterior Consistency Results, Guhaniyogi et al. 2015

The posterior is consistent under the following assumptions. \

0
B(,)7 = Zf’:l 6(1),(,:) 0---0 5(/)3(;,) follows rank-R® decomposition.
(Structure on the true coefficients)

o(r .
supi—1._p, . 1BY)| < o0, forall j=1,....,D; r=1,..,R.
(Structure on the true coefficients)

j’;l pj.nlog(pj.n) = o(n). (Dimension of margins)

n
Mo =y 2 |IXi|[3, Hin™ < My < Han®2,

Hla H2ap1’;02 > 0.
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Simulation Setup

Data Generation

yi = (X, BO> + €, € ~ N(O,ag), i=1,..,n

(i) n = 1000

(i) o5 =1

(iii) B is 64 x 64

(iv) xi.i, ~ N(0,1) V i1 =1:64, b =1:64.

Competitors

Frequentist Tensor Regression (FTR)

Vectorized Lasso (Lasso)

Bayesian Tensor Regression



Results: True Tensor Coefficient are “Generated Shapes”

= O X

(f) Boxes (11.0%) (g) Shapes (6.8%)
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(h) Boxes Recov. (i) Shapes Recov.
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Results: True Coefficients “Ready-made” Images
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(1) Bird Recov. (m) Horse Recov.
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Comparison with Competitors: Lower Mean Squared Error

(MSE) with Excellent Coverage

Case BTR FTR Lasso VOX
Eagle | 0.22600> 0.354003 0.665003 >0
Horse | 0.278301 0.391g93 0.888p01 >0
Eagle | 0.0850090 0.163p03 0.097000 =0

Horse 0.1370,00 0.2150,02 0.1550.02 =0
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Comparison with Competitors: Lower Mean Squared Error

(MSE) with Excellent Coverage

Case BTR FTR Lasso VOX
Eagle | 0.22600> 0.354003 0.665003 >0
Horse | 0.278301 0.391g93 0.888p01 >0
Eagle | 0.0850090 0.163p03 0.097000 =0

Horse 0.1370,00 0.2150,02 0.1550.02 =0

Coverage for M-DGDP is 0.94 and 0.92 respectively. I
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Simulated Response with Real Vector and Tensor
Covariates

@ 30 x 30 x 30 MRI images (predictor tensor) for 550 individuals.

@ Response is simulated as y ~ N((X, B®) + z'~, 1) for every
individual.

@ Three different rank-2 tensor coefficients are simulated with
varying sparsity.

_

Case 1l | 0.13p9; 0.15901 0.15901
Case 2 | 0.20p091 0.23001 0.24901

Case 3 0.170_01 0.190.01 0.190_01
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Brain Connectome Data Application

e Data are extracted from diffusion tensor imaging (DTI) for
109 individuals.
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Brain Connectome Data Application

e Data are extracted from diffusion tensor imaging (DTI) for
109 individuals.

@ For each individual, brain connections are encoded by a
70 x 70 weighted adjacency matrix.

@ The (i,j)-th entry of the matrix is the estimated number of
fiber tracts connecting the i-th and j-th brain region.

Developing a predictive model of composite creativity index (CCl)
based on neuronal connectivity.
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Predictive Inference: Brain Connectome Data

@ Response: Composite Creativity Index (CCl).
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Predictive Inference: Brain Connectome Data

@ Response: Composite Creativity Index (CCl).

@ Vector Predictor: 10 clinical covariates e.g. openness,
agreeableness, conscientiousness.

o Tensor Predictor: 70 x 70 weighted adjacency matrix.

@ Predictive inference of lasso and BTR with 10 folds of the
data.

Method | avg(RMSE) sd(RMSE) avg(cov.) sd(cov.) avg(cor.) sd(cor.)

Lasso 9.18 1.64 0.63 0.20 0.31 0.11

BTR 9.03 2.18 0.91 0.10 0.32 0.13
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Brief Overview of Tensor Regression
What have we achieved so far? '

@ Penalized optimization unsatisfactory for predictive
uncertainties; Bayesian shrinkage priors statistically inefficient,
computationally not scalable to tensor predictors with large
number of voxels, destroy tensor structure in the predictors.
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@ Penalized optimization unsatisfactory for predictive
uncertainties; Bayesian shrinkage priors statistically inefficient,
computationally not scalable to tensor predictors with large
number of voxels, destroy tensor structure in the predictors.

@ Frequentist Tensor Regression is less robust with choice of the
tuning parameter, selects R in an adhoc way.

Tensor Regression with M-DGDP prior
@ A novel multiway shrinkage prior— R selection is automated,

@ significantly better performance, excellent parametric and
predictive coverage.
@ Supported by theoretical convergence results.
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Brief Overview of Tensor Regression
What have we achieved so far?'

@ Penalized optimization unsatisfactory for predictive
uncertainties; Bayesian shrinkage priors statistically inefficient,
computationally not scalable to tensor predictors with large
number of voxels, destroy tensor structure in the predictors.

@ Frequentist Tensor Regression is less robust with choice of the
tuning parameter, selects R in an adhoc way.

* otal NA NN
Useful in Other Tensor Regression Framework?

Nontrivial extension of BTR useful in providing a scalable
framework for the brain activation study. Stay tuned....

PPy~ e~ ey

@ Supported by theoretical convergence results.
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