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Independent Component Analysis

A - temporal mixtures. Many methods assume Q = T .



Group Independent Component Analysis

Subject 1 X 1 A1 S

Subject 2 X 2 = A2

. . . . . .

Subject I X I A I

I Reconstruct each row of S in 3D.

I Each 3D image is a brain network (Calhoun, 2001).



ICA in Brain Research

Children with Autism Spectrum Disorder (ASD) have difficulties
performing motor tasks.

I Autism trait severity using total Raw SRS score.

I Imitation ability.

I Overall skilled gesture performance using praxis exam scores.

Goals:

I Is visual-motor synchrony different in ASD?

I Is visual-motor synchrony associated with imitation ability?



ICA based Connectivity Analysis - KKI

Motor system

I dorsomedial lower limb areas (“LL”)

I more lateral upper limb areas (“UL”)

Visual components

I visual processing areas (“VC1” and “VC2”)

I lateral occipital cortex (“VC3”)

Estimated by ICA for 50 children with ASD and 50 controls.
Age 8-12 years.



ICA based Connectivity Analysis - KKI
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ICA based Connectivity Analysis - KKI
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Validation

Data from UM was used for validation.



Independent Component Analysis

The ICA model and assumptions.

X = AS + E

I The components S1, . . . ,SQ are statistically independent.

I The mixing matrix A is nonsingular.

I At most one of the components Sq is Gaussian.

When E = 0 the model is called noise-free.



Contrast Function

A mapping φ(·) from the set of densities {fs , s ∈ Rn} to R is called
a contrast function (Comon (1994)) if it satisfies the following
requirements

I φ(fs) = φ(fPs) where P is a permutation matrix.

I φ(fs) = φ(fΛs) where Λ is a diagonal invertible matrix.

I φ(fAs) ≤ φ(fs) if all elements of s are independent and the
matrix A is invertible.

Commonly used contrast functions involve kurtosis, negentropy
and mutual information.



Contrast Function

Negentropy as a measure of nongaussianity.

J(fx) = H(fz)− H(fx),

where E (z) = E (x) and cov(z) = cov(x), H(·) differential entropy.

Hyvarinen (1997) negentropy of s can be approximated by

JG (fs) = [Es(G (s))− Ez(G (z))]2,

where z is a Gaussian random variable with mean zero and
variance one, G (·) is a nonquadratic function.



FastICA

The R package fastICA is based on this method using

G1(u) = log cosh au, G2(u) = exp(−u2

2
),

where a is a constant such that 1 ≤ a ≤ 2.

More information in Hyvarinen, Karhunen, and Oja (2003).



Unified Framework for Group ICA

Guo and Pagnoni (2008) and Guo (2011) - EM based algorithm.

I Assume the mixing matrix A is square,

I Define a structure for the mixing matrix,

I Model densities of underlying sources using Gaussian mixtures,

I Parameter estimation via EM-algorithm.

Shi and Guo (2016) incorporate covariates within group ICA.



ProDenICA, Distance Covariance, LCA

ProDen ICA proposed by Hastie and Tibshirani (2002)

I Model densities of underlying sources using exponentially
tilted Gaussian densities,

I Estimate the mixing matrix using a fixed point algorithm.

ICA via Distance Covariance, Matteson and Tsay (2011)

I Estimate components by targeting independence,

I Define independence via Distance Covariance.

Likelihood Component Analysis, Risk, et. al (2016)

I Allows for non-square mixing matrices,

I Options for modeling densities of underlying sources.



Group ICA

S(q, v) = W (q, .)X (., v),

W = A−1, W (q, .) - qth row of W , X (., v) - vth column of X .

S(q, 1), . . . ,S(q,V ) ∼ fq(·).

The likelihood function for ICA model

L(S) =
V∏

v=1

Q∏
q=1

fq[S(q, v)],

L(W , f ) =
V∏

v=1

Q∏
q=1

fq[
Q∑
l=1

W (q, l)X (l , v)].

Estimate the matrix W and densities fq given the observed X .



Mixtures for Estimating Densities

We parameterize the density of Sq as a mixture density:

fq(s) =
N∑
j=1

θqjφ

(
s − µqj
σq

)
1

σq
,

where φ(·) is the standard normal density function.

I The means µqj and the standard deviations σj - fixed.

I The estimation of θq1, . . . , θqN is performed via a modified
EM algorithm.

Eloyan, A. and Ghosh, S.K. (2011) Smooth Density Estimation with Moment Constraints Using Mixture
Distributions. J. of Nonparametric Statistics. 23, 2, 513-531.



Independent Component Analysis

The log-likelihood of ICA is obtained as

l(W , f̂ ) =
V∑

v=1

Q∑
q=1

log{f̂q(
Q∑
l=1

xvlwlq)}+ V log | det W |.

Estimate the mixing matrix W = A−1 and the densities f̂q via an
iterative optimization algorithm.

Eloyan, A. and Ghosh, S.K. (2013) A Semiparametric Approach to Source Separation using Independent
Component Analysis. Comp. Stat. and Data Analysis. 58, 383-396.



Group Independent Component Analysis

Two-stage singular value decomposition.



Group Independent Component Analysis

Two-stage singular value decomposition.



Iterative Algorithm, HDICA

1. S i = Ŵ iX i

2. Estimate the weights of the density for each independent
component. θq is estimated by an EM algorithm.

3. Compute the derivative and Hessian for the log-likelihood.

L(Ŵ ) =
I∑
i=1

V∑
v=1

Q∑
q=1

log[fq(Ŵ iqX iv )] + V log | det Ŵ i |.

4. Ŵ i
new

= Ŵ i − L′′(Ŵ i )
−1L′(Ŵ i )

5. Stopping rule

max ‖Ŵ i − Ŵ i
new
‖ < δ

Eloyan, A., Crainiceanu, C.M., and Caffo, B.S. (2013) Likelihood based population independent component
analysis. Biostatistics. 14, 3, 514-527.
Chen, S. Huang, L., Qui, H., Nebel, M.B., Mostofsky, S.H., Pekar, J.J., Lindquist, M.A., Eloyan, A., and Caffo,
B.S. (submitted) Parallel Group Independent Component Analysis for Massive fMRI Data Sets.



Bayesian Independent Component Analysis

The noisy ICA model:

X = AS + E ,

Xtv |A,S , σe ∼ N(At.S .v , σ
2
e )

Proposed priors:

σ2
e |αe , βe ∼ InverseGamma(αe , βe).

Sqv |Zqv = k ∼ N(µk , σ
2
N),

P[Zqv = k] = θqk ,

θq = (θq1, θq2, . . . , θqN)|α ∼ Dirichlet(α, α, . . . , α),

where v = 1, . . . ,V , t = 1, . . . ,Q and k = 1, 2, . . . ,N.



The 1000 Functional Connectomes Project Dataset

I More than 1400 scans available online.

I The scans are collected using a 3T scanner.

I For the subset used in this analysis the number of time points
was T = 119.

I Standard image processing was performed to register the data
to the MNI standard brain space.

W i and S are estimated via the parallel HDICA algorithm.



Results for 301 Subjects



ICA based Connectivity Analysis - ABIDE

I 379 ASD.

I 400 typically developing

I For the subset used in this analysis the number of time points
was T = 220.

I Standard image processing was performed to register the data
to the MNI standard brain space.



ICA based Connectivity Analysis - ABIDE



Summary and Extensions

I Connectivity using ICA in Autism looking at motor function.

I New methods for finding brain networks for large groups of
fMRI data.

I Extensions of existing methods for novel types of data.
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