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Well-Posedness

Definition due to Hadamard, 1915: Given mapping��� � � �

, equation

��� � 	
is well-posed provided

(Existence) For each 	 
 �
,

� � 
 �
such that

� � � 	;
(Uniqueness)

���� � ���� � �� � �� ; and

(Stability)

��� � is continuous.

Equation is ill-posed if it is not well-posed.
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Linear, Finite-DimensionalCase

��� � � � � �

( � � � matrix).

� � � 	

well-posed

� �
��������

���������
� � � exists

det

� � � �

� � � � � � � �

...

Existence imposed by considering least squares solutions

� ! � "# $% &(')* +, - - ��� . 	 - -� /

Uniqueness imposed by taking the min norm least squares
solution

�0 !1 2 � "# $% &(' 3 - - �0 ! - -4 � � 5 	 /
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Infinite-Dimensional Example

(Compact) diagonal operator on (Hilbert) space
6�

� � 798� : 8� : / / / : 8 � : / / / ; 
 6� � � <
=?>� 8� = @ A /

Define

��� 6� � 6�

by

��� � 8� : 8� B : / / / : 8 �� : / / / /

Formal (unbounded) inverse is

�� � 	 � 79C� :B C� : / / / : �C � : / / / ; :

so we have uniqueness (and existence of solutions for
certain 	).
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Don’t havestability!

Take

	 � � 7 � : / / / : � : D E �FG H I� J K : � : / / / ;
Then 	 � � �

, but

- - �� � 	 � - - � � � A /

Also don’t have existence of solns to

��� � 	 for all 	 
 �

.
E.g., 	 � 7 D : D EB : D EL : / / / ; � � 7 D : D : D : / / / ;

, but7 D : D : D : / / / ; �
 6�
.
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Doesthis matter?

Example was contrived.

Practical computations are discrete, finite dimensional.

Can replace (finite dimensional)

� �� by pseudo-inverse� 5

.

But ...

Discrete problems approximate underlying infinite
dimensional problems (Discrete problems become
increasingly ill-conditioned as they become more
accurate).

In Inverse Problems applications

�

is often compact,
and it acts like the diagonal operator in the above
example (Compact operators can be diagonalized using
the SVD; diagonal entries decay to zero).

SAMSI Opening Workshop – p.7/33



Regularization

Remedy for ill-posedness (or ill-conditioning, in discrete
case).

Informal Definition: “Imposes stability on an ill-posed
problem in a manner that yields accurate approximate
solutions, often by incorporating prior information”.

More Formal Definition: Parametric family of “approximate
inverse operators”

MON � � � �
with the following property. If	 � � ���QP RS T UWV �, and V � � �

, we can pick parameters X �

such that

� N , Y T Z� MN , 	 � � �P RS T /
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Tikhonov Regularization

Math Interpretation. In simplest case, assume
� : �

are
Hilbert spaces. To obtain regularized soln to

� � � 	,
choose � to fit data 	 in least-squares sense, but penalize
solutions of large norm. Solve minimization problem

� N � " # $% &(' )* [ - - � � . 	 - -� \ U X - - � - -� [

� 7 � ] � U X ^ ; � � � ]F G H I_a`

	 /

X b �

is called the regularization parameter.
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Geometryof Linear LeastSquares

c 7 � ; �
dededfdededededfded
dededfdededededfded

D �
� / DF G H Ig

8� 8�F G H I)
. heheheh

D
/ DF G H Ii

U / D
/ DF G H Ij

kekekek
dededfdededededfded
dededfdededededfded
�
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Geometryof Tikhonov Regularization

c 7 � ; � - - � � . 7 	 UV ; - -� U � / DFG H IN
- - � - -�
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BayesianInter pretation (MAP)

Bayes Law: Assume

� : �

are jointly distributed continuous
random variables.

l 7 � - 	 ;F G H Imno JQpq =nq m r s
� l 7 	 - � ;F G H Itn � r =J =n �u v m r s
l 7 � ;FG H Imq =n q

E l 7 	 ;FG H I=� rp m n s )

Maximum a posteriori (MAP) extimator is max of posterior
pdf. Equivalently, minimize w.r.t. �

. wyx $ l 7 � - 	 ; � . wyx $ l 7 	 - � ;F G H Iv nz v ={ p v =K n n r . wyx $ l 7 � ;F G H Iv n z mq =n q

First term on rhs is “fit-to-data” term; second is
“regularization” term.
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Illustrati veExample

If

�}| Normal

7 � : ~�� ^ ;

, then prior is

l 7 � ; � D7B l ~�� ; � �� �� � � . - - � - -� EB ~�� �

If

� � � � UV and V | Normal

7 � : ~� j ^ ;
, conditional pdf is

l 7 	 - � ; � D7B l ~� j ; � �� �� � � . - - ��� . 	 - -� EB ~� j �

Tikhonov cost functional is

c 7 � ; � - - ��� . 	 - -� U X - - � - -� : X � ~� j~�� � SNR

� � /
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Singular ValueDecomposition

Important tool for analysis and computation. Gives
bi-orthogonal diagonalization of linear operator,

� � � �� ] /
In � � � matrix case,

� � ��� � : / / / : � � � , � � diag

79�� : / / / : � � ; ,
and

� � ���� : / / / : � � � with

�� � �� � / / / � � � � � :

� � = � � =� =: � ] � = � � =� =:

� � =: �0� � � � =� : � � =: �� � � � =� � � ] � � ^ : � ] � � ^
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Tikhonov Filtering

In the case of Tikhonov regularization, using the SVD� � � �� ]

(and assuming � � � matrix with � = b �
for

simplicity),

MN � 7 � ] � U X ^ ; �� � ]

� 7 � � ] � ] � �� ] U X � ^� ] ; � � � � ] � ]

� � 7 � ] � U X ^ ; �� � ] � ]

� �

diag

7 �� =�� = U XF G H I� ` �o ��� �
D

� =; � ]

If X � �

, then � N 79�� =; � D
, so

MN � � diag

7 D E9� =; � ] Y T Z� � 5

as X � � /
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Tikhonov Filtering, Continued

Plot of Tikhonov filter function � �� ��N 7 �� ; � o �o ��� N shows that
Tikhonov regularization filters out singular components that
are small (relative to X) while retaining components that are
large.
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Truncated SVD (TSVD) Regularization

TSVD filtering function is

� � ! ¡N 7 �� =; � � : �� = ¢ X :D : �� = b X /
Has “sharp cut-off” behavior instead of “smooth roll-off
behavior” of Tikhonov filter.
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Iterati veRegularization

Certain iterative methods, e.g., steepest descent, conjugate
gradients, and Richardson-Lucy (EM), have regularizing
effects with the regularization parameter equal to the
number of iterations. These are useful in applications, like
3-D imaging, with many unknowns.

An example is Landweber iteration, a variant of steepest
descent. Minimize the least squares fit-to-data functional

c 7 � ; � D
B - - � � . 	 - -�

using gradient descent iteration, initial guess � £ � �

, and
fixed step length parameter

� @0¤ @ D E - - � - -�

.
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Landweber Iteration

� {� � � � { .¤ grad

c 7 � { ; : ¥ � � : D :B : / / /

� � { .¤ � ] 7 ��� { . 	 ;

� 7 ^ .¤ � ] � ; � { U¤ � ] 	

� �

diag

7 D . 7 D .¤ �� =; {F G H I¦§u � r � p ¨pq s =v JQpq s �
; � ] 	 /
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Effect of Regularization Parameter

Illustrative Example: 1-D deconvolution with Gaussian
kernel © 7«ª ; � ¬ �� � 7 . ª� EB � ;

and discrete data

® = � �
£ © 7 � = . ª ; 8P R S T 7ª ; ®ª U noise : ¯ � D : / / / : � /
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Graphical Representationof SVD
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0 10 20 30 40 50 60 70 80
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

index i

σ
i

Singular Values of K

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

x axis

Singular Vector v
1

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

x axis

v
4

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

x axis

v
10

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x axis

v
20

SAMSI Opening Workshop – p.21/33



Tikhonov Solutionsvs

Tikhonov regularized solution is 8 N � 7 � ] � U X ^ ; � � � ]°
.

Solution error is ± N � 8 N . 8P RS T.
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Err or Indicators

Linear, Additive Noise Data Model:

° � ���QP R S T U V
Regularized Solution:

� N � MON ° � � diag

7 � N 7 �� =; E9� =; � ] °

Solution Error:

² N Y T Z� � N . �QP R S T � 7 MN � . ^ ; �QP R S TF G H I³ ¨ =u o ´ ´
U MON VFG H I³¶µ u q =u � tp ´ ´

Predictive Error:

· N Y T Z� ��� N . � �P RS T � � ² N � 7 � MON . ^ ; ���QP RS T U � MON V
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UnbiasedPredictiveRisk Estimator

The Influence Matrix is

¸ 7 X ; Y T Z� � MON :
so we can write the predictive error as

· N � 7 ¸ 7 X ; . ^ ; ���QP RS T U ¸ 7 X ;V

Residual is

¹ N Y T Z� ��� N . ° � 7 ¸ 7 X ; . ^ ; ���ºP R S T U 7 ¸ 7 X ; . ^FG H I�p � JQpq »
;V

Let

¼

denote expected value operator. Assume �P RS T is
deterministic (or independent of V ), assume

¼ 7V ; � �

, and
note that

¸ 7 X ; is symmetric. Then ...
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UPRE, Continued

¼ - - ¹ N - -� � - - 7 ¸ 7 X ; . ^ ; � �P RS T - -� U ¼ �V ] ¸ 7 X ;� V �F G H I½ ¾ ¾(¿ ` ¾ ¾ �

. B ¼ �V ] ¸ 7 X ;V � U ¼ - -V - -� /
So up to const

¼ - -V - -�

, an unbiased estimator for

- - · N - -�

is

� 7 X ; Y T Z� - - ¹ N - -� UB ¼ �V ] ¸ 7 X ;V �

� - - ¹ N - -� UB ~� j trace

¸ 7 X ;

Last equality follows if
¼ �V =V � � � ~� j : ¯ � À :� : ¯ � � À
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Commentsabout UPRE

UPRE regularization parameter selection method, also
known as Mallow’s

¬ ¦ method, is to pick X to mimimize� 7 X ; .
Predictive error norm

- - · N - -

and solution error norm- - ² N - -

need not have the same minimizer, but the mins
are often quite close.

There is a variant of UPRE, called generalized cross
validation (GCV), which requires minimization of

� 7 X ; Y T Z� - - ¹ N - -�

�
trace

7 ^ . ¸ 7 X ; ; �� /

This does not require prior knowledge of variance ~� j .
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Illustrati veExampleof Indicators

2-D image reconstruction problem, noise V | N
7 � : ~� j ^ ;

,
Tikhonov regularization. o-o indicates soln error norm;. . indicates GCV; – indicates

� 7 X ; ; and . . indicates
predictive error norm.
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Mathematical Summary

There exists a well-developed mathematical theory of
regularization.

There are a number of different approaches to
regularization.

optimization-based (equivalent to MAP)
filtering-based
iteration-based

There are robust schemes for choosing regularization
parameters.

These techniques often work well in practical applications.
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But Things Can Get Ugly ...

Astronomical Imaging Application. Light intensity

^ 79Á : Â ; � © 79Á . Á Ã : Â . Â Ã ;F G H IÄ ÅÆ
8 79Á Ã : Â Ã ;F G H In ¨� p t J
®Á ® Â /

This is measured by a ccd array (digital camera), giving
data

® = � ^ 79Á =� : Â =� ; U “noise” /

For high contrast imaging (dim object near very bright
object), accurate modeling of noise is critical.

With ordinary (and even weighted) least squares, dim
object is missed.
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Model for Data fr om CCD Array

® = � Ç =7 � ; U È = UWV =: ¯ � D : / / / : �
Photon count for “signal”

Ç =7 � ; | Poisson

7É =; : É = � ^ 79Á =� : Â =� ;�Ê � ��� � =/

Background photon count

È =| Poisson
7 È ; : È

fixed, known /

Instrument “read noise”

V =| N
7 � : ~� ; : ~�

fixed, known /
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Imaging Example,Continued

Log likelihood ( Ë wyx $ l 7° -Ì � ;

) is messy

Í 7Ì �Î ° ; � . �
= >�

wyx $ <
� > £

± � Ï g� Ð �� ¨ 7 �Ì 8 � = U È ;�
À Ñ ± � � r �� Ï g� Ð �� ¨ � � �ÓÒ �

Light source (object) intensity is nonnegative.
Constraint 8 7«ª ; � �

.

With “pixel” discretization, dimension is very large, e.g.,
size

7 � ; � size

7° ; � B ÔÕ Ö
or more.

Problem is ill-posed. Need regularization (prior), e.g.,
X - -�× - - Ö : X b � /

Regularization parameter (strength of prior) is unknown.
SAMSI Opening Workshop – p.31/33



Applied Mathematician’sWish List

Optimization-based regularization methods (Tikhonov,
MAP) require soln of minimization problems. Need fast,
robust, large-scale, nonlinear constrained numerical
optimization techniques.

When the parameter-to-observation map is nonlinear,
regularization functionals may be non-convex. Need
optimization methods which yield the global minimizer
(not just a local min) and are fast, robust, ....

Need indicators of reliability (e.g., confidence intervals)
for regularized solutions.

Need good priors.

Need fast, robust schemes for choosing regularization
parameters.
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Challengefor the StatisticsCommunity

Can MCMC techniques provide fast, robust alternatives
to optimization-based regularization methods?

Relevant Reference: J. Kaipio, et al, "Statistical inversion
and Monte Carlo sampling methods in electrical impedance
tomography", Inverse Problems, vol 16 (2000), pp.
1487-1522.

Relevant Caveat: There is no free lunch.
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