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Introduction to Epidemic models

SIRS models

s ™ 1S5RS s

SIRS epidemics on n-regular networks are given by
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Introduction to Epidemic models

PA SIRS models on n—regular graphs

Let
Pa = E Pa., Pag=— E Pa..B,
X yeN(X
1
Pagc = — § Pa, B, .c.
zeN(y)—x
We have
Ps —nAPg + vPg
dt
A
dt
dP.
== PR~ (A 9P+ (0= DA(Pss — Pisi)
dP
% = 0Ps; +7vPrr — vPsr — (n — 1)APisr
dP,
TRI = —(v+0)Pr + 6Py +(n—1)APisg
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Introduction to Epidemic models

SIRS models

Apply the pairwise closure approximation (PCA)

We get

dPs
dt
P
dt
dPs,

dt
dPsr

dt
dPgy

dt

Pgc
Pagc ~ PABT~
B
—n)\PS/ —|—’y(1 — Ps — P/)
n>\P5/ — 5P/
PR — (A + 8)Ps; + (n — 1)\(PssPs; — P%)/Ps

0Ps; + ’7(1 — Ps — Py — Pg — 2P5R) — (n — 1))\P/5P5R/P5

—(v+6)Pri +6(Pr — Psi — Pri) + (n — 1)APisPsr/Ps
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Reduction of SIRS models and pairwise closure approximation

Reduction of SIRS models

my\ 4 AX:O
S— | —R—/78—S

e v =0: An SIRS model can be reduced to an SIR model. In
particular, In the context of pairwise closure approximations, we

have

dPs

TS5 e

p nAPs)

dP,

DI o\Ps — 6P

dt n S I

dP

TSI = —(A+68)Ps + (n—1)NPs — 2Ps; — Psg)Psi/Ps (1)
dP

S

dP,

TRI = —6Pgi + 6(P; — Ps — Pri) + (n — 1)APs; Psg/ Ps
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Reduction of SIRS models and pairwise closure approximation

Reduction of SIRS models,ctd

s ™ Lrpe—=¢

e v =o00: an SIRS model can be reduced to an SIS model.

ldPSRNO
v dt
1dPri
v dt
1dPgr
v odt
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Reduction of SIRS models and pairwise closure approximation

Reduction of SIRS models, ctd

Notice that
1 dPg,
v dt ’
which implies
1) 1) A
—1—|-*PR[—|—*P”—|- n—]_*PISREO. 3
( ,Y) 5 ( )7 (3)

If we assume that §, A\, n = O(1), in the limit v — oo, Pisg < Py
and (n — 1)A\/vPisg < Pgrs. Equation (3) yields

5
Pri ~ —Py. 4
RI 7// ()
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Reduction of SIRS models and pairwise closure approximation

Reduction of SIRS models, ctd

Hence we have

dP,
—— = nA\Pg; — 0P,
dt NAFs| !

dP
75’ ~ 6Py — (A+8)Ps; + X(n—1)(Pss; — Pisi).  (5)

In the context of the closure approximation,

dP,

—L = 6P+ AnP

dt | + AnFs;
dP 1—- P, —2Pg)P
70,:/ = 5P// — ()\ + (S)PS/ + )\(n — 1)( ! SI) SI.

1- P
(6)
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Reduction of SIRS models and pairwise closure approximation

PCA SIS models on n—regular graphs by Eames-Keeling

Recall that
dain _
i —o[I] + A[S/]
dLJStI] = N[SSI] + 0[] — A[SI] — A[ISI] — §[S]] (7)
They employed closure approximation
~ 1AB1(n — 1)1BE]
[ABC] ~ [AB]( 1) nB]’
to get
cht/“] = —0[l] + A\[S/] (8)
d[si] _ (n(N —[11) = 2[SI])[S/]
7—6[//]—()\+5)[SI]—(n—1))\ N =[]
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Reduction of SIRS models and pairwise closure approximation

PCA SIS models on n—regular graphs by Eames-Keeling

_ A [AB] _ _[ABC]
Let Py = N Pag = N and Pag = 1N’
@ Closure approximation
[BC]
[ABC] ~ [AB](n 1)n[B]
is equivalent to
Pec
P ~ P
ABC AB 5 Ps
@ (8) becomes
dP,
— = —0P; + AnP,
ar I+ AnFs;
dP 1— P —2Ps)P
dt 1—- P
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Sustained Oscilations in the PCA-SIRS model

Damped oscillations in PCA-SIRS model

(a) (b)

Figure: The time evolution of the fraction of infective population shows
the appearance of damped oscillations in PCA-SIRS model. Here
d=1,n=4.(a)A=25,7v=0.1.(b)A = 1.5, = 0.06.
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Sustained Oscilations in the PCA-SIRS model

Damped oscillations in PCA-SIRS model,ctd

In Figure (a), the damped oscillation converges to a non-trivial
fixed point, p , for which

(Ps, Py, Psy, Psr, Pri) = (0.32064,0.06176,0.006176,0.18583, 0.039252)

If we linearize the PCA-SIRS at this fixed point, the associate
Jacobian matrix J has five eigenvalues:

—A1 £ iw; = —0.060244 + /0.498571, — A\, = —0.654906 and
—A3 + w3z = —1.846917 £+ /0.521526.

Namely, J can be diagonalized into a matrix

—0.0605  0.4989 0 0 0
—0.4989 —0.0605 0 0 0
0 0 —0.6547 0 0
0 0 0 —1.8467 0.5214
0 0 0 —0.5214 —-1.8467
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Sustained Oscilations in the PCA-SIRS model

Damped oscillations in PCA-SIRS model,ctd

In Figure (b), the diagonalized Jacobian matrix is

—0.0156  0.2952 0 0 0
—0.2952 —0.0156 0 0 0
0 0 —-0.3240 0 0
0 0 0 —1.4227 0
0 0 0 0 —1.8299

In both examples, there is a principle component of the the
linearized PAC-SIRS, and its eigenvalues of the form —\ + jw and
has the property A < w.
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Sustained Oscilations in the PCA-SIRS model

Stochastic PCA-SIRS models

Employ Kurtz diffusion approximation [Kurtz, 1978]. For large population sizes,
each density-dependent process converges to a Gaussian diffusion processes.

dPs = (—nA\Pgj + ~(1 — Ps — P})) dt + oyr/~4(1 — Ps — P)dWy — oy/nPs dWs
dP; = (n\Psj — 6P) dt + oy (\/nAPS,dWQ — /5P, dW3)

dPs; = (YPri — (A + 8)Ps; + (n — 1)A(Ps — 2Ps; — Psg)Ps; /Ps) dt

+on (\/(" — 2)APsdWa + /~PridWy — V5P5/dW5>

oy <\/(n — 1)APsgPs; / PsdWg + \/2(n - 1)AP§,/P5dW7>

dPsg = (6Ps) + (1 — Ps — Pj — Pr; — 2Psg) — (n — 1)APs; Psg/Ps) dt

+on (\/6P5/dW5 +4/v(1 — Ps — P))dW; — \/'yPR/dW4>
—on (\/2'7PSRdW8 +4/(n— 1)>\P51P5R/Pde6>

dPry = (—(v + 8)Pr; + (P} — Ps; — Pry) + (n — 1)APg Psg/ Ps) dt

+on (\/JP,dW3 — \/6Pg dWs — /26Pg;dWy — \/'yPR,dW4)

+ ony/(n — 1)A\Pg Psg / PsdWs
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Sustained Oscilations in the PCA-SIRS model

Stochastic PCA-SIRS models, ctd
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(a) (b)

Figure: Sustained oscillation in the PCA-SIRS model. Here § = 1,n = 4.
(a)A =25,y =0.1.(b)A = 1.5,v = 0.06.
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Sustained Oscilations in the PCA-SIRS model

Stochastic PCA-SIRS models, ctd

Linearize the system at the fixed point.
dXt = AXtdt + Cth

In the example shown in Figure (a),
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Sustained Oscilations in the PCA-SIRS model

Stochastic PCA-SIRS models, ctd

In the example shown in Figure (b),

[ —0.0156  0.2952 0 0 0
—0.2952 —0.0156 0 0 0

A= 0 0 —-0.3240 0 0
0 0 0 —1.4227 0

0 0 0 0 —1.8299

and

0.0004 —0.0004 —0.0008 —0.0002 —0.0002
0.0006 —0.0008 —0.0023  0.0008 —0.0007
C = —0.0002 0.0003 0.0008 0.0003 0.0002
—0.0004 0.0001  0.0019 -0.0003  0.0010

0.0002 0.0002 —0.0012  0.0002 -—0.0010
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Sustained Oscilations in the PCA-SIRS model

Stochastic PCA-SIRS models, ctd

In general, consider a d—dimsional process
dXy = AXdt + C dW, (10)
where spectrum of A,
Spec(A) = {=A T wi, =\j £ wji, = Ak}j=12,...p, k=p+1,.,(d—1—p)

with min{/\, )\j, /\k,wj} > 0.
Let @ be A d x d matrix such that

[ A w 0 0 0
—w —A 0 0 0
i 0 0 A w 0
Q AQ_ 0 0 —Ww1 —)\1 0 (11)
L 0 0 0 0 -+ Ago1p) |
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Sustained Oscilations in the PCA-SIRS model

Stochastic PCA-SIRS models, ctd

Let
D = CC* = (djj)ij=1,..d, Do = (djj)ij=1,2
Q = (gi)ij=1,...d>» Qo = (qijj)i=1,...d j=1,2-
We define
K — trace(Dp)
2\

| cos(t) —sin(t)
Re = [ sin(t)  cos(t) ]
5 _ | R(t) 025 (d—2)
Re = [ O0g—2)x2 ld—2 ]
(kwt/ADD*kwt/A) = (VU(t))

dv; _
- = vil(t) = Vi
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Sustained Oscilations in the PCA-SIRS model

Stochastic PCA-SIRS models, ctd

Theorem (W. and Greenwood)

For each fixed T and x € Ry, as ||(¥(t))jill2 — 0, A\/A; — 0 for
I # 1, X; converges weakly to kQoR—_.,:Sxt where {S; : 0 <t < T}
is the 2-dimesional OU process generated by the SDE

dSt = —St dt a4 th (12)

with So = x
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Power spectrum

Power spectrum
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Figure: Power spectrum density function in the PCA-SIRS model.

AJw = 0.12. (a) exact powers spectrum vs. approximation (b) absolute
error
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Power spectrum

Power spectrum
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Figure: Power spectrum density function in the PCA-SIRS model.
A/w = 0.05 (a) exact powers spectrum vs. approximation (b) absolute
error
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Power spectrum

Sketch of the proof

The idea is to use stochastic averaging methods.

e Tightness is standard.

e Uses martingale problem approach. Uniqueness is shown by
finding a suitable perturbation for each test function.
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Power spectrum

Thanks!
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