
Amanda L. Traud and Katie Newhall



 Introduction

 Motivations

 Brief Introduction

 Network Data

 Models

 The Influence of Network Structure
 Simplifying Network Structure
 Theory for Average Cascade Size
 Simulations versus Theory



1. How does the network topology interact 
with pulse coupled dynamics on each node? 

• Two Axis Study:
• Different Point Neuron Models

• Different Network Topologies

2. Given Real World Data, how simplified can 
the network or the dynamics be and still 
qualitatively capture the original behavior?

• From Degree Correlation and Distribution down 
to Mean Degree



 Simplified Neuronal Networks
 Nodes, Edges
 Undirected, Unweighted

 Point Neuron Models
 Stochastic Current-Based Integrate-and-Fire
 Coarse Grain by Discretizing Voltage and Time

▪ Time
▪ Discrete Time
▪ Continuous time

▪ Voltage
▪ Single Bin ,Two States (Firing and Not Firing)
▪ Multiple Bins, Plus a Firing State



 Many Data Types

 Real World Network Data:

▪ C. elegans Neuronal Network(297 Nodes, Avg. Deg. ~14)

▪ Facebook Social Network(3068 Nodes, Avg. Deg. ~78)

 Manufactured Data: 

▪ Preferential Attachment Networks (PA)

▪ Watts and Strogatz Small World Networks (WS)

▪ K-Regular Ring (RI)

▪ Erdos Renyi Random Networks (ER)



 Integrate-and-Fire
▪ Continuous Voltage, Continuous Time
▪ Voltage is tracked using an ODE for each neuron
▪ Spiking Modeled with Reset Mechanism

 Multi-bin Continuous Time
▪ Continuous Time Markov Chain Model (CTMC)
▪ Q – Probability Transition Rate Matrix
▪ Spiking Modeled with Probability Transition Matrix, P(S)

 Multi-bin Discrete Time
▪ Discrete Time Markov Chain Model (DTMC)
▪ P – Probability Transition Matrix
▪ Spiking Modeled with Probability Transition Matrix
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• Keeping Joint 
Degree 
Distributions (rho) 
constant matches
model behavior*

• Keeping Degree 
Distribution (DD) 
constant matches 
model behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 
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 Assumption: Either one neuron fires or all 
neurons fire

 Calculate the probability that exactly one neuron 
fires
 We include the degree distribution by conditioning on 

the edges of the first neuron to fire
 We include the model dynamics by calculating the 

voltage distribution of the remaining neurons at the 
time the first neuron fires
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 We received similar results from all models
 Illustrated with 8-bin Discrete time model on 

multiple network data sets
 Solid Lines represent Theory
 Symbols represent Simulation data





Theory
I I I I I Simulation



2-core:  282 nodes, Avg. Deg. ~15 



Vassar                            
Network Subsets

2-core: 3034 Nodes, Avg. Deg ~79 
3-core: 3005 Nodes, Avg. Deg. ~79
4-core: 2990 Nodes, Avg. Deg. ~80
5-core: 2968 Nodes, Avg. Deg. ~80



 What else may cause the theory to fail?
 When is our all or nothing assumption violated?
 What network structures cause this failure?

 What other network property may be influencing this 
result?
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