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Motivations

How does the network topology interact
with pulse coupled dynamics on each node?
Two Axis Study:

Different Point Neuron Models
Different Network Topologies

Given Real World Data, how simplified can
the network or the dynamics be and still
qualitatively capture the original behavior?

From Degree Correlation and Distribution down
to Mean Degree



Brief Introduction

Simplified Neuronal Networks
Nodes, Edges

Undirected, Unweighted
Point Neuron Models

Stochastic Current-Based Integrate-and-Fire

Coarse Grain by Discretizing Voltage and Time
Time
Discrete Time
Continuous time
Voltage
Single Bin ,Two States (Firing and Not Firing)
Multiple Bins, Plus a Firing State



Network Data Under Consideration

Many Data Types

Real World Network Data:

C. elegans Neuronal Network(297 Nodes, Avg. Deg. ~14)
Facebook Social Network(3068 Nodes, Avg. Deg. ~78)

Manufactured Data:
Preferential Attachment Networks (PA)
Watts and Strogatz Small World Networks (WS)
K-Regular Ring (RI)
Erdos Renyi Random Networks (ER)



Integrate-and-Fire
Continuous Voltage, Continuous Time
Voltage is tracked using an ODE for each neuron
Spiking Modeled with Reset Mechanism

Multi-bin Continuous Time

Continuous Time Markov Chain Model (CTMCQ)
Q - Probability Transition Rate Matrix
Spiking Modeled with Probability Transition Matrix, P®

Multi-bin Discrete Time
Discrete Time Markov Chain Model (DTMCQ)
P — Probability Transition Matrix P = g%
Spiking Modeled with Probability Transition Matrix
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Multiple Networks, Same Model
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Multiple Networks, Same Model
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Three Models on Preferential
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*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter,
P.J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1430.
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Average Cascade Size Theory

Assumption: Either one neuron fires or all
neurons fire

Calculate the probability that exactly one neuron
fires

We include the degree distribution by conditioning on
the edges of the first neuron to fire

We include the model dynamics by calculating the
voltage distribution of the remaining neurons at the
time the first neuron fires
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Simulations Versus Theory Results

We received similar results from all models
lllustrated with 8-bin Discrete time model on
multiple network data sets

Solid Lines represent Theory

Symbols represent Simulation data



Manufactured Networks — PA, WS
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C. elegans Two-Core
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Other Theory Explorations
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Future Directions

What else may cause the theory to fail?
When is our all or nothing assumption violated?

What network structures cause this failure?

What other network property may be influencing this
result?
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