

Amanda L. Traud and Katie Newhall

Network Topology Effects on Cascade-Induced Synchrony in Stochastic Dynamical Systems

Outline

- Introduction
 - Motivations
 - Brief Introduction
 - Network Data
 - Models
- The Influence of Network Structure
- Simplifying Network Structure
- Theory for Average Cascade Size
- Simulations versus Theory

Motivations

- How does the network topology interact with pulse coupled dynamics on each node?
 - Two Axis Study:
 - Different Point Neuron Models
 - Different Network Topologies
- 2. Given Real World Data, how simplified can the network or the dynamics be and still qualitatively capture the original behavior?
 - From Degree Correlation and Distribution down to Mean Degree

Brief Introduction

Simplified Neuronal Networks

- Nodes, Edges
- Undirected, Unweighted
- Point Neuron Models
 - Stochastic Current-Based Integrate-and-Fire
 - Coarse Grain by Discretizing Voltage and Time
 - Time
 - Discrete Time
 - Continuous time
 - Voltage
 - Single Bin ,Two States (Firing and Not Firing)
 - Multiple Bins, Plus a Firing State

Network Data Under Consideration

- Many Data Types
 - Real World Network Data:
 - C. elegans Neuronal Network(297 Nodes, Avg. Deg. ~14)
 - Facebook Social Network(3068 Nodes, Avg. Deg. ~78)
 - Manufactured Data:
 - Preferential Attachment Networks (PA)
 - Watts and Strogatz Small World Networks (WS)
 - K-Regular Ring (RI)
 - Erdos Renyi Random Networks (ER)

Models

- Integrate-and-Fire
 - Continuous Voltage, Continuous Time
 - Voltage is tracked using an ODE for each neuron
 - Spiking Modeled with Reset Mechanism
- Multi-bin Continuous Time
 - Continuous Time Markov Chain Model (CTMC)
 - Q Probability Transition Rate Matrix
 - Spiking Modeled with Probability Transition Matrix, P^(S)
- Multi-bin Discrete Time
 - Discrete Time Markov Chain Model (DTMC)
 - P Probability Transition Matrix $P = e^{Q\Delta t}$
 - Spiking Modeled with Probability Transition Matrix

Outline

- Introduction
 - Brief Introduction
 - Network Data
 - Models

The Influence of Network Structure

- Simplifying Network Structure
- Theory for Average Cascade Size
- Simulations versus Theory

Multiple Networks, Same Model

- Ring, Watts Strogatz and Preferential Attachment Networks Match Average Degree and Number of Nodes
- Real World C. elegans
 Data Behaves Differently

Multiple Networks, Same Model

- Ring, Watts Strogatz and Preferential Attachment Networks Match Average Degree and Number of Nodes
- Real World C. elegans
 Data Behaves
 Differently

Multiple Networks, Same Model

- Ring, Watts Strogatz and Preferential Attachment Networks Match Average Degree and Number of Nodes
- Real World C. elegans
 Data Behaves
 Differently

Outline

- Introduction
 - Brief Introduction
 - Network Data
 - Models
- The Influence of Network Structure
- Simplifying Network Structure
- Theory for Average Cascade Size
- Simulations versus Theory

Three Models on Preferential Attachment

- Keeping Joint
 Degree
 Distributions (rho)
 constant matches
 model behavior*
- Keeping Degree Distribution (DD) constant matches model behavior

Three Models on Preferential Attachment

- Keeping Joint
 Degree
 Distributions (rho)
 constant matches
 model behavior*
- Keeping Degree Distribution (DD) constant matches model behavior

*<u>The unreasonable effectiveness of tree-based theory for networks with clustering</u>, S. Melnik, A. Hackett, M. A. Porter, P. J. Mucha and J. P. Gleeson, *submitted*, <u>arXiv:1001.1439</u>.

Three Models on Preferential Attachment

- Keeping Joint
 Degree
 Distributions (rho)
 constant matches
 model behavior*
- Keeping Degree
 Distribution (DD)
 constant matches
 model behavior

Three Models on Watts Strogatz

- Keeping Joint
 Degree
 Distributions (rho)
 Constant Matches
 Model Behavior*
- Keeping Just Degree Distribution (DD) Constant Matches Model Behavior

Three Models on Watts Strogatz

- Keeping Joint
 Degree
 Distributions (rho)
 Constant Matches
 Model Behavior*
- Keeping Just Degree Distribution (DD) Constant Matches Model Behavior

Three Models on Watts Strogatz

- Keeping Joint
 Degree
 Distributions (rho)
 Constant Matches
 Model Behavior*
- Keeping Just
 Degree
 Distribution (DD)
 Constant Matches
 Model Behavior

Three Models on C. elegans

- Keeping Joint
 Degree
 Distributions (rho)
 Constant Matches
 Model Behavior*
- Keeping Just
 Degree
 Distribution (DD)
 Constant Matches
 Model Behavior

Three Models on C. elegans

- Keeping Joint
 Degree
 Distributions (rho)
 Constant Matches
 Model Behavior*
- Keeping Just
 Degree
 Distribution (DD)
 Constant Matches
 Model Behavior

Three Models on C. elegans

- Keeping Joint
 Degree
 Distributions (rho)
 Constant Matches
 Model Behavior*
- Keeping Just
 Degree
 Distribution (DD)
 Constant Matches
 Model Behavior

Outline

- Introduction
 - Brief Introduction
 - Network Data
 - Models
- The Influence of Network Structure
- Simplifying Network Structure
- Theory for Average Cascade Size
- Simulations versus Theory

Average Cascade Size Theory

- Assumption: Either one neuron fires or all neurons fire
- Calculate the probability that exactly one neuron fires
 - We include the degree distribution by conditioning on the edges of the first neuron to fire
 - We include the model dynamics by calculating the voltage distribution of the remaining neurons at the time the first neuron fires

Outline

- Introduction
 - Brief Introduction
 - Network Data
 - Models
- The Influence of Network Structure
- Simplifying Network Structure
- Theory for Average Cascade Size
- Simulations versus Theory

Simulations Versus Theory Results

- We received similar results from all models
- Illustrated with 8-bin Discrete time model on multiple network data sets
- Solid Lines represent Theory
- Symbols represent Simulation data

Manufactured Networks – PA, WS

C. elegans

C. elegans Two-Core

Other Theory Explorations

Future Directions

- What else may cause the theory to fail?
 - When is our all or nothing assumption violated?
 - What network structures cause this failure?
- What other network property may be influencing this result?
- Acknowledgements:
 - Advisors: Dr. Peter J. Mucha at University of North Carolina at Chapel Hill, Dr. Peter R. Kramer at Rensselaer Polytechnic Institute
 - SAMSI Stochastic Dynamics on Networks Discussion Group
 - National Science Foundation for Funding