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1. How does the network topology interact 
with pulse coupled dynamics on each node? 

• Two Axis Study:
• Different Point Neuron Models

• Different Network Topologies

2. Given Real World Data, how simplified can 
the network or the dynamics be and still 
qualitatively capture the original behavior?

• From Degree Correlation and Distribution down 
to Mean Degree



 Simplified Neuronal Networks
 Nodes, Edges
 Undirected, Unweighted

 Point Neuron Models
 Stochastic Current-Based Integrate-and-Fire
 Coarse Grain by Discretizing Voltage and Time

▪ Time
▪ Discrete Time
▪ Continuous time

▪ Voltage
▪ Single Bin ,Two States (Firing and Not Firing)
▪ Multiple Bins, Plus a Firing State



 Many Data Types

 Real World Network Data:

▪ C. elegans Neuronal Network(297 Nodes, Avg. Deg. ~14)

▪ Facebook Social Network(3068 Nodes, Avg. Deg. ~78)

 Manufactured Data: 

▪ Preferential Attachment Networks (PA)

▪ Watts and Strogatz Small World Networks (WS)

▪ K-Regular Ring (RI)

▪ Erdos Renyi Random Networks (ER)



 Integrate-and-Fire
▪ Continuous Voltage, Continuous Time
▪ Voltage is tracked using an ODE for each neuron
▪ Spiking Modeled with Reset Mechanism

 Multi-bin Continuous Time
▪ Continuous Time Markov Chain Model (CTMC)
▪ Q – Probability Transition Rate Matrix
▪ Spiking Modeled with Probability Transition Matrix, P(S)

 Multi-bin Discrete Time
▪ Discrete Time Markov Chain Model (DTMC)
▪ P – Probability Transition Matrix
▪ Spiking Modeled with Probability Transition Matrix

tQeP 
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• Keeping Joint 
Degree 
Distributions (rho) 
constant matches
model behavior*

• Keeping Degree 
Distribution (DD) 
constant matches 
model behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 

http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://arxiv.org/abs/1001.1439


• Keeping Joint 
Degree 
Distributions (rho) 
constant matches
model behavior*

• Keeping Degree 
Distribution (DD) 
constant matches 
model behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 

http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://arxiv.org/abs/1001.1439


• Keeping Joint 
Degree 
Distributions (rho) 
constant matches
model behavior*

• Keeping Degree 
Distribution (DD) 
constant matches 
model behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 

http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://arxiv.org/abs/1001.1439


• Keeping Joint 
Degree 
Distributions (rho) 
Constant Matches
Model Behavior*

• Keeping Just 
Degree Distribution 
(DD) Constant 
Matches Model 
Behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 

http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://arxiv.org/abs/1001.1439


• Keeping Joint 
Degree 
Distributions (rho) 
Constant Matches
Model Behavior*

• Keeping Just 
Degree 
Distribution (DD) 
Constant Matches 
Model Behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 

http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://arxiv.org/abs/1001.1439


• Keeping Joint 
Degree 
Distributions (rho) 
Constant Matches
Model Behavior*

• Keeping Just 
Degree 
Distribution (DD) 
Constant Matches 
Model Behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 

http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://arxiv.org/abs/1001.1439


• Keeping Joint 
Degree 
Distributions (rho) 
Constant Matches
Model Behavior*

• Keeping Just 
Degree 
Distribution (DD) 
Constant Matches 
Model Behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 

http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://arxiv.org/abs/1001.1439


• Keeping Joint 
Degree 
Distributions (rho) 
Constant Matches
Model Behavior*

• Keeping Just 
Degree 
Distribution (DD) 
Constant Matches 
Model Behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 

http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://arxiv.org/abs/1001.1439


• Keeping Joint 
Degree 
Distributions (rho) 
Constant Matches
Model Behavior*

• Keeping Just 
Degree 
Distribution (DD) 
Constant Matches 
Model Behavior

*The unreasonable effectiveness of tree-based theory for networks with clustering, S. Melnik, A. Hackett, M. A. Porter, 
P. J. Mucha and J. P. Gleeson, submitted, arXiv:1001.1439. 

http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://www.amath.unc.edu/Faculty/mucha/Reprints/treebased.pdf
http://arxiv.org/abs/1001.1439


 Introduction

 Brief Introduction

 Network Data

 Models

 The Influence of Network Structure
 Simplifying Network Structure
 Theory for Average Cascade Size
 Simulations versus Theory



 Assumption: Either one neuron fires or all 
neurons fire

 Calculate the probability that exactly one neuron 
fires
 We include the degree distribution by conditioning on 

the edges of the first neuron to fire
 We include the model dynamics by calculating the 

voltage distribution of the remaining neurons at the 
time the first neuron fires
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 We received similar results from all models
 Illustrated with 8-bin Discrete time model on 

multiple network data sets
 Solid Lines represent Theory
 Symbols represent Simulation data





Theory
I I I I I Simulation



2-core:  282 nodes, Avg. Deg. ~15 



Vassar                            
Network Subsets

2-core: 3034 Nodes, Avg. Deg ~79 
3-core: 3005 Nodes, Avg. Deg. ~79
4-core: 2990 Nodes, Avg. Deg. ~80
5-core: 2968 Nodes, Avg. Deg. ~80



 What else may cause the theory to fail?
 When is our all or nothing assumption violated?
 What network structures cause this failure?

 What other network property may be influencing this 
result?
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