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Abstract

Suppose observations are available on two variables Y and X and interest is on a parameter
that is present in the marginal distribution of Y but not in the marginal distribution of X,
and with X and Y dependent and possibly in the presence of other parameters which are
nuisance. Could one gain more efficiency in the point estimation (also, in hypothesis testing
and interval estimation) about the parameter of interest by using the full data (both Y and X
values) instead of just the Y values? Also, how should one measure the information provided
by random observables or their distributions about the parameter of interest?
We illustrate these issues using a simple bivariate normal distribution model. The ideas

could have important implications in the context of multiple hypothesis testing or simultaneous
estimation arising in the analysis of microarray data, or in the analysis of event time data
especially those dealing with recurrent event data. It is also hoped that this note could be
used for pedagogical purposes especially in the teaching of mathematical statistics concepts
such as completeness, sufficiency, unbiased estimation, dependence, marginalization, efficiency,
statistical (Fisher) information, correlation, and regression.

Key Words and Phrases: Completeness; correlation; Cramer-Rao Inequality; Fisher information;
dependence; efficiency; marginal inference; regression; residual information; sufficiency; unbiased
estimation.

1 Setting and Motivation

Consider a situation where observations are available on two random variables, V and W , which

are possibly dependent, and it is of interest to make inference about a parameter vector θ which is

present in the marginal distribution of V , but not in the marginal distribution of W . Furthermore,

there could be a nuisance parameter vector ξ appearing in the joint distribution of (V,W ). In

making inference about θ, should one use the V observations only, or does one gain more efficiency by

also utilizing the W observations? We examine this situation using a bivariate normal distribution

model.
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Let (Yi, Xi), i = 1, 2, . . . , n, be independent and identically distributed (IID) random vectors

from a bivariate normal distribution with mean vector (µ, ν) and covariance matrix

Σ =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

,

so that the common joint density function of the (Yi, Xi)s is of form

f(Y,X)(y, x|µ, ν, σ2
1, σ

2
2, ρ) =

1

2πσ1σ2

√

1− ρ2
exp

{

−Q(x, y|µ, ν, σ2
1, σ

2
2, ρ)

}

with

Q(x, y|µ, ν, σ2
1, σ

2
2, ρ) =

1

2(1− ρ2)

[

(

y − µ

σ1

)2

− 2ρ

(

y − µ

σ1

)(

x− ν

σ2

)

+

(

x− ν

σ2

)2
]

.

The value of the parameter ν ∈ < is assumed known, and without loss of generality it could be

taken to be ν = ν0 = 0, while µ ∈ < is unknown and is the parameter of interest. The parameters

in the covariance matrix Σ are σ1 > 0, the standard deviation of the Yis; σ2 > 0, the standard

deviation of the Xis; and ρ ∈ (−1, 1), the correlation coefficient between Yi and Xi.

Suppose it is of interest to estimate µ, or equivalently, test hypothesis or construct confidence

intervals about µ, with the other parameters viewed as nuisance. A simplistic approach is to reason

out that since µ is the mean of the Yis and the marginal distributions of the Xis do not at all involve

µ, then inference about µ should only be based on the Yis. Indeed, since marginally Yi, i = 1, . . . , n,

are IID N(µ, σ2
1), then an estimator of µ is the usual sample mean

δ1 = Ȳ =
1

n

n
∑

i=1

Yi, (1)

which is unbiased for µ and has variance Var(δ1) = σ2
1/n. In fact, recall that in the case where ν is

not known, the uniformly minimum variance unbiased estimator (UMVUE) of µ is Ȳ by invoking

the Lehmann-Scheffe Theorem (cf., Casella and Berger (1990)). On the other hand, it begs to reason

that if the correlation coefficient ρ is not equal to zero, then the Xis should also contain information

about µ, even if the marginal distributions of the Xis do not depend on µ, and consequently that

perhaps one could improve on the estimator δ1 when ν is known, by utilizing both the Yis and Xis.

In this note we shall examine this issue under two cases: (i) the parameters in Σ are all known;

and (ii) the parameters in Σ are all unknown.
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The motivation behind this note is borne out by considering methods used in multiple testing

arising in the analysis of microarray data (cf., Dudoit and van der Laan (2008)) and also in marginal

modeling approaches in event time analysis (cf., Therneau and Grambsch (2000)). The situation

is also relevant in matched-pair studies, e.g., in twin studies, where the observable variables are

correlated and of interest is a parameter in the marginal distribution of the variable observed in the

first member but not in the marginal distribution of the variable observed in the second member

of each pair. The situation in the analysis of microarray data is that you will have M genes and

for each gene you will have sample data. The random observables for these genes need not be

independent especially for those genes that are important. One is usually interested in testing M

pairs of hypotheses associated with each of the genes, or estimating parameters for each of the

genes. Many existing procedures for doing the multiple testing or the simultaneous estimation of

parameters possess the characteristic that the procedure for the mth gene only utilizes data for the

mth gene and not from the other genes. This leads to the question on whether these procedures are

inefficient. In the area of event time analysis, especially those dealing with recurrent events, a typical

approach is to specify marginal models for each of the event position occurrences, and perform the

analysis based on the associated marginal data. In such settings, there is usually a strong type of

dependence among the observables, possibly arising from the data accrual scheme, and consequently

the question arises on whether there is loss in efficiency by utilizing marginal modeling and inference

procedures. Thus, we hope that by considering in this note a very simple structure using Gaussian

distributions, we will be able to highlight some of the consequences of marginalization in performing

inference. It is our belief that this is a more profound issue permeating many areas more complicated

than the simple setting considered in this note.

2 Σ Parameters Known

Let us first consider the situation when σ1, σ2, and ρ are all known, and recall that we have set

ν = ν0 = 0, else just consider subtracting ν0 from each of the Xis. Let β = ρσ1/σ2 be the regression

coefficient. Then it is easy to see by applying the exponential family theorem regarding complete
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sufficient statistics (cf., Casella and Berger (1990)) that a complete sufficient statistic for µ is

S ≡ S(X,Y) = Ȳ − βX̄ (2)

where X̄ =
∑n

i=1Xi/n. Since S is unbiased for µ, then in fact, by Lehmann-Scheffe Theorem (cf.,

Casella and Berger (1990)), the estimator given by

δ2 = S = Ȳ − βX̄ (3)

is the UMVUE of µ. Its variance is easily obtained to be Var(δ2) = σ2
1(1 − ρ2)/n. Consequently,

since both δ1 and δ2 are unbiased for µ, the efficiency of δ2 relative to δ1 could be measured by the

variance ratio. This is given by

Eff(δ2 : δ1) =
1

1− ρ2
. (4)

Observe that δ2 is always more efficient than δ1 when ρ 6= 0, so that one gains by also utilizing

the Xi-values aside from the Yi-values, with the efficiency increasing as the degree of dependence

between Y and X increases.

3 Σ Parameters Unknown

The results in Section 2 are hardly surprising, except for the fact perhaps that the estimator utilizing

the full data could considerably be more efficient than the estimator using only the variable that

is directly related to the parameter of interest from a marginal distribution perspective. In this

section we now consider the more interesting situation where there are nuisance parameters, which

are the parameters of the covariance matrix Σ. In this setting, S in (2) is not anymore a statistic,

hence δ2 is not an estimator, though clearly δ1 is still an unbiased estimator of µ. An obvious idea

is to obtain an estimator of the regression coefficient β, say β̂, and then to plug-in this estimator

for β in (3) to generate an estimator for µ. To implement this idea, we consider the usual estimator

of β (cf., Casella and Berger (1990); Neter, Kutner, Nachtsheim, and Wasserman (1996)) given by

β̂ =

∑n
i=1(Yi − Ȳ )(Xi − X̄)
∑n

i=1(Xi − X̄)2
. (5)
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Our estimator of µ in this setting will be

δ3 = Ȳ − β̂X̄. (6)

By utilizing the Factorization theorem and/or the exponential family theorem, it is straightforward

to see that a minimal sufficient statistic for the parameter (µ, σ2
1, σ

2
2, ρ) is given by

S∗(Y,X) =

(

n
∑

i=1

Yi,
n
∑

i=1

Y 2
i ,

n
∑

i=1

Xi,
n
∑

i=1

X2
i ,

n
∑

i=1

YiXi

)

. (7)

Note that β̂ is a function of S∗. However, observe as a consequence of Theorem 1 below that S∗ is

not a complete sufficient statistic. Because of the unbiasedness of both δ1 and δ3, the function of

S∗ given by g(S∗) = δ1 − δ3 = β̂X̄, has expectation zero whatever the parameter value, but it is

not identically zero. Thus, we cannot utilize the Lehmann-Scheffe Theorem to claim that δ3 is the

UMVUE of µ; in fact, from the efficiency result of Theorem 1, it does not actually dominate δ1,

so that it could not be the UMVUE of µ, though it is a function of the minimal sufficient statistic

and is unbiased.

We now present results pertaining to the unbiasedness of δ3 for µ and an efficiency result for δ3

relative to δ1.

Theorem 1 The estimator δ3 is unbiased for µ, and if n > 3, then

Eff(δ3 : δ1) =

(

1

1− ρ2

)(

n− 3

n− 2

)

,

so that δ3 = Ȳ − β̂X̄ is more efficient than δ1 = Ȳ iff |ρ| > 1/
√
n− 2.

Before proving this result, observe that in contrast to the case with Σ known wherein δ2 uni-

formly dominates δ1, in this setting with Σ unknown, δ3 does not anymore uniformly dominate δ1.

In fact, δ1 = Ȳ is a better estimator than δ3 = Ȳ − β̂X̄ in a neighborhood of ρ at zero, though

this is a shrinking neighborhood as n increases. This also shows that neither δ1 nor δ3 can be a

UMVUE for µ in this situation with Σ unknown. The loss of efficiency incurred by δ3 relative to

δ2 is the price one pays by the need to estimate the nuisance parameters. Interestingly, the results

in Theorem 1 are invariant with respect to the values of the variances σ2
1 and σ2

2. We now prove

the theorem.
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Proof of Theorem 1: The distributional model for (Yi, Xi), i = 1, 2, . . . , n, is equivalent to having

X1, . . . , Xn IID from N(0, σ2
2), letting Z1, . . . , Zn be IID from N(0, 1) and independent of the Xis,

and then defining the Yis according to

Yi = µ+ βXi + σ1

√

1− ρ2Zi, i = 1, 2, . . . , n. (8)

With Z̄ =
∑n

i=1 Zi/n, then Ȳ = µ+ βX̄ + σ1

√

1− ρ2Z̄, so that for i = 1, 2, . . . , n,

Yi − Ȳ = β(Xi − X̄) + σ1

√

1− ρ2(Zi − Z̄)

(Xi − X̄)(Yi − Ȳ ) = β(Xi − X̄)2 + σ1

√

1− ρ2(Zi − Z̄)(Xi − X̄).

For i = 1, 2, . . . , n, let

ci = ci(X1, . . . , Xn) =
Xi − X̄

∑n
j=1(Xj − X̄)2

. (9)

Then, it follows from the above expressions that β̂ = β + σ1

√

1− ρ2
∑n

i=1 ci(X)(Zi − Z̄), and

δ3 = µ+ σ1

√

1− ρ2

[

Z̄ − X̄
n
∑

i=1

ci(X)(Zi − Z̄)

]

. (10)

By conditioning on X, then using the independence between X and Z, and the fact that the Zis

have zero means, it follows immediately from (10) that E(δ3|X) = µ, and the unbiasedness of δ3

for µ follows.

By the iterated variance rule (cf., Casella and Berger (1990)), and since Var[E(δ3|X)] = 0, then

Var(δ3) = E[Var(δ3|X)]. But, from the representation of δ3 in (10),

Var(δ3|X) = σ2
1(1− ρ2)

{

Var(Z̄|X) + X̄2Var

[

n
∑

i=1

ci(Zi − Z̄)|X
]

−

2X̄Cov

[

Z̄,
n
∑

i=1

ci(Zi − Z̄)|X
]}

.

Normal distributional theory (cf., Casella and Berger (1990)) now yields that Var(Z̄|X) = 1/n

and the independence between Z̄ and the vector (Zi − Z̄, i = 1, 2, . . . , n), so that the covariance

term above becomes zero. Furthermore, it is easy to see that Var(Zi − Z̄) = (n− 1)/n and

Cov(Zi − Z̄, Zj − Z̄) = −1/n, (i 6= j). Since

n
∑

i=1

ci(X) = 0 and
n
∑

i=1

ci(X)2 =
1

∑n
i=1(Xi − X̄)2

,
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then

Var

[

n
∑

i=1

ci(Zi − Z̄)|X
]

=
n− 1

n

n
∑

i=1

c2i −
1

n

∑

i6=j

cicj

=
n
∑

i=1

c2i −
1

n

(

n
∑

i=1

ci

)2

=
1

∑n
i=1(Xi − X̄)2

.

Consequently,

Var(δ3|X) = σ2
1(1− ρ2)

[

1

n
+

X̄2

∑n
i=1(Xi − X̄)2

]

. (11)

Note that the conditional variance expression in (11) is actually directly obtainable by simply

recalling the variance of the estimator of the intercept term in the simple linear regression model

with Gaussian errors and fixed regressors (cf., Casella and Berger (1990); Neter et al. (1996)).

In this simple linear regression model, the error variance is σ2
1(1 − ρ2), which is the conditional

variance of Y , given X = x, in the bivariate normal model. This simple linear regression structure

is contained in the representation of the Yis given in (8).

By normal distribution theory (cf., Casella and Berger (1990)), X̄ and
∑n

i=1(Xi − X̄)2 are

independent. Furthermore,

1

σ2
2

n
∑

i=1

(Xi − X̄)2 ∼ χ2
n−1,

where χ2
k represents a central chi-square distribution with k degrees-of-freedom. Also, it is easy to

check that E(1/χ2
n−1) = 1/(n− 3) provided n > 3. Since E(X̄2) = Var(X̄) = σ2

2/n, then by taking

expectation of the expression in (11) with respect to X, we obtain

Var(δ3) =
σ2

1(1− ρ2)

n

(

1 +
1

n− 3

)

= Var(δ1)(1− ρ2)

(

n− 2

n− 3

)

. (12)

The efficiency results in the theorem follow from the above expression. ‖

4 An Information Viewpoint

The results in the preceding sections prompt the question on the quantification of information

content about parameters contained in random observables or their distributions. In the model

considered, we could for instance ask about the information about µ that is contained in the

random vector (Y,X), or that which is contained in the marginal random variables Y or X. It is
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actually more precise to talk about the information about µ contained in the joint distribution of

(X,Y ) or from the marginal distributions of X or Y , though the terminology using the random

variables leads to a simpler notation below. We have already observed that since the marginal

distribution of X is independent of µ, then X by itself could not contain information about µ, but

in conjunction with Y , that it does contain information about µ. We may therefore ask how much

information is added to that already contained in Y by also using X.

Recall that statistical information about a parameter could be quantified by the Fisher infor-

mation (cf., Casella and Berger (1990)). For a random vector V with joint density function fV(v|θ)

where the parameter θ ∈ Θ, under certain regularity conditions, the Fisher information matrix for

θ contained in the distribution of V is defined by

IV(θ) = CovV|θ [∇θ log fV(V|θ)] = −EV|θ

[

∇
θ
t∇θ log fV(V|θ)

]

(13)

where ∇θ = ∂/∂θ. The subscript V in IV(·) is to indicate that information is with respect to

the distribution of V. Using such a notation, we may for instance then have IV2|V1
(θ) as the

information about θ contained in the conditional distribution of V2, given V1. Note that IV2|V1
(θ)

will depend on θ as well as on V1. We define the residual Fisher information about θ contained in

(V1,V2), but not in V1, via

I(V1,V2)\V1
(θ) ≡ I(V1,V2)(θ)− IV1

(θ). (14)

However, since by the multiplication rule, f(V1,V2)(v1,v2|θ) = fV1
(v1|θ)fV2|V1

(v2|v1; θ), then we

have the identity

I(V1,V2)(θ) = IV1
(θ) + EV1

{IV2|V1
(θ)}.

Thus, we obtain the identity relating residual information and conditional information given by

I(V1,V2)\V1
(θ) = EV1

{IV2|V1
(θ)}. (15)

Going back now to the bivariate normal setting considered in this note and just by focusing

on one observation (n = 1), we easily obtain, by applying the formula in (13), the following
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Fisher informations about µ based on the different random observables or more precisely their

distributions:

I(Y,X)(µ) =
1

σ2
1(1− ρ2)

; IY (µ) =
1

σ2
1

; and IX(µ) = 0. (16)

Assuming that the nuisance parameters are known, by invoking the Cramer-Rao Inequality (cf.,

Casella and Berger (1990)), we obtain that any unbiased estimator of µ which depends on (Yi, Xi), i =

1, 2, . . . , n, will have a variance that is at least equal to

CRLB(µ) =
1

nI(Y,X)(µ)
=
σ2

1(1− ρ2)

n
. (17)

Since δ2 achieves this lower bound, this also verifies that δ2 is the UMVUE of µ. It actually turns

out that even when the nuisance parameters are not known, the lower bound for the variance of

unbiased estimators of µ is still (17), a consequence of the parameter orthogonality of µ and Σ.

However, in this situation this lower bound is not achievable, which can be seen by appealing to the

necessary and sufficient condition for the Cramer-Rao lower bound to be achieved in exponential

families (cf., Casella and Berger (1990)). Note in particular that the variance of δ3, given in (12),

exceeds the lower bound in (17), whereas when ρ 6= 0, the variance of δ1 also exceeds this lower

bound. These observations, together with the earlier comment that neither δ1 nor δ3 could be the

UMVUE of µ, lead to the question on whether there actually exists a UMVUE for µ when Σ is

unknown, a setting where the minimal sufficient statistic is not complete. Note that neither the

Rao-Blackwell Theorem and Lehmann-Scheffe Theorem nor the Cramer-Rao Variance Inequality

Theorem is applicable in deciding UMVUEness. Since it is an interesting exercise for students to

argue that no such UMVUE exists for µ when Σ is unknown, we leave the proof of this non-existence

to the reader and simply offer the hint: consider sub-models!

From (16), we also obtain that the residual Fisher information about µ contained in (Y,X), but

not in Y , is

I(Y,X)\Y (µ) ≡ I(Y,X)(µ)− IY (µ) =
1

σ2
1(1− ρ2)

− 1

σ2
1

=
1

σ2
1

ρ2

1− ρ2
. (18)

This could be viewed as the additional information about µ that could be attributed to X alone

when (Y,X) are jointly observable. Note that this equals zero when ρ = 0, that is, when X and Y
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are independent. Also, observe that I(Y,X)\Y (µ)/I(Y,X)(µ) = ρ2. The quantity ρ2 is usually called

the coefficient of determination.

Since the conditional distribution of X, given Y = y, is

X|Y = y ∼ N

(

ρ
σ2

σ1
(y − µ), σ2

2(1− ρ2)

)

,

then applying (13) to this conditional distribution, we find that

IX|Y =y(µ) =
1

σ2
1

ρ2

1− ρ2
,

which is independent of the value y of the conditioning variable Y . Thus, in this bivariate normal

setting,

I(Y,X)\Y (µ) = EY {IX|Y (µ)} = IX|Y (µ). (19)

Observe that the conditional distribution of X, given Y = y, does depend on the value y, but the

conditional Fisher information IX|Y =y(µ) does not depend on y, and this is a consequence of the

homoscedastic property of the bivariate normal distribution, which is that the conditional variance

is invariant with respect to the conditioning value. We point out that the second equality in (19),

and also that in (20) below, need not hold for other distributions since the conditional Fisher

information may depend on the conditioning variable. This will be the case for instance with the

trinomial distribution. In such cases the general formula in (15) provides the proper identity, that

is, there is a need to take the expectation with respect to the conditioning variable of the conditional

Fisher information to get the residual Fisher information.

In a similar vein, but to point out the asymmetric nature in the setting considered, since

IX(µ) = 0, we have that

I(Y,X)\X(µ) = I(Y,X)(µ)− IX(µ) = I(Y,X)(µ) =
1

σ2
1(1− ρ2)

.

This indicates that the additional information about µ provided by Y alone when (Y,X) are jointly

observable is in fact the total information available in (Y,X). This certainly is consistent with

the fact that, marginally, X has no information about µ. Also, in contrast to the earlier result
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where I(Y,X)\Y (µ)/I(Y,X)(µ) was equal to the coefficient of determination, note in this case that

I(Y,X)\X(µ)/I(Y,X)(µ) = 1, so there is an asymmetry in these two results.

The conditional distribution of Y, given X = x, is

Y |X = x ∼ N

(

µ+ ρ
σ1

σ2
x, σ2

1(1− ρ2)

)

,

which we note depends on x. Applying the Fisher information formula, we obtain

IY |X=x(µ) =
1

σ2
1(1− ρ2)

,

which does not depend on the value x of the conditioning variable X. Therefore, in this bivariate

normal setting,

I(Y,X)\X(µ) = EX{IY |X(µ)} = IY |X(µ). (20)

5 Extensions

We conclude this note by pointing out several extensions. First, we point out that since ν is assumed

known (ν = ν0 = 0), instead of utilizing the estimator β̂, we could have used the estimator given

by

β̃ =

∑n
i=1(Yi − Ȳ )Xi
∑n

i=1X
2
i

. (21)

However, the resulting plug-in estimator of µ given by δ4 = Ȳ − β̃X̄ is biased, and it turns out that

it is harder to deal with analytically compared to δ3, that is, in the context of obtaining closed-form

expressions. However, we intuitively surmise that with respect to mean-squared error, δ4 will tend

to be better than δ3. We also expect that with respect to mean-squared error, δ4 will tend to be

better than δ1 outside a small neighborhood of zero in ρ-space.

The result in Theorem 1 indicates that δ1 = Ȳ tends to be better than δ3 when ρ is close to

zero. An idea therefore is to perform a hypothesis test of H0 : ρ = 0 versus H1 : ρ 6= 0 using for

instance Fisher’s z-test for correlation (cf., Neter et al. (1996)). An adaptive estimator will then use

δ1 if the test leads to non-rejection of H0, whereas if H0 is rejected, then δ3 is used. This resulting

adaptive estimator is called a preliminary test estimator (see, for instance, the monograph by Saleh

(2006)), which will be a biased estimator. In constructing such an estimator, there is the important
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and non-trivial problem of deciding on the appropriate size or level of significance to use in the test

of H0 versus H1. As also suggested by J. Tebbs, an interesting exercise for students would be to

perform a computer simulation of the properties of such an adaptive estimator, as well as those of

δ4, and to compare them with δ1 and δ3.

Finally, we have dealt here with the bivariate normal setting to make things as simple as possible.

It is clear that the results could be generalized to the multivariate setting, that is, for the setting

where (Yi
t,Xi

t)t, i = 1, 2, . . . , n, are IID random vectors from a (p + q)-dimensional multivariate

normal distribution with partitioned mean vector and covariance matrix given, respectively, by

η =

[

µ
ν

]

and Σ =

[

Σ11 Σ12

Σ21 Σ22

]

. (22)

With ν assumed to equal some ν0, which could be taken to be 0, interest would then be on the mean

parameter µ and with the elements of the covariance matrix Σ unknown and viewed as nuisance

parameters.
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