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Abstract

Structural equation models (SEMs) with latent variables are routinely used in social

science research, and are of increasing importance in biomedical applications. Standard

practice in implementing SEMs relies on frequentist methods. This chapter provides a simple

and concise description of an alternative Bayesian approach. We provide a brief overview

of the literature, describe a Bayesian specification of SEMs, and outline a Gibbs sampling

strategy for model fitting. Bayesian inferences are illustrated through an industrialization

and democratization case study from the literature. The Bayesian approach has some distinct

advantages, due to the availability of samples from the joint posterior distribution of the

model parameters and latent variables, that we highlight. These posterior samples provide

important information not contained in the measurement and structural parameters. As

is illustrated using the case study, this information can often provide valuable insight into

structural relationships.
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1 Introduction

Structural equation models (SEMs) with latent variables provide a very general framework

for modeling of relationships in multivariate data (Bollen, 1989). Although SEMs are most

commonly used in studies involving intrinsically latent variables, such as happiness, quality of

life, or stress, they also provide a parsimonious framework for covariance structure modeling.

For this reason, they have become increasingly used outside of the traditional social science

applications.

Software available for routine fitting of SEMs, including LISREL (Jöreskog and Sörbom,

1996), MPLUS (Muthén and Muthén, 1998, 2003) and BMDP (Bentler, 1992), rely on fre-

quentist methods. Most commonly, SEMs are fitted using either full information maximum

likelihood estimation (Jöreskog and Sörbom, 1985) or generalized least squares procedures

(Browne, 1974). Such methods can easily allow mixtures of continuous and ordered categor-

ical observed variables by using an underlying variable structure (Muthén, 1984; Arminger

and Küsters, 1988). Recent research has developed extensions to allow interactions and non-

linear structures (Jöreskog and Yang, 1996; Bollen and Paxton, 1998; Wall and Amemiya,

2000). Frequentist inferences are typically based on point estimates and hypothesis tests for

the measurement and latent variable parameters, marginalizing at the latent variables.

Although the overwhelming majority of the literature on SEMs is frequentist in nature,

Bayesian approaches have been proposed by a number of authors. For factor models, which

are a special case of SEMs, there is a long history of Bayesian methods (see, for example,

Martin and McDonald, 1975; Lee, 1981; Ansari and Jedidi, 2000; Lopes and West, 2004).

For more general SEMs, early work was done by Bauwens (1984) and Lee (1992). Recent ar-

ticles have focused on the use of Markov chain Monte Carlo (MCMC) methods to implement

Bayesian analysis in complex cases, involving nonlinear structures (Arminger and Muthén,

1998; Lee and Song, 2004), heterogeneity (Ansari, Jedidi and Jagpal, 2000; Lee and Song,
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2003), and multilevel data (Dunson, 2000; Jedidi and Ansari, 2001). In addition, Raftery

(1993) considers the important problem of model selection in SEMs from a Bayesian per-

spective. Additional articles on Bayesian SEMs have been published by Scheines, Holjtink

and Boomsma (1999) and Lee and Shi (2000).

The goal of this chapter is not to review all of these approaches, but instead to provide

an easily accessible overview of a Bayesian approach to SEMs, illustrating some of the advan-

tages over standard frequentist practice. Due to the flexibility of the Bayesian approach, it is

straightforward to apply the method in a very broad class of SEM-type modeling frameworks,

allowing nonlinearity, interactions, missing data, mixed categorical, count, and continuous

observed variables, etc. The WinBUGS software package1, which is freely available, can be

used to implement Bayesian SEM analysis.

There are several important differences between the Bayesian and frequentist approaches,

which will be highlighted. First, the Bayesian approach requires the specification of prior

distributions for each of the model unknowns, including the latent variables and the param-

eters from the measurement and structural models. Frequentists typically assume Gaussian

distributions for the latent variables, but do not specify priors for mean or covariance param-

eters2. Because the posterior distributions upon which Bayesian inferences are based depend

both on the prior distribution and the likelihood of the data, the prior plays an important

role. In particular, specification of the prior allows for the incorporation of substantive in-

formation about structural relationships, which may be available from previous studies or

social science theory. In the absence of such information, vague priors can be chosen. As

the sample size increases, the posterior distribution will be driven less by the prior, and

1www.mrc=bsu.cam.ac.uk/bugs/.
2Researchers can incorporate observed variables that come from distributions with excess kurtosis by using

corrected likelihood ratio tests, bootstrapping methods, or sandwich estimators for asymptotic standard

errors (Satorra and Bentler, 1988; Bollen and Stine, 1990, 1993).

3



frequentist and Bayesian estimates will tend to agree closely.

A second difference is computational. Bayesian model fitting typically relies on MCMC,

which involves simulating draws from the joint posterior distribution of the model unknowns

(parameters and latent variables) through a computationally intensive procedure. The ad-

vantage of MCMC is that there is no need to rely on large sample assumptions (e.g., asymp-

totic normality), because exact posterior distributions can be estimated for any functional

of the model unknowns. In small to moderate samples, these exact posteriors can provide a

more realistic measure of model uncertainty, reflecting asymmetry and not requiring the use

of a delta method or other approximations. The downside is that it may take a long time

(e.g., several hours) to obtain enough samples from the posterior so that Monte Carlo (MC)

error in posterior summaries is negligible. This is particularly true in SEMs, because there

can be problems with slow mixing producing high autocorrelation in the MCMC samples.

This autocorrelation, which can be reduced greatly through careful parametrization or com-

putation tricks (e.g., blocking and parameter expansion), makes it necessary to collect more

samples to produce an acceptable level of MC error.

An additional benefit that is gained by paying this computational price is that samples

are available from the joint posterior distribution of the latent variables. Often, these samples

can be used to obtain important insights into structural relationships, which may not be

apparent from estimates (Bayesian or frequentist) of the structural parameters. This is

certainly the case in the industrialization and democratization application (Bollen, 1989),

which we will use to illustrate the concepts starting in Section 3.

Section 2 reviews the basic SEM modeling framework and introduces the notation. Sec-

tion 3 describes the Bayesian approach, focusing on normal linear SEMs for simplicity in

exposition, introduces the conditionally-conjugate priors for the parameters from the mea-

surement and latent variable models, and outlines a simple Gibbs sampling algorithm for

posterior computation. Section 4 applies the approach to the industrialization and democ-
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ratization case study. Section 5 outlines generalizations to a broader class of SEMs. Section

6 contains a discussion, including recommendations for important areas for future research.

2 Structural Equation Models

SEMs provide a broad framework for modeling of means and covariance relationships in

multivariate data. Although extensions are straightforward, particularly taking a Bayesian

approach, our focus here is on the usual normal linear SEM, which is often referred to as a lin-

ear structural relations or LISREL model. LISREL models generalize many commonly-used

statistical models, including ANOVA, MANOVA, multiple linear regression, path analysis,

and confirmatory factor analysis. Because SEMs are setup to model relationships among

endogenous and exogenous latent variables, accounting for measurement error, they are rou-

tinely used in social science applications. Social scientists have embraced latent variable

models, realizing that it is typically not possible to obtain one perfect measure of a trait of

interest. In contrast, biomedical researchers and epidemiologists tend to collapse multiple

items related to a latent variable, such as stress, into a single arbitrarily-defined score prior

to analysis (Herring and Dunson, 2004).

In factor models, a vector of observed variables Y i is considered to arise through random

sampling from a multivariate normal distribution denoted by N(ν + Λf i,Σ), where f i

is the vector of latent variables; Λ is the factor loadings matrix describing the effects of

the latent variables on the observed variables; ν is the vector of intercepts and Σ is the

covariance matrix. However, in SEMs the focus is also on studying relationships among

factors. For this purpose, the distinction between the measurement model and structural

(latent) model is common. The former specifies the relationships of the latent to the observed

variables, whereas the latter specifies the relationships among the latent variables. Following

the standard LISREL notation, as in Bollen (1989) and Jöreskog and Sörbom (1996), the
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measurement model is, for i = 1, . . . , N observations,

yi = νy + Λyηi + δy
i , (1a)

xi = νx + Λxξi + δx
i , (1b)

where model (1a) relates the vector of indicators yi = (yi1, . . . , yip)
′ to an underlying m-

vector of latent variables ηi = (ηi1, . . . , ηim)′, m ≤ p, through the p × m factor loadings

matrix Λy. Similarly, (1b) relates xi = (xi1, . . . , xiq)
′ to an n-vector of latent variables

ξi = (ξi1, . . . , ξin)′, n ≤ q, through the q × n matrix Λx. The vectors δy
i and δx

i are the

measurement error terms, with dimensions p × 1 and q × 1, respectively. The vectors νy,

p× 1, and νx , q × 1, are the intercept terms of the measurement models.

In equations (1a) and (1b), it is assumed that the observed variables are continuous.

However, as in Muthén (1984), the model remains valid for categorical or censored observed

variables (yi,xi) since they can be linked to their underlying continuous counterparts (y∗i ,x
∗
i )

through a threshold model. Potentially, one can also define separate generalized linear

models for each of the observed variables in the measurement model (as in Sammel, Ryan,

Legler, 1997; Moustaki and Knott, 2000; Dunson, 2000; 2003) to allow a broader class of

measurement models.

On the other hand, the structural (latent variable) model is focused on studying the

relationships among latent variables, η and ξ. This is performed by regressing the dependent

vector, η, on the explanatory vector ξ as follows, i = 1, . . . , N ,

ηi = α + Bηi + Γξi + ζi (2)

where the m×m matrix B describes the relationships among latent variables in ηi. Clearly,

the elements of the diagonal of B are all zero. The m× n matrix Γ quantifies the influence

of ξi on ηi. The m× 1 vectors α and ζi represent the intercept and the unexplained parts

of ηi respectively.
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Under this parametrization, common assumptions in SEMs are: i) the elements of ξi and

ζi are independent and normally distributed, ξi ∼ Nn(µξ,Ωξ), Ωξ = diag(ω2
ξ1, . . . , ω

2
ξn), and

ζi ∼ Nm(0, Ωζ), Ωζ = diag(ω2
ζ1, . . . , ω

2
ζn); ii) the measurement error vectors δy

i ∼ Np(0,Σy),

Σy = diag(σ2
1y, . . . , σ

2
py), and δx

i ∼ Nq(0,Σx), Σx = diag(σ2
1x, . . . , σ

2
qx) are assumed indepen-

dent; and iii) δ′ = (δy′, δx′), Cov(ζ, δ′) = 0, Cov(ξ, δ′) = 0, Cov(ξ, ζ ′) = 0, and (I −B) is

nonsingular. In addition, some constraints need to be placed on Λx and Λy for identifiability.

3 Bayesian Approach

Instead of relying on point estimates (MLEs, least squares, etc) and asymptotically-justified

confidence bounds and test statistics, the Bayesian approach we describe bases inferences on

exact posterior distributions for the parameters and latent variables estimated by Markov

chain Monte Carlo. As sample sizes increase, Bayesian and frequentist estimators of the

parameters should converge. However, an appealing feature of the Bayesian approach is

that posterior distributions are obtained not only for the parameters, but also for the latent

variables. Although the posterior distribution for the latent variables is shrunk back towards

the normal prior, lack of fit can be captured, including non-normality, non-linearity, and

relationships that are not immediately apparent from the parameter estimates. Although

frequentist two-stage approaches that fit the measurement model first and then compute

factor scores can similarly be used to capture lack of fit, estimates are biased and measures

of uncertainty in the factors scores are difficult to obtain (Croon and Bolck, 1997).

In contrast, the Bayesian approach yields estimates of the exact joint posterior distribu-

tion of the latent variables. This posterior distribution can be used flexibly to, for example,

1. Obtain point and interval estimates for the factor scores of each individual.

2. Formally compare the factor scores for different subjects (e.g., through a posterior
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probability that the score is higher for a particular subject).

3. Assess whether a particular subject’s factor score has changed over time.

4. Identify outlying subjects in the tails of the latent variable distribution.

5. Assess relationships that may not be fully captured by the basic modeling structure

(e.g., is the association between latent traits linear and apparent across the range of

factor scores or predominantly due to the more extreme individuals?)

Potentially, one could use a richer model that allows non-linear and more complex rela-

tionships among the latent variables. However, it is often not apparent a priori how such

relationships should be specified, and important insights can be obtained through careful ex-

amination of posterior distributions of the latent variables obtained under a simple LISREL

model.

3.1 Specification

The Bayesian model requires the specification of a full likelihood and prior distributions

for the parameters. The complete data likelihood, including the latent variables, has the

following form:

L(y, x, η, ξ;Θ) =
N∏

i=1

{
Np (yi; νy + Λyηi,Σy) Nq (xi; νx + Λxξi,Σx)×

×Nm (ηi; α + Bηi + Γξi,Ωζ) Nn(ξi; µξ,Ωξ)

}

where Θ =
(
α, b,γ, νy, νx,λy,λx, σ

2
y, σ

2
x,ω

2
ζ ,µξ, ω

2
ξ

)
is the vector of model parameters.

Here, the lower case bold letters denote that only the free elements are included in the

parameter vector Θ, with the remaining elements being fixed in advance in the model spec-

ification process.
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To complete a Bayesian specification of the model, we choose priors for each of the

parameters in Θ. For convenience in elicitation and computation, we choose normal or

truncated normal priors for the free elements of the intercept vectors, νy, νx and α, the factor

loadings, λy and λx, and the structural parameters b and γ. For the variance component

parameters, including the diagonal elements of Σy, Σx, Ωζ and Ωξ, we choose independent

inverse-gamma priors (avoiding high variance priors for the latent variable variances, which

have well known problems). The bounds on the truncated normal are chosen to restrict

parameters that are known in advance to fall within a certain range. For example, positivity

constraints are often appropriate and may be necessary for identifiability based on the data.

It is important to distinguish between frequentist identifiability, which implies that all the

model parameters can be estimated based on the data given sufficient sample size, and

Bayesian identifiability, which implies Bayesian learning. In particular, Bayesian learning

occurs when the posterior distributions can differ from the prior distributions, reflecting

that we have updated our beliefs based on the current data. Potentially, one can choose

informative prior distributions for the parameters in a model that is underidentified from

a frequentist perspective, and still obtain Bayesian identifiability for unknowns of interest.

However, we prefer to focus on models which are identified in a frequentist sense to avoid

relying so strongly on the prior specification.

The joint posterior distribution for the parameters and latent variables is computed,

following Bayes’ rule, as

π(Θ, ξ,η|y, x) =
L(y,x,η, ξ;Θ)π(Θ)∫ L(y, x, η, ξ;Θ)π(Θ)dηdξdΘ

, (3)

which is simply the complete data likelihood multiplied by the prior and divided by a nor-

malizing constant referred to as the marginal likelihood. Clearly, calculation of the marginal

likelihood (the term in the denominator) is very challenging, because it typically involves

a high dimensional integration of the likelihood over the prior distribution. Fortunately,
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MCMC techniques can be used to generate draws from the joint posterior distribution with-

out need to calculate the marginal likelihood. For an overview of MCMC algorithms, refer to

the recent books by Robert and Casella (2004), Gilks, Richardson, and Spiegelhalter (1996),

Gamerman (1997) and Chen, Shao and Ibrahim (2000). Due to the conditionally normal

linear structure of the SEM and to the choice of conditionally conjugate truncated normal

and inverse-gamma priors for the parameters, MCMC computation can proceed through a

straightforward Gibbs sampling algorithm, see Geman and Geman (1984) or Gelfand and

Smith (1990) for more details.

3.2 Gibbs sampler

The Gibbs sampler is an MCMC technique that alternately samples from the full conditional

posterior distributions of each unknown, or blocks of unknowns, including the parameters

and latent variables. Before proceeding to the next step, the sampled parameter or group

of parameters value is updated. Under mild regularity conditions, these samples converge

to a stationary distribution, which is the joint posterior distribution. Hence, we can run

the Gibbs sampler, discard a burn-in to allow convergence (diagnosed by trace plots and

standard tests), and then calculate posterior summaries based on the collected samples. For

illustration, we focus here on full conditional posterior distributions for the latent variables

and structural parameters. Derivation of the conditional distribution for the remaining

parameters follows simpler algebraic results and, in general, is not necessary since black-box

sampling algorithms exist. For example, packages such as WinBUGS, Spiegelhalter et al.

(2003), can automatically run Gibbs sampler algorithms based only on model specifications

and priors beliefs.

We focus now on deriving the conditional posterior distributions for the latent variables,

ηi, ξi, and the structural parameters α, b, γ. As introduced previously, MCMC methods use
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the joint posterior distribution (3 ) in terms of π(Θ, ξ,η|y,x) ∝ L(x,y,η, ξ;Θ)π(Θ). Based

on this property and factoring the joint posterior, we compute the conditional posterior for

the endogenous latent variable as follows

π(ηi|νy,Λy,Σy, µ̃ηi, Ω̃η, yi) ∝ π(yi; νy + Λyηi,Σy) · π(ηi; µ̃ηi, Ω̃η)

with µ̃ηi = A[α + Γξi], Ω̃η = A ΩζA
′ and A = [Im×m − B]−1. After straightforward

computations it is distributed as Nm

(
η̂i, Ω̂η

)
with

η̂i = Ω̂η

[
Λ′

yΣ
−1
y (yi − νy) + Ω̃

−1

η µ̃ηi

]
,

Ω̂
−1

η = Λ′
yΣ

−1
y Λy + Ω̃

−1

η .

The conditional posterior for the exogenous latent variable is obtained as follows

π(ξi|ηi,Ωζ ,νx, λx,Σx,α,B,Γ,µξ,Ωξ, xi) ∝ π(xi; νx + λxξi,Σx)×

× π(ηi; α + Bηi − Γξi,Ωζ)π(ξi; µξ,Ωξ)

which, after computations, is distributed as Nn(ξ̂i, Ω̂ξ) with

ξ̂i = Ω̂ξ

[
Λ′

xΣ
−1
x (xi − νx) + Γ′Ω−1

ζ (ηi −α−Bηi) + Ω−1
ξ µξ

]
,

Ω̂
−1

ξ = Λ′
xΣ

−1
x Λx + Γ′Ω−1

ζ Γ + Ω−1
ξ .

The structural parameters have the following conditional posteriors:

• For the vector of intercepts,

π(α|B,ηi,Γ, ξi,Ωζ ,µα,Ωα) ∝
N∏

i=1

π(ηi; α + Bηi + Γξi,Ωζ)π(α; µα,Ωα)

which is distributed as Nm(α̂, Ω̂α) with

α̂ = Ω̂α

[
µ′

αΩ
−1
α +

N∑
i=1

(ηi −Bηi − Γξi)
′Ω−1

ζ

]
,

Ω̂
−1

α = NΩ−1
ζ + Ω−1

α .
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• For the coefficient brj, which measures the impact of ηj on ηr, with r, j = 1, . . . , m

and brr = 0,

π(brj|b−rj, α,ηi,Γ, ξi,Ωζ , µb, ω
2
b ) ∝

N∏
i=1

π(ηi; α + Bηi + Γξi,Ωζ)π(brj; µb, ω
2
b )

which is distributed as N (̂brj, ω̂b) with

b̂rj = ω̂b


µb

ω2
b

+
N∑

i=1

ηj
i

ω2
ζr


ηr

i − αr −
n∑

s=1

(γrs · ξs
i )−

m∑
t=1
t6=j

brt · ηt
i





 ,

ω̂−1
b =

∑N
i=1(η

j
i )

2

ω2
ζr

+
1

ω2
b

.

• For the coefficient γrj, which measures the effect of ξj on ηr, with r = 1, . . . , m,

j = 1, . . . , n,

π(γrj|b,α,γ−rj,ηi, ξi,Ωζ , µγ, ω
2
γ) ∝

N∏
i=1

π(ηi; α + Bηi + Γξi,Ωζ)π(γrj; µγ, ω
2
γ)

which is distributed as N(γ̂rj, ω̂γ) with

γ̂rj = ω̂γ


µγ

ω2
γ

+
N∑

i=1

ξj
i

ω2
ζr


ηr

i − αr −
m∑

s=1

(brs · ηs
i )−

n∑
t=1
t6=j

γrt · ξt
i





 ,

ω̂−1
γ =

∑N
i=1(ξ

j
i )

2

ω2
ζr

+
1

ω2
γ

.

Once all the full conditional posteriors are computed, the following Gibbs sampling

algorithm can be implemented:
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Given Θ0, ξ0,η0

for (k = 1,...,# iterations)

for (i = 1,...,N)

Sample ηk
i ∼ π(ηi|µ̃k−1

ηi , Ω̃
k−1

η , ξk−1
i ,Θk−1, yi)

Sample ξk
i ∼ π(ξi|ηk

i ,Θk−1,xi)

Sample
(
νk

y , λk
y

)
∼ π

(
νy, λy|Θk−1, ηk, y

)

Sample
(
νk

x,λk
x

)
∼ π

(
νx, λx|Θk−1, ξk, x

)

Sample
(
αk, bk, γk

)
∼ π

(
α, b, γ|ηk, ξk,Θk−1, x,y

)

Sample (σ2
y)k ∼ π

(
σ2

y|ηk, νk
y , λk

y ,Θk−1,y
)

Sample (σ2
x)k ∼ π

(
σ2

x|ξk, νk
x,λy

x,Θk−1, x
)

Sample µk
ξ ∼ π

(
µξ|ξk, m,M

)

Sample Ωk
ξ ∼ π

(
Ωξ|ξk, aξ, βξ

)

Sample Ωk
ζ ∼ π

(
Ωζ |ηk, aη,βη

)

Output=
{

ηk, ξk,Θk
}

Along with the benefits of Bayesian SEMs come the need to carefully consider certain

computational issues. A particular concern is slow mixing of the MCMC algorithm, which

can lead to very high autocorrelation in the samples and slow convergence rates. Parametriza-

tion has a large impact on computation in hierarchical models, including SEMs. For a given

implied multivariate normal model, there is an equivalence class of SEMs having identical

MLEs, but with different constraints made to ensure identifiability. The level of slow mixing

can vary dramatically across SEMs in such an equivalence class, ranging from autocorrelation

values near 1 to values near 0. Fortunately, it is easy to preselect an SEM in each equivalence

class to limit slow mixing by choosing a centered parametrization. This simply involves incor-

porating free mean and variance parameters for each of the latent variables, with constraints

instead incorporated in the intercepts and factor loadings in the measurement model. Follow-

ing such a rule of thumb has a dramatic impact on computational efficiency without limiting
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inferences - one can always obtain posterior samples under a different parametrization by

appropriately transforming draws obtained under the centered parametrization. In addition

to centering, techniques that can be used to improve mixing include data augmentation or

parameter expansion (Hills and Smith, 1992), updating parameters in blocks instead of one

by one, and randomizing the order of updating (Liu, Wong and Kong, 1994; Roberts and

Sahu, 1997). Techniques to determine the effective number of Gibbs samples necessary to

produce a given level of precision in a posterior quantile of interest are available (Raftery

and Lewis (1992). In addition, there are many tests to diagnose convergence of the Markov

chain (cf., Brooks and Gelman, 1998; Brooks and Giudici, 2000).

4 Democratization and Industrialization Application

We will illustrate the Bayesian approach and highlight differences with frequentist methods

using a democratization and industrialization example from the literature (Bollen, 1980,

1989). There has long been interest in studying relationships between industrialization in

developing countries and democratization. To obtain insight into this relationship, our focus

is on assessing whether industrialization level (IL) in Third World countries is positively

associated with current and future political democracy level (PDL). The common political

instabilities make these associations unclear. In the proposed model, it is assumed that

some of the consequences of industrialization, for example societal wealth, an educated pop-

ulation, advances in living standards, etc, enhance the chances of democracy. To test this

theory, measures of PDL (in 1960 and 1965) and IL indicators (in 1960) were collected in

75 developing countries. These include all developing countries, excluding micro-states, for

which complete data were available.

Since political democracy refers to the extent of political rights and political liberties, we

define a vector y of measures based on expert ratings: freedom of the press (y1960
1 ,y1965

5 ), free-
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dom of group opposition (y1960
2 ,y1965

6 ), fairness of elections (y1960
3 ,y1965

7 ), and elective nature

of the legislative body (y1960
4 ,y1965

8 ). Each of the rates were arbitrarily linearly transformed

to the scale [0, 10].

Industrialization is defined as the degree to which a society’s economy is characterized

by mechanized manufacturing processes, and the following vector of indicators x is compiled

for consideration: gross national product per capita (x1960
1 ), inanimate energy consumption

per capita (x1960
2 ) and the percentage of the labor force in industry (x1960

3 ). For simplicity

in the notation, we will hereafter remove the superscripts indicating the year.

The data collected are summarized in Table 1 and plotted in Figure 1.

Indicator Min 1st Qu. Median Mean 3rd. Qu. Max Sd.
y1 1.250 2.900 5.400 5.465 7.500 10.000 2.623
y2 0 0 3.333 4.256 8.283 10.000 3.947
y3 0 3.767 6.667 6.563 10.000 10.000 3.281
y4 0 1.581 3.333 4.453 6.667 10.000 3.349
y5 0 3.692 5.000 5.136 7.500 10.000 2.613
y6 0 0 2.233 2.978 4.207 10.000 3.373
y7 0 3.478 6.667 6.196 10.000 10.000 3.286
y8 0 1.301 3.333 4.043 6.667 10.000 3.246
x1 3.784 4.477 5.075 5.054 5.515 6.737 0.733
x2 1.386 3.663 4.963 4.792 5.830 7.872 1.511
x3 1.002 2.300 3.568 3.558 4.523 6.425 1.406

Table 1: Summary of the Industrialization and Democratization data.

4.1 Model structure

We show in the path diagram of Figure 2 the assumed model, where, for the countries under

study, the PDL in 1960 and 1965 is represented by η60 and η65 respectively, and the IL in 1960

is symbolized by ξ. Following the convention, circles represent latent variables, the squares

the observed variables and the arrows linear relations. The relations assumed imply that

the IL in 1960, ξ, affects the PDL both in 1960, η60, and 1965, η65, through the regression

coefficients γ60 and γ65 respectively. The impact of the PDL in 1960 on the level in 1965 is rep-
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Figure 1: Industrialization and Democratization data.

resented by the arrow b21, and the pseudo-latent variables. (D15,D24,D26,D37,D48,D68)

are used to represent the correlation among the errors in the ratings that were elicited by

the same expert in two points of the time.

For the i-th country, the latent variable model, as introduced in (2), is now formulated
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Figure 2: Path diagram for the democratization study

in matrix form as follows,

(
η60

i

η65
i

)
=

(
α60

α65

)
+

(
0 0

b21 0

)(
η60

i

η65
i

)
+

(
γ60

γ65

)
ξi +

(
ζ60
i

ζ65
i

)
(4)

where the disturbances ζi = (ζ60
i , ζ65

i ) are assumed to be independent normally distributed

with mean zero and precision parameters ω−1
ζ60 and ω−1

ζ65 respectively. The measurement model,

as introduced in (1), is now formulated as follows




y1i

y2i

y3i

y4i

y5i

y6i

y7i

y8i
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0
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2
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7
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+




1 0
λy

2 0
λy

3 0
λy

4 0
0 1
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6
0 λy

7
0 λy
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(
η60

i

η65
i

)
+




1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 1
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+




δy
1i

δy
2i

δy
3i

δy
4i

δy
5i

δy
6i

δy
7i

δy
8i




(5a)

(
x1i

x2i

x3i

)
=

(
0
νx

2
νx

3

)
+

(
1
λx

2
λx

3

)
ξi +

(
δx
1i

δx
2i

δx
3i

)
(5b)

where λy
j is the influence of PDL on the indicator yj, j = 1, . . . , 8, Drs is a pseudo-latent
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variable to model the correlations among the measurement errors δy
r and δy

s . We fix the

intercepts, νy
1 = νy

5 = νx
1 = 0, and factor loadings, λy

1 = λy
5 = λx

1 = 1, for identifiability of the

model and to scale the latent variables. Therefore, PDL will be scaled in terms of freedom in

press and IL in terms of gross national product per capita. Furthermore, this approach results

in a centered parametrization, which has appealing computational properties as discussed in

Section 3.2.

Under expressions (4) and (5), and for i = 1, . . . , 75 developing countries, the complete

data likelihood including the latent variables η and ξ is as follows

L(y, x, η, ξ, D;Θ) =
75∏
i=1

{
N8 (yi; νy + Λyηi,Σy) N3 (xi; νx + Λxξi,Σx) N(ξi; µξ, ω

2
ξ )×

×N2 (ηi; α + Bηi + Γξi,Ωζ) N6 (Di;0,ΩD)
}

with Σy = diag(σ2
y1, . . . , σ

2
y8) , Σx = diag(σ2

x1, σ
2
x2, σ

2
x3), Ωζ = σ2

y1 · diag
(
ω−1

ζ60 , ω
−1
ζ65

)
, ΩD =

diag
(
ω2

D15 , ω2
D24 , ω2

D26 , ω2
D37 , ω2

D48 , ω2
D68

)
, and Θ includes the free elements of (νy,Λy,νx,Λx, B)

and the parameters (σ2
y,σ

2
x, µξ, ω

2
ξ ,α, γ,Ωζ ,ω

2
D).

In the Bayesian analysis, the prior specification involves quantifying expert’s uncertainty

in the model parameters Θ. In the cases where not much information is available beyond

the observed data, non-informative or objective priors are the usual selection (Berger, 1985;

Bernardo and Smith, 1994). Here, we consider a variety of alternative priors, with the

primary choice based on expert elicitation, choosing a specification that assigns high proba-

bility to a plausible range for the parameter values based on Ken Bollen’s experience in this

area. We also consider priors centered on the MLEs, but with inflated variance, for sake of

comparison. Refer to Appendix A for more details on the hyperparameters used.

In this case, the joint posterior is computed, following Bayes’ rule, as

π(Θ, ξi,ηi,Di|x,y) ∝ L(y,x,η, ξ, D;Θ) · π(Θ).

Although this joint posterior distribution is complex, all the corresponding full conditional
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posterior distributions have simple conjugate forms due to the model assumed. A Gibbs

sampling algorithm based on the general scheme introduced before is used to obtain samples

from the posterior distributions of the parameters of interest, for example, PDL and IL for

every single country in the study in both periods (1960 and 1965), or the impact of the

PDL in 1960 on the PDL in 1965. The implementation of the algorithm was written in

R, and run 50,000 iterations, discarding the first 10, 000 for burn-in, and keeping one every

400 iterations to reduce the correlation among the posterior samples. WinBUGS could also

be used, but our R implementation gave us greater flexibility regarding the computational

algorithms and priors we could consider.

4.2 Results

We start by comparing the frequentist (Maximum Likelihood) and Bayesian estimates for

the aforementioned parameters of interest, see Appendix B for a full list of parameters

estimates. In Figure 3 and 4 we show graphically the histograms of the posterior samples for

the parameters b21, γ60, γ65, µξ and σ2
ξ along with a confidence interval for the MLEs. The

learning process experimented in updating the prior to the posterior beliefs based on the

observed data are presented in Table 2. For example, a prior 95% probability interval for the

Centered MLE Subjective
MLE Prior beliefs Posteriors Prior beliefs Posteriors

Mean Sd Mean Sd Median Mean Sd Mean Sd Median Mean Sd
b21 0.837 0.098 0.837 2.449 0.744 0.741 0.109 1 1.414 0.814 0.811 0.144
γ60 1.483 0.399 1.483 2.449 1.455 1.454 0.313 1.5 1.414 1.083 1.077 0.209
γ65 0.572 0.221 0.572 2.449 0.774 0.774 0.278 0.5 1.414 0.297 0.322 0.205
µξ 5.054 0.084 5.054 2.5 5.054 5.053 0.087 5 1 5.040 5.035 0.098
ω2

ξ 0.448 0.087 0.448 0.224 0.433 0.442 0.077 1 0.5 0.655 0.667 0.119

Table 2: Parameters of interest estimated under the frequentist (MLE) and Bayesian ap-

proach (summary of the posterior distributions).

influence of PDL in 1960 on the level in 1965 is: [−4.062, 5.736], under the centered MLE

priors scheme, and [−1.828, 3.828] under the subjective priors scheme. These probability
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intervals, a posteriori, are narrowed to [0.523, 0.959] and [0.522, 1.1] respectively. This shows

a convergence, after observing the data, regardless of the starting prior knowledge.
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Figure 3: Histograms for the posterior samples under the subjective priors scheme. From

left to right: b21, γ60 and γ65. The confidence intervals for the MLEs are represented with

straight lines.

As measures of the goodness of fit of the frequentist model, we report the R-square

indicators in Table 3. In Bayesian SEMs, we shall use some loss function L(yi, ŷi) to measure

R2 Estimates
y1 y2 y3 y4 y5 y6 y7 y8 x1 x2 x3 η60 η65

0.723 0.514 0.522 0.715 0.653 0.557 0.678 0.685 0.846 0.947 0.761 0.200 0.961

Table 3: R-square indicators for the frequentist model.

the goodness of the predictive distribution. For example, the Root Mean Squared Error

(RMSE) and the Mean Absolute Error (MAE) are common measures computed as follows,
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Figure 4: Histograms of the posterior samples for µξ (left) and ω2
ξ (right) under the subjective

priors scheme. The confidence intervals for the MLEs are represented with straight lines.

i = 1, . . . , 75 and j = 1, . . . , 8,

RMSEi =

√∑8
j=1(yij−E(ŷij))

2

8
RMSEj =

√∑75
i=1(yij−E(ŷij))

2

75

MAEi =
∑8

j=1|yij−E(ŷij)|
8

MAEj =
∑75

i=1|yij−E(ŷij)|
75

where E(ŷij) = 1
MN

∑M
l=1

∑N
k=1 ŷlk

ij is the average of the posterior predictions for the j-th

PDL indicator and i-th country. Those for the indicators of IL follow symmetrically. We

report these estimates in Table 4, where countries {46, 61, 22} are samples from each of the

three industrialization clusters identified.

So far, we have presented summaries of the results obtained following both the frequen-

tist’s and Bayesian’s approaches. However, there are more posterior information that can be

obtained from the Bayesian SEM methods introduced in Section 3. In particular, the benefit

of having posterior samples from the joint posterior distribution of the latent variables is
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Country46 Country61 Country22

RMSEXi 0.94 0.24 0.323
MAEXi 0.13 0.33 0.384
RMSEY i 0.511 0.277 0.355
MAEY i 1 0.583 0.783

IL1 IL2 IL3

RMSEXj 0.029 0.032 0.075
MAEXj 0.21 0.214 0.54

PDL1 PDL2 PDL3 PDL4 PDL5 PDL6 PDL7 PDL8

RMSEY j 0.096 0.193 0.172 0.116 0.131 0.134 0.131 0.114
MAEY j 0.689 1 1 0.818 0.892 0.912 0.931 0.765

Table 4: Measures of the goodness of the predictive distribution.

large. They provide important information not contained in the measurement and structural

models. We highlight these issues on our case study in the next section.

4.3 Democratization results

The average across countries of the posterior samples of IL in 1960 are summarized as follows

Min. 1st Qu. Median Mean 3rd Qu. Max. Sd.
3.498 4.374 5.117 5.035 5.560 6.593 0.798

Recall that the main goal is to determine if the IL of a country has an impact on the

change of its PDL. In Figure 5 and 6 we show the PDL in 1960 (gray boxes) and in 1965

(black boxes) for each country in the study, along with their IL (posterior mean) in 1960

(black circles). To facilitate the interpretation, we have sorted the countries by increasing

IL.

We notice a generalized reduction in PDL from 1960 to 1965 — in Figure 6 the gray

circles are mostly below the black diamonds. In Figure 7 we show this behavior for the

countries in the study, where the straight black line represents the average across-countries

of the PDL change; the PDL average reduced amount is 0.314.

As a first approach, we have linearly regressed each posterior sample of the IL against

the square of the PDL change for each country. We have estimated by least squares the

slope of the regression line, finding that the posterior probability of having a negative slope

22



is 0.94. This indicates that an increase in the IL will almost surely cause a positive or

negative change in the PDL. However, we notice that this behavior is not homogeneous

among countries, and consequently further analysis is required. We define three clusters of

countries, corresponding to: poorly industrialized, those countries in the first quartile; mildly

industrialized, those in the second and third quartile; and highly industrialized, those in the

forth quartile. These clusters are represented with vertical dotted lines in Figures 5, 6 and

7, yielding 19, 37 and 19 countries respectively on each group. By regressing within each

group, as previously introduced, we obtain the following posterior probabilities

Poorly Indust. Mildly Indust. Highly Indust.

Prob
(
β̂ < 0|data

)
0.55 0.443 0.644

Recall that a negative slope indicates that a variation in the IL produces a variation in

the opposite direction of the square of the PDL change. Therefore, we find that the impact of

the IL is different among groups. Figure 6 shows this behavior, where the horizontal dashed

lines indicate the first and forth quartile of the average, across countries, of the PDL in 1960

(grey) and 1965 (black). For the poorly industrialized countries, we find that the IL has

caused, in most of the cases, the PDL to remain within the bands in 1965 when previously

it was within the bands in 1960. The same pattern is found in the most industrialized group

and is, in fact, stronger in this case since there are no countries outside the PDL bands that

were not present in the previous period. In the case of the mildly industrialized countries,

the variability is considerably higher and no pattern is detected.

Another issue of note is the difference in variability among the groups with regard to

changes in the PDL. Only in the highly industrialized countries, has the generalized democ-

racy reduction trend been lessened. This is particularly clear in Figure 7, where the horizontal

dashed red lines indicate the first and forth quartile of the average across-countries of the

square of the PDL change. For the poorly industrialized countries, the level change is mainly

negative out of the lower band, indicating that the low levels of industrialization cannot com-

23



68 45 46 38 1 35 41 67 74 8 6 9 16 23 3 19 4

0
2

4
6

8
10

12
14

Countries ordered by industrialization

D
em

oc
ra

cy
 le

ve
l

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Political democracy in 1960 and 1965

Figure 5: Boxplots of the PDL in 1960, gray, and in 1965, black. The countries are sorted,

black circles, by increasing IL (posterior mean) in 1960. Vertical dashed lines separate the

three clusters using IL as criteria. The horizontal dashed lines show the 95% bands for the

posterior means of PDL in 1965.

pensate the general trend. This is not the case in the highly industrialized countries, where

there are just a few countries where the PDL change is below the average. In the mildly

industrialized countries, the aforementioned large variability results in alternating changes

around the average and outside of the bands.
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Figure 6: Chart that shows the posterior mean of PDL in 1960, gray dots, and in 1965, black

diamonds. The countries are sorted, black circles, by increasing IL (posterior mean) in 1960.

Vertical dashed lines separate the three clusters using IL as criteria. The horizontal gray

dashed lines show the 95% bands for the posterior means of PDL in 1960, and black dashed

lines show these bands in 1965.

5 Discussion and Future Research

This chapter has provided an overview of a Bayesian approach to structural equation mod-

eling, highlighting some aspects of the Bayesian approach that have not been fully explored
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Figure 7: Chart that shows the differences in PDL between 1960 and 1965. The countries

are sorted, black circles, by increasing IL (posterior mean) in 1960. Vertical dashed lines

separate the three clusters using IL as criteria.

in previous articles on Bayesian SEMs. In particular, previous authors have not carefully

considered the issue of parametrization, which really does have an enormous practical impact

on Bayesian computation. The most important points to remember in conducting Bayesian

SEM analysis are (1) use a centered parametrization allowing the latent variables to have

free intercepts and variances; (2) do not use diffuse (high variance) or improper uniform

priors for the latent variable variances; and (3) examine the posterior distributions of the
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latent variables, because they often provide additional information and insight not apparent

from the estimated population parameters.

There is a need for additional research into computationally efficient algorithms for

SEMs. There has been a lot of interest in computation for simpler variance component

models, and a variety of approaches have been proposed, including not only centering but also

clever parameter expansion techniques (refer to Gelman et al, 2004, for a recent reference).

The parameter expansion approach can potentially be applied directly to SEMs, but practical

details remain to be worked out.

Another very important issue is the prior specification, particularly in cases in which

limited information is available a priori or one wishes to choose a noninformative prior

in conducting a reference analysis. Previous authors suggested using a uniform improper

prior for the vector of parameters, including the variance components, to choose a non-

informative specification (Scheines, Hoijtink and Boomsma, 1999). Unfortunately, uniform

improper priors on the latent variable variances will result in an improper posterior, so that

the results under such analysis are meaningless. This problem is not solved by using highly

diffuse inverse-gamma priors, because the posterior is then close to improper (i.e., it might

as well be improper as far as MCMC behavior and interpretation). In addition, as illustrated

by Gelman (2004) for simple variance component models, there can be enormous sensitivity

to the prior variance chosen in the diffuse gamma prior. Better reference priors for variance

component models were suggested by Gelman (2004) and similar specifications can be used

in SEMs.

Additional areas in need of further research, include model selection/averaging and semi-

parametric methods. The Bayesian approach has the major advantage that it can allow for

uncertainty in different aspects of the model specification in performing inferences about

structural relations of interest. Raftery has developed Bayesian methods for model selec-

tion and averaging in SEMs in a series of papers, primarily based on the BIC and Laplace
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approximations to the marginal likelihood. Such approaches are not expected to have good

performance when comparing models with different variance component structures due to

the constraints needed. Expanding the class of models considered to allow unknown la-

tent variable and measurement error distributions can potentially be accomplished within a

Bayesian approach using Dirichlet process priors, but again details remain to be worked out.
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APPENDIX

A Prior specifications

We consider the following gamma and inverse-gamma formulations for the prior distribution

of the precision and variance parameters respectively, where

σ2 ∼ InvGamma(σ2; α, β)

f(σ2) =
βα

Γ(α)
(σ2)−(α+1) exp

(
− β

σ2

)

µ =
β

α− 1
σ2 =

β2

(α− 1)2(α− 2)

σ−2 ∼ Gamma(σ−2; α, β)

f(σ−2) =
βα

Γ(α)
(σ−2)α−1 exp

(−βσ−2
)

µ =
α

β
σ2 =

α

β2

See Table 5 for the prior parameters used.
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B Results: posterior parameters estimates

MLE Sub. Priors Centered MLE
Mean Sd Median Mean Sd Median Mean Sd

α60 -2.031 2.037 -0.021 -0.005 1.051 -1.865 -1.876 1.587
α65 -2.332 1.119 -0.722 -0.763 0.944 -2.788 -2.806 1.287
b21 0.837 0.098 0.814 0.811 0.144 0.744 0.741 0.109
γ60 1.483 0.399 1.083 1.077 0.209 1.455 1.454 0.313
γ65 0.572 0.221 0.297 0.322 0.205 0.774 0.774 0.278
νy
2 -2.611 1.064 -1.235 -1.205 0.708 -2.251 -2.289 0.945

νy
3 0.783 0.883 0.208 0.195 0.637 0.630 0.593 0.796

νy
4 -2.459 0.843 -1.415 -1.4 0.646 -2.249 -2.281 0.799

νy
6 -3.112 0.928 -1.292 -1.296 0.563 -2.555 -2.595 0.82

νy
7 -0.376 0.878 0.539 0.529 0.54 -0.014 -0.031 0.757

νy
8 -2.459 0.868 -0.841 -0.85 0.536 -2.024 -2.051 0.714

λy
2 1.257 0.182 1.039 1.04 0.131 1.186 1.193 0.165

λy
3 1.058 0.151 1.173 1.176 0.119 1.086 1.091 0.138

λy
4 1.265 0.145 1.111 1.106 0.118 1.218 1.228 0.14

λy
6 1.186 0.169 0.850 0.852 0.107 1.076 1.077 0.150

λy
7 1.280 0.160 1.095 1.094 0.1 1.207 1.208 0.135

λy
8 1.266 0.158 0.962 0.963 0.1 1.175 1.180 0.128

σ2
y1

1.891 0.444 1.486 1.509 0.215 0.777 0.799 0.178
σ2

y2
7.373 1.374 4.330 4.409 0.958 4.763 4.896 1.025

σ2
y3

5.067 0.952 3.534 3.590 0.7305 3.929 4.029 0.843
σ2

y4
3.148 0.739 2.581 2.620 0.55 2.061 2.118 0.537

σ2
y5

2.351 0.480 2.567 2.635 0.532 1.868 1.899 0.421
σ2

y6
4.954 0.914 2.801 2.869 0.619 2.662 2.739 0.647

σ2
y7

3.431 0.713 2.767 2.811 0.611 2.495 2.578 0.642
σ2

y8
3.254 0.695 2.422 2.467 0.479 1.937 2.012 0.497

νx
2 -6.228 0.705 -4.059 -4.059 0.48 -6.364 -6.405 0.624

νx
3 -5.634 0.774 -3.361 -3.380 0.536 -5.706 -5.734 0.732

λx
2 2.180 0.139 1.759 1.760 0.095 2.209 2.215 0.123

λx
3 1.819 0.152 1.382 1.381 0.105 1.836 1.838 0.144

σ2
x1

0.082 0.019 0.106 0.109 0.022 0.083 0.085 0.017
σ2

x2
0.120 0.070 0.172 0.179 0.056 0.113 0.118 0.04

σ2
x3

0.467 0.090 0.445 0.454 0.083 0.466 0.478 0.085
ω−1

ζ60 3.956 0.921 2.047 2.091 0.465 4.735 5.046 1.726
ω−1

ζ65 0.172 0.215 3.756 3.826 0.687 2.750 2.840 0.621
µξ 5.054 0.084 5.040 5.035 0.098 5.054 5.053 0.087
ω2

ξ 0.448 0.087 0.655 0.667 0.119 0.433 0.442 0.077
ω2

D15 0.624 0.358 0.648 0.677 0.204 0.625 0.662 0.22
ω2

D24 1.313 0.702 1.215 1.319 0.565 1.409 1.508 0.566
ω2

D26 2.153 0.734 1.406 1.504 0.571 1.756 1.816 0.499
ω2

D37 0.795 0.608 0.885 0.939 0.336 0.79 0.857 0.329
ω2

D48 0.348 0.442 0.719 0.756 0.251 0.317 0.351 0.15
ω2

D68 1.356 0.568 0.89 0.968 0.376 1.125 1.189 0.384
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MLE Centered Subjective MLE
Parameters Parameters Estimates

σ2
y1
∼ IGamma(·, ·) 6.0 9.455 10 36 1.891 0.444

σ2
y2
∼ IGamma(·, ·) 6.0 36.865 10 36 7.373 1.374

σ2
y3
∼ IGamma(·, ·) 6.0 25.335 10 36 5.067 0.952

σ2
y4
∼ IGamma(·, ·) 6.0 15.74 10 36 3.148 0.739

σ2
y5
∼ IGamma(·, ·) 6.0 11.755 10 36 2.351 0.480

σ2
y6
∼ IGamma(·, ·) 6.0 24.77 10 36 4.954 0.914

σ2
y7
∼ IGamma(·, ·) 6.0 17.155 10 36 3.431 0.713

σ2
y8
∼ IGamma(·, ·) 6.0 16.27 10 36 3.254 0.695

σ2
x1
∼ IGamma(·, ·) 6.0 0.41 6 1 0.082 0.019

σ2
x2
∼ IGamma(·, ·) 6.0 0.6 6 1 0.120 0.070

σ2
x3
∼ IGamma(·, ·) 6.0 2.335 6 1 0.467 0.090

µξ ∼ N(·, σ2) 5.054 6.25 5 1 5.054 0.084
ω2

ξ ∼ IGamma(·, ·) 6.0 2.24 6 5 0.448 0.087

ω−1
ζ60 ∼ Gamma(·, ·) 4.0 1.912 16 16 2.092

ω−1
ζ65 ∼ Gamma(·, ·) 4.0 43.977 4.0 93.023 0.091

ω2
D15 ∼ IGamma(·, ·) 6.0 3.12 6.0 5.0 0.624 0.358

ω2
D24 ∼ IGamma(·, ·) 6.0 6.565 6.0 5.0 1.313 0.702

ω2
D26 ∼ IGamma(·, ·) 6.0 10.765 6.0 5.0 2.153 0.734

ω2
D37 ∼ IGamma(·, ·) 6.0 3.975 6.0 5.0 0.795 0.608

ω2
D48 ∼ IGamma(·, ·) 6.0 1.74 6.0 5.0 0.348 0.442

ω2
D68 ∼ IGamma(·, ·) 6.0 6.78 6.0 5.0 1.356 0.568

νy
2 ∼ N(·, σ2) -2.611 6.0 0 1 -2.611 1.064

νy
3 ∼ N(·, σ2) 0.783 6.0 0 1 0.783 0.883

νy
4 ∼ N(·, σ2) -2.459 6.0 0 1 -2.459 0.843

νy
6 ∼ N(·, σ2) -3.112 6.0 0 1 -3.112 0.928

νy
7 ∼ N(·, σ2) -0.376 6.0 0 1 -0.376 0.878

νy
8 ∼ N(·, σ2) -2.459 6.0 0 1 -2.459 0.868

λy
2 ∼ N(·, σ2) 1.257 6.0 1 2 1.287 0.182

λy
3 ∼ N(·, σ2) 1.058 6.0 1 2 1.058 0.151

λy
4 ∼ N(·, σ2) 1.265 6.0 1 2 1.265 0.145

λy
6 ∼ N(·, σ2) 1.186 6.0 1 2 1.186 0.169

λy
7 ∼ N(·, σ2) 1.280 6.0 1 2 1.280 0.160

λy
8 ∼ N(·, σ2) 1.266 6.0 1 2 1.266 0.158

νx
2 ∼ N(·, σ2) -6.228 6.0 0 1 -6.228 0.705

νx
3 ∼ N(·, σ2) -5.634 6.0 0 1 -5.634 0.774

λx
2 ∼ N(·, σ2) 2.180 6.0 1 2 2.180 0.139

λx
3 ∼ N(·, σ2) 1.819 6.0 1 2 1.819 0.152

α60 ∼ N(·, σ2) -2.031 6.0 1 2 -2.031 2.037
α65 ∼ N(·, σ2) -2.332 6.0 1 2 -2.332 1.119
b21 ∼ N(·, σ2) 0.837 6.0 1 2 0.837 0.098
γ60 ∼ N(·, σ2) 1.483 6.0 1.5 2 1.483 0.399
γ65 ∼ N(·, σ2) 0.572 6.0 0.5 2 0.572 0.221

Table 5: Prior distributions for the model parameters and their corresponding ML estimates.
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