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Challenges of Multiscale Computation

Not computationally feasible to adequately resolve equations in
climate models

» spatial resolution in global models ranges from 25 km to 100
km

» equations technically require cm resolution (but standard large
eddy simulation may be OK at 100 m)

» clouds are most important underresolved structure in
atmosphere

» precipitation and condensation affect heat flux and convection
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Parameterization and Superparameterization

Care most about the large scale dynamics, so how about projecting
equations onto resolvable scales?

» Nonlinearity implies unresolved scales affect dynamics of
resolved scales
How to handle these unclosed terms?
» Ignore: disastrously wrong
» Parameterization: Approximations in terms of resolvable
variables

» Superparameterization: Run selective “microscale”
simulations, sample statistics to estimate terms
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Example: Fluid Dynamics

Equations for continuum fluid density p(x,?) and momentum
ol talx;t):

Q&g,il + V- (u(x,t)p(x,t)) =0,

NARAIGE o il Btz B @l ) = W eonle 5,

ot

which is not quite closed because of stress tensor 7.

» Could extend further to energy dynamics
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Example: Fluid Dynamics

Equations for continuum fluid density p(x,?) and momentum
p(x,t)u(x,t):

L) L g u(x (. 1) =0,

) t t
PN 19 (oo, tuae 1) © ulx, 1)) = ~V - 7(3x.1)
(
which is not quite closed because of stress tensor 7.

For simple fluid, standard (Cauchy) parameterization works:
7(x,t) = —puVu(x,t)

where /1 is constant dynamic viscosity.
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Example: Fluid Dynamics
Equations for continuum fluid density p(x,?) and momentum
p(x,t)u(x,t):

Ip(x,1)
ot
+ V- (p(x,t)u(x,t) ®u(x,t)) = =V - 7(x,1),

+ V - (u(x,t)p(x,t)) =0,
d(p(x,t)u(x,t))
ot

which is not quite closed because of stress tensor 7.

Complex fluid (immersed polymers, etc.)

» Standard Parameterization: Find more complex functional
expression for 7 = G(u) (Oldroyd-B, etc.).

» Superparameterization: Estimate 7 for current macroscale
fluid conditions by sampling simulations of immersed polymer
dynamics
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Macroscale fluid simulation
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Polymer chain dynamics

Overdamped dynamics for positions {X;(¢)}2;:

j=1°
"‘,(dX.l = F(Q] ) dt + 11(X1 (f), t) dt
—
+\/2kgT AW/ (),
vdX = [F(Qk) — F(Qx—1)] dt + u(Xk(t),t)dt
+\/2kgTydWi(t),2 <k <M —1
vdXy = —F(Qum-1) dt + u(Xp-1(t),t) dt
+\/2ksTy AW (1),

with
» bond vectors Qi = Xi+1 — X
» monomer friction coefficient
» temperature 1’
» Boltzmann's constant kg

» independent Brownian motions {W(t)}]
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Polymer chain dynamics

Overdamped dynamics for positions {X; ()} ;:

j=1"
vdX; = F(Q])dt T ll(X.l (t), t) dt
T ——
+ /2kg Ty dW, (2),
vdXy = [F(Qk) — F(Qk—1)] dt + u(Xy(t),t)dt
+V2keTHdW(H),2 <k < M —1
vdXy = —F(Qu-1) dt + u(Xp—1(t),t) dt
—
+ \/Qk‘BT’}/ dW (1),

Bond force law examples:
» Linear (Rouse):

» FENE:
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Polymer chain dynamics

Overdamped dynamics for positions {X;(t)}2;:

j=1
~vdX, = F(Qq)dt + u(X;(t),t)dt
+ /2kgT~ dW(t),
vdXy = [F(Qk) — F(Qk-1)] dt + u(Xk(t),t) dt
+ /2kgTydW(t),2 < k< M — 1
vdX = —F(Qar—1) dt + u(Xpr_1(t),t) dt
+ /2kg Ty dW (1),

Simplified Geometry Test Model
» Incompressible, constant density p
» Oscillating shear flow established by parallel oscillating walls

u(x,t) = u(y,t)x
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Interaction of Fluid and Polymer

Macroscopic affects microscopic:
» Fluid velocity gradient appears in equations for polymer
dynamics
» Microscale statistics must be consistent with macroscopic
constraints:
Microscopic affects macroscopic:

» Macroscopic stress on fluid at macroscale position x at time ¢
obtained by statistical average (-) of microscale polymer
configuration:

Apl)r_l I's
. . . ou
TxU”Y'< > Qk®F(Qk)>-X+na\yT
k=1

» n is the number density of polymer chains, (-) denotes
statistical average.
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Macroscopic Constraints
Consistency of mass, momentum between microscale and
macroscale easy to enforce:

(Qk) =0

But configuration tensor A = (Q ® Q) in many cases evolves
slowly, so included as macroscale variable, with dynamical

equation:
OA 9
Rz 9)A+ AR )] + ke Ty
ot 0y
1 M-—1
~277 2= ) Qi @ F(Qu)) + (F(Qi) ® Q)]
k=1

This again has an unclosed term depending on microscale
configuration, and imposes a nontrivial constraint:
M-1

Z (Qr ® Qi) = A.

k=1

1
M-1
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Mathematical Framework for Multiscale Computing
(Vanden-Eijnden, E, Engquist)

Slow macroscale variables Z(t); fast microscale variables Y (%):

dZ =f(Z,Y)dt + T(Z,Y)dWy(t), (1)
dY = e 1g(Z,Y)dt + € V/23(Z,Y) dWy (2). (2)

with small parameter ¢ < 1. May also have some constraints
O(Z.Y)=108
For small ¢, dynamics of Z can be approximated:

dZ ~ f(Z)dt + T'(Z) dW (1),
where f and T involve statistical averages over dynamics of Y
under fixed value of Z (and the possible constraints). Usually not
in explicitly useful form.
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Mathematical Framework for Multiscale Computing
(Vanden-Eijnden, E, Engquist)

Slow macroscale variables Z(t); fast microscale variables Y (t):

dZ =f(Z,Y)dt +T(Z,Y)dWg (1), (1)

dY = e 1g(Z,Y)dt + ¢ V22(Z,Y) dWy (t). (2)
with small parameter ¢ < 1. May also have some constraints
C(2,Y)=1.

For small ¢, dynamics of Z can be approximated:

—_—

dZ ~ f(Z)dt + T'(Z) dW (1),
Parameterization: Make ansatz for structure of}‘—and I‘

Superparameterization: Run simulations of Y (conditioned on Z)

as needed to evaluate f(Z) and I'(Z).
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Heterogeneous Multiscale Method
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A time-parallel multiscale algorithm for
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tP-CKM algorithm

@ Simultaneously solve

e Continuum conservation equations (e.g. incompressible
viscoelastic)

e Kinetic equation for p.d.f. of micro-configuration

e Stochastic equations for micro-configuration

=
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Numerics

e Continuum solver

e Finite volume

e Time-samples kinetic solver to compute closure
e Kinetic solver

e Grid-based for initial tests

e Meshless particle-based (large-dimension configuration space)
e Minimum-entropy modification of p.d.f. (continuum moments)
e Optimal transport of p.d.f.'s

@ Molecular solver

e Stochastic differential equations on GPUs
e Time-parallel kinetic-molecular interaction

=
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Time evolution

e Continuum predictor

Q(t°) Q(t)

Continuum >

Kinetic

Molecular
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Time evolution

e Modify previous probability density

Q(t°) Q(t")
Continuum

1 ’ tO ‘; 1
Kinetic l/)iq ) ¥(g:t)
Molecular
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Time evolution

@ Generate intermediate probability densities

tO tl
Continuum Q) o)
. ¥(q,t°) P(q,th)
Kinetic S - SPE - SO
Molecular
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Time evolution

@ Generate molecular ensembles

, Q(t%) Q(th)
Continuum
; ; tO I, : tl
Kinetic w(({___) O ek~ _1_,/)(q-)
Molecular

@
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Time evolution

@ Evolve stochastic differential equations (GPU)

Q(t°) Q(t)

Continuum

¥(q,t°) P(g,t!

Kinetic S~ S~ R~
Molecular L L L L
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Time evolution

@ Compare probability density estimates

t0 t!
Continuum Q) Q)
42
Kinetic ¥le,t)
Molecular
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Time evolution

e Update continuum viscoelastic stress

. Q(t%)
Continuum -

¥(q,t°)

Kinetic

Molecular

=
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Initialization of Microscale Variables

Possible approaches
» Recycle end results from previous cycle

» Reinitialize from scratch by sampling from prescribed
probability distribution depending on macroscale variables

Reinitialization:

» Typically not accurate guess so require longer microscale
simulations to heal

» Problematic when microscale variable has slow relaxation

Recycling apparently more efficient but can violate constraints.
Possible resolution:

» Project microscale samples onto constraint subspace (how?)
» Accept discrepancy; add compensatory forcing to dynamics

» Reweight the microscale samples (particle filtering)
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Mesoscale Representation of PDF
Currently accomplished by expansion into radial basis functions

L
byt =Y e®B (ly -yl

where
» {yD1} | are points interpolating between mean of (y, to)
at beginning of macro time step and mean of estimated
Y(y.,t1) at end of macro time step
» uses Jordan-Kinderlehrer-Otto (JKO) gradient flow formalism
for Fokker-Planck equation

» B(y) is a radial basis function, taken as Gaussian

exp(—y*/(2h%))

B(y) - \/’W

with h a fixed parameter

> ¢y(t) are coefficients computed through JKO and spline
interpolation
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Centers of Radial Basis Functions
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Statistical Projection: Microscale — Mesoscale

From statistics of {Qy () ,1:1:_11 want to estimate PDF.

Currently, this is done (?7) by projecting the microscale data onto
the vector space spanned by the same radial basis functions as
used to represent the mesoscale, to obtain PDF estimated by
microscale data:

L
by(v,t) =D a®)B (|ly - y© Il)

» only {¢,}2_,(t) depend on the data

Comparison of microscale and mesoscale data is done by
appropriate vector space norm ||c — ¢|| with

L ; 5 1L
c = {ce}ey, ¢ = {Ce}o=s-
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Statistical Projection: Microscale — Mesoscale

From statistics of {Q(t) ,jc”:_ll want to estimate PDF.
Possible areas for improvement:

» Account for how well microscale data is actually consistent
with proposed mesoscale representation

» Better kernel estimation procedures for the high-dimensional
PDF %, allowing centers and widths to respond to data
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Systematic Biases in Microscale-Mesoscale Comparisons

The microscale-mesoscale comparisons may not detect a small
systematic error which accumulates.
Ideas:

» Statistical test for correlations in errors

» Estimate accumulated error through “vectorial” addition of
errors at each time step

» Use mesoscale theory to estimate amplification and
accumulation of error
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Work in Progress

Classical HMM:

» Initialization of microscale variables
tpCKM:

» Mesoscale representation frameworks

» Statistical projection of microscale variables onto mesoscale
PDF

» Estimation of secular errors in microscale-mesoscale
comparisons
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