Discrete Algebraic Models in Systems Biology

Abdul Salam Jarrah
Virginia Bioinformatics Institute at Virginia Tech

December 3, 2008
"To understand biology at the system level, we must examine the structure and dynamics of cellular and organismal function, rather than the characteristics of isolated parts of a cell or organism. Properties of systems, such as robustness, emerge as central issues, and understanding these properties may have an impact on the future of medicine. . . ."

H. Kitano, Science 295, March 2002
To understand biology at the system level, we must examine the structure and dynamics of cellular and organismal function, rather than the characteristics of isolated parts of a cell or organism. Properties of systems, such as robustness, emerge as central issues, and understanding these properties may have an impact on the future of medicine.

H. Kitano, Science 295, March 2002

That is, we need to focus on

- the wiring diagram,
- the local functions of each unit,
- the global dynamics of the system.
Gene Regulatory Networks

"The transcriptional control of a gene can be described by a discrete-valued function of several discrete-valued variables."

"A regulatory network, consisting of many interacting genes and transcription factors, can be described as a collection of interrelated discrete functions and depicted by a wiring diagram similar to the diagram of a digital logic circuit."

R. Karp, Notices of AMS, 2002
Example
Example

The wiring diagram:
Example

The wiring diagram:

Let $f_1 = \neg x_2$, $f_2 = x_4 \lor (x_1 \land x_3)$, $f_3 = x_4 \land x_2$, $f_4 = x_2 \lor x_3$.
Example

The wiring diagram:

Let $f_1 = \neg x_2$, $f_2 = x_4 \lor (x_1 \land x_3)$, $f_3 = x_4 \land x_2$, $f_4 = x_2 \lor x_3$.

The phase space of f:
Finite Dynamical Systems.

Let \(x_1, \ldots, x_n \) be variables which take values in a finite set \(X \). Let \(f_1, \ldots, f_n \) be functions such that \(f_i : X^n \rightarrow X \) determines the state of variable \(x_i \) (local update function). Then we get

\[
f : (f_1, \ldots, f_n) : X^n \rightarrow X^n
\]

The function \(f \) is called a finite dynamical system (FDS).
Polynomial Dynamical Systems.

Let $X = \mathbb{K}$ be a finite field. Then each function

$$f_i : \mathbb{K}^n \rightarrow \mathbb{K}$$

can be expressed uniquely as a polynomial in $\mathbb{K}[x_1, \ldots, x_n]$:
Polynomial Dynamical Systems.

Let $X = \mathbb{K}$ be a finite field. Then each function

$$f_i : \mathbb{K}^n \rightarrow \mathbb{K}$$

can be expressed uniquely as a polynomial in $\mathbb{K}[x_1, \ldots, x_n]$:

Suppose $|\mathbb{K}| = q$. Then

$$f_i(x_1, \ldots, x_n) = \sum_{(c_1, \ldots, c_n) \in \mathbb{K}^n} [f_i(c_1, \ldots, c_n) \prod_{i=1}^{n}(1 - (x_i - c_i)^{q-1})]$$
Polynomial Dynamical Systems.

Let $X = \mathbb{K}$ be a finite field. Then each function

$$f_i : \mathbb{K}^n \rightarrow \mathbb{K}$$

can be expressed uniquely as a polynomial in $\mathbb{K}[x_1, \ldots, x_n]$: Suppose $|\mathbb{K}| = q$. Then

$$f_i(x_1, \ldots, x_n) = \sum_{(c_1, \ldots, c_n) \in \mathbb{K}^n} [f_i(c_1, \ldots, c_n) \prod_{i=1}^n (1 - (x_i - c_i)^{q-1})]$$

The FDS $f = (f_1, \ldots, f_n)$ is called a Polynomial dynamical system (PDS).
Polynomial Dynamical Systems.

Let $X = \mathbb{K}$ be a finite field. Then each function

$$f_i : \mathbb{K}^n \rightarrow \mathbb{K}$$

can be expressed uniquely as a polynomial in $\mathbb{K}[x_1, \ldots, x_n]$.

Suppose $|\mathbb{K}| = q$. Then

$$f_i(x_1, \ldots, x_n) = \sum_{(c_1, \ldots, c_n) \in \mathbb{K}^n} [f_i(c_1, \ldots, c_n) \prod_{i=1}^{n} (1 - (x_i - c_i)^{q-1})]$$

The FDS $f = (f_1, \ldots, f_n)$ is called a Polynomial dynamical system (PDS).

Cellular automata and Boolean networks are classes of PDS.
Inference Problem

Let \mathbb{K} be a finite field, x_1, \ldots, x_n variables with values in \mathbb{K}. Let $(s_1, r_1), \ldots, (s_t, r_t)$ be state transition observations, where $s_j, r_j \in \mathbb{K}^n$.

- Find the "most-likely" wiring diagram.
- Find the "most-likely" function $f : \mathbb{K}^n \rightarrow \mathbb{K}^n$, such that $f(s_i) = r_i$, for all i.
Inference of Polynomial Networks

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in \mathbb{F}_q^n\)

- Find all possible static networks (dependency graphs, interaction networks, wiring diagram)
- Using available biological information, identify a static network \(Y\),
- Find all PDS \(f\) such that \(f\) fits the data: \(f : K^n \rightarrow K^n\) with \(f(s_j) = r_j\),
- Select a "biologically relevant" model \(f\),
- Study the dynamics of \(f\).
All Dynamic Models - Laubenbacher & Stigler
All Dynamic Models - Laubenbacher & Stigler

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in K^n\).

Find all possible functions \(f = (f_1, \ldots, f_n) : K^n \rightarrow K^n\) such that \(f(s_j) = r_j\).
All Dynamic Models - Laubenbacher & Stigler

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in \mathbb{K}^n\).

Find all possible functions \(f = (f_1, \ldots, f_n) : \mathbb{K}^n \rightarrow \mathbb{K}^n\) such that \(f(s_j) = r_j\).

For each coordinate \(i\), find all possible functions (polynomials) \(f_i : \mathbb{K}^n \rightarrow \mathbb{K}\) such that \(f_i(s_j) = r_{j,i}\).
All Dynamic Models - Laubenbacher & Stigler

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in \mathbb{K}^n\).

Find all possible functions \(f = (f_1, \ldots, f_n) : \mathbb{K}^n \rightarrow \mathbb{K}^n\) such that \(f(s_j) = r_j\).

For each coordinate \(i\), find all possible functions (polynomials) \(f_i : \mathbb{K}^n \rightarrow \mathbb{K}\) such that \(f_i(s_j) = r_{j,i}\).

Find one particular function. For example,

\[
g_i(x_1, \ldots, x_n) = \sum_{j=1}^{t} r_{j,i} \prod_{e=1}^{n} (1 - (x_e - s_{j,e})^{q-1})
\]
All Dynamic Models - Laubenbacher & Stigler

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in \mathbb{K}^n\).

Find all possible functions \(f = (f_1, \ldots, f_n) : \mathbb{K}^n \rightarrow \mathbb{K}^n\) such that \(f(s_j) = r_j\).

For each coordinate \(i\), find all possible functions (polynomials) \(f_i : \mathbb{K}^n \rightarrow \mathbb{K}\) such that \(f_i(s_j) = r_{j,i}\).

Find one particular function. For example,

\[
g_i(x_1, \ldots, x_n) = \sum_{j=1}^{t} r_{j,i} \prod_{e=1}^{n} (1 - (x_e - s_{j,e})^{q-1})
\]

Find the set \(I\) of all functions \(h\) such that \(h(s_j) = 0\) for all \(1 \leq j \leq r\).
All Dynamic Models - Laubenbacher & Stigler

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in \mathbb{K}^n\).

Find all possible functions \(f = (f_1, \ldots, f_n) : \mathbb{K}^n \rightarrow \mathbb{K}^n\) such that \(f(s_j) = r_j\).

For each coordinate \(i\), find all possible functions (polynomials) \(f_i : \mathbb{K}^n \rightarrow \mathbb{K}\) such that \(f_i(s_j) = r_{j,i}\).

Find one particular function. For example,

\[
g_i(x_1, \ldots, x_n) = \sum_{j=1}^{t} r_{j,i} \prod_{e=1}^{n} (1 - (x_e - s_{j,e})^{q-1})
\]

Find the set \(I\) of all functions \(h\) such that \(h(s_j) = 0\) for all \(1 \leq j \leq r\).

The set of all functions \(f_i\) such that \(f_i(s_j) = r_{j,i}\) is the set \(g_i + I := \{g_i + h \mid h \in I\}\).
All Dynamic Models - Laubenbacher & Stigler

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in \mathbb{K}^n\).

Find all possible functions \(f = (f_1, \ldots, f_n) : \mathbb{K}^n \rightarrow \mathbb{K}^n\) such that \(f(s_j) = r_j\).

For each coordinate \(i\), find all possible functions (polynomials) \(f_i : \mathbb{K}^n \rightarrow \mathbb{K}\) such that \(f_i(s_j) = r_{j,i}\).

Find one particular function. For example,

\[
g_i(x_1, \ldots, x_n) = \sum_{j=1}^{t} r_{j,i} \prod_{e=1}^{n} (1 - (x_e - s_{j,e})^{q-1})
\]

Find the set \(I\) of all functions \(h\) such that \(h(s_j) = 0\) for all \(1 \leq j \leq r\).

The set of all functions \(f_i\) such that \(f_i(s_j) = r_{j,i}\) is the set \(g_i + I := \{g_i + h \mid h \in I\}\).

The model space is \(g + I := \{(g_1 + h_1, \ldots, g_n + h_n) : h_1, \ldots, h_n \in I\}\).
$g + I$ is huge!

Three possible ways to proceed:
$g + I$ is huge!

Three possible ways to proceed:
Pick some minimal functions with respect to some term orders and analyze their dynamics.
\[g + I \text{ is huge!} \]

Three possible ways to proceed:

Pick some minimal functions with respect to some term orders and analyze their dynamics.

Build a probabilistic model from ALL minimal functions using the Gröbner fan of the ideal \(I \).
Three possible ways to proceed:

Pick some minimal functions with respect to some term orders and analyze their dynamics.

Build a probabilistic model from ALL minimal functions using the Gröbner fan of the ideal I.

Restrict the model space $g + I$ to ONLY biologically relevant models.
Probabilistic Polynomial Model

- The Gröbner fan of I has finitely many cones.
- Any two term orders in the same cone give the same minimal (normal form) of g_i, for all i.
- For each i, Let h_{i1}, \ldots, h_{ij} be the set of all minimal forms of g_i.
- For each h_{ik}, assign a probability p_{ik} based on the size and number of cones which gives h_{ik} as the minimal form.
Biologically Relevant Functions
Biologically Relevant Functions

Out of the model space $g + I$, identify a biologically relevant function?
Biologically Relevant Functions

Out of the model space $g + I$, identify a biologically relevant function?

Different classes of functions have been proposed: Chain functions, Stabilizing functions, biologically meaningful functions, (nested) canalyzing functions,...
Biologically Relevant Functions

Out of the model space $g + I$, identify a biologically relevant function?

Different classes of functions have been proposed: Chain functions, Stabilizing functions, biologically meaningful functions, (nested) canalyzing functions,....

“canalisation” introduced by the geneticist Waddington (1942) to represent the ability of a genotype to produce the same phenotype regardless of environmental variability.
Canalyzing Functions
Canalyzing Functions

Let f be a Boolean function on the variables x_1, \ldots, x_n. That is, for $1 \leq i \leq n$, there exists $(a_1, \ldots, a_n) \in \mathbb{F}_2^n$ such that

$$f(a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n) \neq f(a_1, \ldots, a_{i-1}, 1 + a_i, a_{i+1}, \ldots, a_n).$$
Canalyzing Functions

Let f be a Boolean function on the variables x_1, \ldots, x_n. That is, for $1 \leq i \leq n$, there exists $(a_1, \ldots, a_n) \in \mathbb{F}_2^n$ such that

$$f(a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n) \neq f(a_1, \ldots, a_{i-1}, 1 + a_i, a_{i+1}, \ldots, a_n).$$

Definition. f is canalyzing if there exists i and a such that

$$f(x_1, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_n) = b$$

is constant.
Canalyzing Functions

Let f be a Boolean function on the variables x_1, \ldots, x_n. That is, for $1 \leq i \leq n$, there exists $(a_1, \ldots, a_n) \in \mathbb{F}_2^n$ such that

$$f(a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n) \neq f(a_1, \ldots, a_{i-1}, 1 + a_i, a_{i+1}, \ldots, a_n).$$

Definition. f is canalyzing if there exists i and a such that

$$f(x_1, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_n) = b$$

is constant.

Example. $AND(x, y) = x \land y$ is a canalyzing function in the variable x with input 0 and output 0.

$XOR(x, y) := (x \lor y) \land (\overline{x} \land y)$ is not canalyzing in either variable.
Nested Canalyzing Functions
Nested Canalyzing Functions

Definition. f is a *nested canalyzing function* (NCF) in the variable order x_1, x_2, \ldots, x_n with canalyzing input values a_1, \ldots, a_n and canalyzed output values b_1, \ldots, b_n, respectively, if

$$f(x) = \begin{cases}
 b_1 & \text{if } x_1 = a_1, \\
 b_2 & \text{if } x_1 \neq a_1 \text{ and } x_2 = a_2, \\
 b_3 & \text{if } x_1 \neq a_1 \text{ and } x_2 \neq a_2 \text{ and } x_3 = a_3, \\
 \vdots & \vdots \\
 b_n & \text{if } x_1 \neq a_1 \text{ and } \cdots \text{ and } x_{n-1} \neq a_{n-1} \text{ and } x_n = a_n, \\
 b_n + 1 & \text{if } x_1 \neq a_1 \text{ and } \cdots \text{ and } x_n \neq a_n.
\end{cases}$$
Nested Canalyzing Functions

Definition. \(f \) is a nested canalyzing function (NCF) in the variable order \(x_1, x_2, \ldots, x_n \) with canalyzing input values \(a_1, \ldots, a_n \) and canalyzed output values \(b_1, \ldots, b_n \), respectively, if

\[
f(x) = \begin{cases}
 b_1 & \text{if } x_1 = a_1, \\
 b_2 & \text{if } x_1 \neq a_1 \text{ and } x_2 = a_2, \\
 b_3 & \text{if } x_1 \neq a_1 \text{ and } x_2 \neq a_2 \text{ and } x_3 = a_3, \\
 \vdots & \vdots \\
 b_n & \text{if } x_1 \neq a_1 \text{ and } \cdots \text{ and } x_{n-1} \neq a_{n-1} \text{ and } x_n = a_n, \\
 b_n + 1 & \text{if } x_1 \neq a_1 \text{ and } \cdots \text{ and } x_n \neq a_n.
\end{cases}
\]

Example. \(f(x, y, z) = x(y - 1)z \) is NSF. While \(g(x, y, z, w) = x(y + z) \) is NOT NCF.
Nested Canalyzing in any variable order
Nested Canalyzing in any variable order

Let σ be a permutation on $[n]$. A function $f = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i$ is a nested canalyzing function in the variable order $x_{\sigma(1)}, \ldots, x_{\sigma(n)}$ if and only if $(c_\emptyset, \ldots, c_{[n]}) \in V_{\sigma}^{ncf}$, where

$$V_{\sigma} = \{(a_\emptyset, \ldots, a_{[n]}) \in \mathbb{F}_2^{2^n} : a_{[n]} = 1, \ a_S = a_{[r_\sigma S]} \prod_{w \in [r_\sigma S] \setminus S} a_{[n]\{w\}}, \ S \subseteq [n]\}.$$
Nested Canalyzing in any variable order

Let \(\sigma \) be a permutation on \([n]\). A function \(f = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i \) is a nested canalyzing function in the variable order \(x_{\sigma(1)}, \ldots, x_{\sigma(n)} \) if and only if \((c_\emptyset, \ldots, c_{[n]}) \in V_{\sigma}^{ncf}\), where

\[
V_\sigma = \{(a_\emptyset, \ldots, a_{[n]}) \in \mathbb{F}_2^{2^n} : a_{[n]} = 1, a_S = a_{[r_S]} \prod_{w \in [r_S] \setminus S} a_{[n] \setminus \{w\}}, S \subseteq [n]\}.
\]

The set of all nested canalyzing functions in any variable order is

\[
V = \bigcup_\sigma V_\sigma.
\]
All NCF in $g_i + I$
All NCF in $g_i + I$

Recall that $g_i(x_1, \ldots, x_n) = \sum_{j=1}^{t} r_{j,i} \prod_{e=1}^{n} (1 - (x_e - s_{j,e}))$ and $I = \langle \prod_{j=1}^{t} (1 - \prod_{e=1}^{n} (1 - (x_e - s_{j,e}))) \rangle$.
All NCF in $g_i + I$

Recall that $g_i(x_1, \ldots, x_n) = \sum_{j=1}^{t} r_{j,i} \prod_{e=1}^{n}(1 - (x_e - s_{j,e}))$ and $I = \langle \prod_{j=1}^{t}(1 - \prod_{e=1}^{n}(1 - (x_e - s_{j,e}))) \rangle$.

$f_i \in g_i + I$ if and only if $f_i = g_i + h(x_1, \ldots, x_n) \prod_{j=1}^{t}(1 - \prod_{e=1}^{n}(1 - (x_e - s_{j,e})))$, for some polynomial h, say $h = \sum_{H \subseteq [n]} b_H \prod_{i \in H} x_i$.
All NCF in $g_i + I$

Recall that $g_i(x_1, \ldots, x_n) = \sum_{j=1}^{t} r_{j,i} \prod_{e=1}^{n} (1 - (x_e - s_{j,e}))$ and $I = \langle \prod_{j=1}^{t} (1 - \prod_{e=1}^{n} (1 - (x_e - s_{j,e}))) \rangle$.

$f_i \in g_i + I$ if and only if

$f_i = g_i + h(x_1, \ldots, x_n) \prod_{j=1}^{t} (1 - \prod_{e=1}^{n} (1 - (x_e - s_{j,e})))$, for some polynomial h, say $h = \sum_{H \subseteq [n]} b_H \prod_{i \in H} x_i$.

Expand the right hand side and collect terms,

$f_i = \sum_{S \subseteq [n]} W_S(b_H, r_i, s_j) \prod_{i \in S} x_i$.
All NCF in $g_i + I$

Recall that $g_i(x_1, \ldots, x_n) = \sum_{j=1}^{t} r_{j,i} \prod_{e=1}^{n}(1 - (x_e - s_{j,e}))$ and $I = \langle \prod_{j=1}^{t}(1 - \prod_{e=1}^{n}(1 - (x_e - s_{j,e}))) \rangle$.

$f_i \in g_i + I$ if and only if
$f_i = g_i + h(x_1, \ldots, x_n) \prod_{j=1}^{t}(1 - \prod_{e=1}^{n}(1 - (x_e - s_{j,e})))$, for some polynomial h, say $h = \sum_{H\subseteq[n]} b_H \prod_{i\in H} x_i$.

Expand the right hand side and collect terms,
$f_i = \sum_{S\subseteq[n]} W_S(b_H, r_i, s_j) \prod_{i\in S} x_i$.

Let J be the ideal generated by $\{c_S - W_S(b_H, r_i, s_j) : S \subseteq [n] \}$. Then $I(V) + J \cap \mathbb{F}_2[c_S, r_i, s_j]$ is the ideal of all NCFs in the model space.
Other classes of Functions?

- Define (nested) canalyzing over arbitrary finite field. Parameterize this set of functions and identify them from the model space.

- Parameterize the class of logical functions and identify them from the model space.
Static Network from Data
Static Network from Data

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in \mathbb{K}^n\). Find all possible static networks that govern these data.
Static Network from Data

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in \mathbb{K}^n\). Find all possible static networks that govern these data.

For each transition,

\[
\begin{align*}
 s_j &= (s_{j,1}, \ldots, s_{j,n}) \\
 r_j &= (r_{j,1}, \ldots, r_{j,n})
\end{align*}
\]
Static Network from Data

Given \((s_1, r_1), \ldots, (s_t, r_t)\); state transition observations, where \(s_j, r_j \in \mathbb{K}^n\). Find all possible static networks that govern these data.

For each transition,

\[
s_j = (s_{j,1}, \ldots, s_{j,n})
\]
\[
r_j = (r_{j,1}, \ldots, r_{j,n})
\]

For a fixed coordinate \(i\), find all possible (minimal) subsets \(\{y_1, \ldots, y_v\} \subseteq \{x_1, \ldots, x_n\}\) such that there a function \(f_i \in \mathbb{K}[y_1, \ldots, y_v]\) and \(f_i(s_j) = r_{j,i}\).
Static Network from Data (cont.)
Static Network from Data (cont.)

For each fixed coordinate i, let $T_0, T_1, \ldots, T_{q-1} \subset \mathbb{K}^n$ where

$$T_a = \{ s_j \mid r_{j,i} = a \} \text{ for all } a \in \mathbb{K}. $$
Static Network from Data (cont.)

For each fixed coordinate i, let $T_0, T_1, \ldots, T_{q-1} \subset K^n$ where

$$T_a = \{ s_j \mid r_{j,i} = a \} \text{ for all } a \in K.$$

Let

$$Y = \{ g \in K[x_1, \ldots, x_n] \mid g(b) = a, \text{ for all } b \in T_a \text{ and all } a \in K \}.$$
Static Network from Data (cont.)

For each fixed coordinate i, let $T_0, T_1, \ldots, T_{q-1} \subset K^n$ where

$$T_a = \{ s_j \mid r_{j,i} = a \} \text{ for all } a \in K.$$

Let

$$Y = \{ g \in K[x_1, \ldots, x_n] \mid g(b) = a, \text{ for all } b \in T_a \text{ and all } a \in K \}.$$

We are interested in the elements of Y which involve only a small number of the variables.
Static Network from Data (cont.)
Static Network from Data (cont.)

definition. Let $M_T \subset K[x_1, \ldots, x_n]$ be the square-free monomial ideal generated by

$$\{m(p, q) \mid p \in T_a, q \in T_b, \text{ and } 0 \leq a < b < q\},$$

where, for $p, q \in K^n$,

$$m(p, q) := \prod_{p_\alpha \neq q_\alpha} x_\alpha.$$
Static Network from Data (cont.)

definition. Let $M_T \subset K[x_1, \ldots, x_n]$ be the square-free monomial ideal generated by

$$\{m(p, q) \mid p \in T_a, q \in T_b, \text{and } 0 \leq a < b < q\},$$

where, for $p, q \in K^n$,

$$m(p, q) := \prod_{p_\alpha \neq q_\alpha} x_\alpha.$$

Theorem For any subset $F \subset [n], K[x_i \mid i \in F] \cap Y \neq \emptyset$ if and only if $M_T \subset \langle x_i \mid i \in F \rangle$.
Static Network from Data (cont.)
Static Network from Data (cont.)

Theorem For any subset \(F \subset [n], \mathbb{K}[x_i \mid i \in F] \cap Y \neq \emptyset \) if and only if \(M_T \subset \langle x_i \mid i \in F \rangle \).
Static Network from Data (cont.)

Theorem For any subset $F \subset [n]$, $\mathbb{K}[x_i \mid i \in F] \cap Y \neq \emptyset$ if and only if $M_T \subset \langle x_i \mid i \in F \rangle$.

Proof. $M_T \subset \langle x_i \mid i \in F \rangle \iff \prod_{p \neq q} x_{\alpha} \in \langle x_i \mid i \in F \rangle$ for all $p \in T_a, q \in T_b$, and $0 \leq a < b < q \iff$ For $p \in T_a, q \in T_b$, and $0 \leq a < b < q$, there exists $\alpha \in F$ such that $p_{\alpha} \neq q_{\alpha} \iff$ there exists $g \in \mathbb{K}[x_i \mid i \in F]$ such that $g(p) \neq g(q)$ for all $p \in T_a, q \in T_b$, and $0 \leq a < b < q \iff \mathbb{K}[x_i \mid i \in F] \cap Y \neq \emptyset$
Static Network from Data (cont.)

Theorem For any subset $F \subset [n]$, $\mathbb{K}[x_i \mid i \in F] \cap Y \neq \emptyset$ if and only if $M_T \subset \langle x_i \mid i \in F \rangle$.

Proof. $M_T \subset \langle x_i \mid i \in F \rangle \iff \prod_{p_\alpha \neq q_\alpha} x_\alpha \in \langle x_i \mid i \in F \rangle$ for all $p \in T_a, q \in T_b$, and $0 \leq a < b < q \iff$ For $p \in T_a, q \in T_b$, and $0 \leq a < b < q$, there exists $\alpha \in F$ such that $p_\alpha \neq q_\alpha \iff$ there exists $g \in \mathbb{K}[x_i \mid i \in F]$ such that $g(p) \neq g(q)$ for all $p \in T_a, q \in T_b$, and $0 \leq a < b < q \iff \mathbb{K}[x_i \mid i \in F] \cap Y \neq \emptyset$.

Compute the primary decomposition of M_T.
References:

Thank You