Sparse Regression with Non-Convex Regularization

Tong Zhang

Rutgers University

Background

Convex methods have become tremendously popular

- interesting formulations
- computation: can be solved efficiently
- formulations can be separated from computation
- different computational procedures lead to the same solutions
- some strong theoretical resutls can be proved
- working with the KKD condition at the solution

Background

Convex methods have become tremendously popular

- interesting formulations
- computation: can be solved efficiently
- formulations can be separated from computation
- different computational procedures lead to the same solutions
- some strong theoretical resutls can be proved
- working with the KKD condition at the solution

Nonconvex methods are much more difficult to analyze

- formulation and computation needs to be considered together
- different computational procedures lead to different solutions
- rigorously speaking, one cannot study one particular solution and its KKD condition
- may suffer from stability problems (multiple local solutions)

Background

Convex methods have become tremendously popular

- interesting formulations
- computation: can be solved efficiently
- formulations can be separated from computation
- different computational procedures lead to the same solutions
- some strong theoretical resutls can be proved
- working with the KKD condition at the solution

Nonconvex methods are much more difficult to analyze

- formulation and computation needs to be considered together
- different computational procedures lead to different solutions
- rigorously speaking, one cannot study one particular solution and its KKD condition
- may suffer from stability problems (multiple local solutions)

However, nonconvex formulations are natural for sparse learning.

This Talk: analyzing nonconvex methods

Need to study formulation and computation together

This Talk: analyzing nonconvex methods

Need to study formulation and computation together

- Natural formualtion requires nonconvex penalty
- Under certain assumptions (RIP), convex methods are not optimal
- can be fixed by nonconvex procedures

This Talk: analyzing nonconvex methods

Need to study formulation and computation together

- Natural formualtion requires nonconvex penalty
- Under certain assumptions (RIP), convex methods are not optimal
- can be fixed by nonconvex procedures
- What's known before: exists a good local minimum solution (better than Lasso)
- but it is not clear one can find such a local solution efficiently

This Talk: analyzing nonconvex methods

Need to study formulation and computation together

- Natural formualtion requires nonconvex penalty
- Under certain assumptions (RIP), convex methods are not optimal
- can be fixed by nonconvex procedures
- What's known before: exists a good local minimum solution (better than Lasso)
- but it is not clear one can find such a local solution efficiently
- A specific computational procedure for nonconvex methods
- we prove the procedure lead to good local solution better than Lasso (under reasonable conditions)
- A more general theory

Sparse Regression

$$
Y=X \bar{\beta}+\epsilon
$$

L_{1} regularization: convex relaxation (computationally efficient)

$$
\hat{\beta}_{L_{1}}=\arg \min _{\beta}\left[\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}\right]
$$

Sparse Regression

$$
Y=X \bar{\beta}+\epsilon
$$

L_{1} regularization: convex relaxation (computationally efficient)

$$
\hat{\beta}_{L_{1}}=\arg \min _{\beta}\left[\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}\right]
$$

Theoretical question: recovery performance

- Variable selection (can we find nonzero variables):

$$
\operatorname{supp}(\hat{\beta}) \approx \operatorname{supp}(\bar{\beta}) ?
$$

- Parameter estimation (how well we can estimate $\bar{\beta}$):

$$
\|\hat{\beta}-\bar{\beta}\|_{2}^{2} \leq ?
$$

RIP Condition

Definition (RIP — Sparse Eigenvalue Condition)

X satisfies the sparse eigenvalue condition at sparsity level s if

$$
\begin{aligned}
& \inf \left\{n^{-1}\|X \beta\|_{2}^{2}:\|\beta\|_{2}=1,\|\beta\|_{0} \leq s\right\}>c_{-} \\
& \sup \left\{n^{-1}\|X \beta\|_{2}^{2}:\|\beta\|_{2}=1,\|\beta\|_{0} \leq s\right\}<c_{+}
\end{aligned}
$$

for constants $c_{-}>0$ and $c_{+}<\infty$

- requires the condition to hold at $s=O\left(\|\bar{\beta}\|_{0}\right)$
- Slightly more general than original RIP of Candes-Tao for compressed sensing.
- High dimensional generalization of classical regularity condition of design matrix being rank- p

Results under Restricted Isometry Property

- Variable selection guarantees:
- Lasso is not variable selection consistent under noise
- Parameter estimation (oracle property):
- Under variable selection consistency, we expect:

$$
\|\bar{\beta}-\hat{\beta}\|^{2}=O\left(\sigma^{2}\|\bar{\beta}\|_{0} / n\right)
$$

- Lasso: bias shows up as $\ln p$ factor

$$
\|\bar{\beta}-\hat{\beta}\|^{2}=O\left(\sigma^{2}\|\bar{\beta}\|_{0} \ln \mathbf{p} / n\right)
$$

high dimensional version of Lasso bias first discussed by Fan and Li.

Can we do better under RIP?

- Want to: achieve optimal results under RIP
- variable selection consistency and parameter estimation without bias
- L_{1} not good enough approximation for L_{0} regularization

Can we do better under RIP?

- Want to: achieve optimal results under RIP
- variable selection consistency and parameter estimation without bias
- L_{1} not good enough approximation for L_{0} regularization
- Improve convex relaxation:
- require nonconvex optimization
- difficult to analyze
- computational efficiency statement for nonconvex optimization

Can we do better under RIP?

- Want to: achieve optimal results under RIP
- variable selection consistency and parameter estimation without bias
- L_{1} not good enough approximation for L_{0} regularization
- Improve convex relaxation:
- require nonconvex optimization
- difficult to analyze
- computational efficiency statement for nonconvex optimization

This lecture:

- a special computational procedure: multi-stage convex relaxation
- a general theory of nonconvex regularization

Non-convex formulation

- Approximate L_{0} by smooth concave sparse regularization g
- Find local minimum by solving nonconvex problem

$$
\hat{\beta}_{g}=\arg \min _{\beta}\left[\|Y-X \beta\|_{2}^{2}+\lambda g(\beta)\right]
$$

want $g(\beta)$ to be closer to L_{0} regularization than L_{1} regularization

- Examples
- L_{p} regularization: $g(\beta)=\sum_{j}\left|\beta_{j}\right|^{p}(p<1)$
- smoothed L_{p} regularization: $g(\beta)=\sum_{j}\left[\left(\alpha+\left|\beta_{j}\right|\right)^{p}-\alpha\right] /\left(p \alpha^{p-1}\right)(p<1)$
- capped L_{1} regularization: $g(\beta)=\sum_{j} \min \left(\alpha,\left|\beta_{j}\right|\right)$.

Sparse Regularizers (component-wise)

Derivative of Sparse Regularizers

Convex relaxation

- Want to optimize:

$$
\begin{equation*}
\hat{\beta}=\arg \min _{\beta \in R^{p}}\left[n^{-1}\|X \beta-Y\|_{2}^{2}+\lambda g(\beta)\right] \tag{1}
\end{equation*}
$$

- $g(\beta)$ concave with respect to element-wise vector function $\mathbf{h}(\beta)$ (e.g. $\mathbf{h}(\beta)=|\beta|)$: exists g^{*} so that

$$
g(\beta)=\inf _{\mathbf{v} \in R^{p}}\left[\mathbf{v}^{T} \mathbf{h}(\beta)+g^{*}(\mathbf{v})\right]
$$

- Rewrite (1) as

$$
[\hat{\beta}, \hat{\mathbf{v}}]=\arg \min _{\beta, \mathbf{v} \in R^{d}}\left[n^{-1}\|X \beta-Y\|_{2}^{2}+\lambda\left[\mathbf{v}^{T} \mathbf{h}(\beta)+g^{*}(\mathbf{v})\right]\right]
$$

with auxiliary convex relaxation parameter \mathbf{v}.

Multi-stage Convex Relaxation

- Numerical algorithm for solving

$$
[\hat{\beta}, \hat{\mathbf{v}}]=\arg \min _{\beta, \mathbf{v} \in R^{d}}\left[n^{-1}\|X \beta-Y\|_{2}^{2}+\lambda\left[\mathbf{v}^{T} \mathbf{h}(\beta)+g^{*}(\mathbf{v})\right]\right]
$$

- Alternating Optimization: iterate from stage $\ell=1,2, \ldots$
- fix \mathbf{v} and optimize β :

$$
\hat{\beta}^{(\ell)}=\arg \min _{\beta \in R^{d}}\left[n^{-1}\|X \beta-Y\|_{2}^{2}+\lambda \hat{\mathbf{v}}_{o l d}^{T} \mathbf{h}(\beta)\right],
$$

solving weighted Lasso in β

- $\operatorname{fix} \beta$ and optimize \mathbf{v} :

$$
\begin{equation*}
\hat{\mathbf{v}}_{\text {new }}=\arg \min _{\mathbf{v} \in R^{d}}\left[\mathbf{v}^{\top} \mathbf{h}\left(\beta^{(\ell)}\right)+g^{*}(\mathbf{v})\right], \tag{2}
\end{equation*}
$$

with closed form solution, leading to better and better convex relaxation.

Algorithm for $\mathbf{h}(\beta)=|\beta|$

Algorithm

- Initialization: $v_{j}^{(0)}=\lambda(j=1, \ldots, p)$
- Iterate $\ell=1,2, \ldots$

$$
\begin{aligned}
& \hat{\beta}^{(\ell)}=\arg \min _{\beta \in R^{p}}\left[\frac{1}{n}\|X \beta-Y\|_{2}^{2}+\sum_{j=1}^{p} v_{j}^{(\ell-1)}\left|\beta_{j}\right|\right] \\
& v_{j}^{(\ell)}=\lambda g^{\prime}\left(\left|\hat{\beta}_{j}^{(\ell)}\right|\right) \quad(j=1, \ldots, p)
\end{aligned}
$$

Remarks:

- Computationally efficient (solving convex/closed form solution problems each iteration)
- Converge to a local minimum of non-convex formulation
- Equivalent to local linear approximation of (Zou and Li)

Algorithm for $\mathbf{h}(\beta)=|\beta|$

Algorithm

- Initialization: $v_{j}^{(0)}=\lambda(j=1, \ldots, p)$
- Iterate $\ell=1,2, \ldots$

$$
\begin{aligned}
& \hat{\beta}^{(\ell)}=\arg \min _{\beta \in R^{p}}\left[\frac{1}{n}\|X \beta-Y\|_{2}^{2}+\sum_{j=1}^{p} v_{j}^{(\ell-1)}\left|\beta_{j}\right|\right] \\
& v_{j}^{(\ell)}=\lambda g^{\prime}\left(\left|\hat{\beta}_{j}^{(\ell)}\right|\right) \quad(j=1, \ldots, p)
\end{aligned}
$$

Remarks:

- Computationally efficient (solving convex/closed form solution problems each iteration)
- Converge to a local minimum of non-convex formulation
- Equivalent to local linear approximation of (Zou and Li) Key question: is the local minimum good in high dimension?

High Dimensional Theory under RIP

Theorem (T.Z. 10 \& 12)

Under RIP, multi-stage convex relaxation with appropriate nonconvex regularizer $g(\beta)$ gives a solution

$$
\operatorname{supp}(\hat{\beta})=\operatorname{supp}(\bar{\beta}), \quad\|\hat{\beta}-\bar{\beta}\|_{2}^{2} \leq O\left(\sigma^{2}\|\bar{\beta}\|_{0} / n\right)
$$

after log $\left(\|\bar{\beta}\|_{0}\right)$ stages; if for somce constant c :

$$
\min _{j \in \operatorname{supp}(\bar{\beta})}\left|\bar{\beta}_{\bar{\beta}}\right| \geq c \sigma \sqrt{\ln p / n} .
$$

- local minimum found by the algorithm is good under RIP
- Two-stage version is adaptive Lasso (Zou), which suffers from bias (C.H. Zhang), and sub-optimal for variable selection under RIP:

$$
\min _{j \in \operatorname{supp}(\bar{\beta})}\left|\overline{\beta_{j}}\right| \geq c \sigma \sqrt{\|\bar{\beta}\|_{0} \ln p / n .}
$$

An Illustrative Example

- 500 variables and 100 data points
- True coefficients (5 nonzeros)

	coefficient	2-norm error
truth	$[8.2,1.7,5.4,6.9,5.7,0.0,0.0,0.0,0.0, \cdots]$	0
Stage 1	$[6.0,0.0,4.7,4.8,3.9,0.6,0.7,1.2,0.0, \ldots]$	4.4
Stage 2	$[7.7,0.4,5.7,6.3,5.7,0.0,0.0,0.2,0.0, \ldots]$	1.6
Stage 3	$[7.8,1.2,5.7,6.6,5.7,0.0,0.0,0.0,0.0, \ldots]$	0.98

- The result is with capped- L_{1} regularization: stablizes after stage 3.
- Errors are highlighted.

Summary of Multi-stage Convex Relaxation

- A specialized procedure for solving concave regularizaton.
- lead to a local minimum
- optimal performance of the local minimum under RIP
- optimal for parameter estimation and variable selection

Summary of Multi-stage Convex Relaxation

- A specialized procedure for solving concave regularizaton.
- lead to a local minimum
- optimal performance of the local minimum under RIP
- optimal for parameter estimation and variable selection
- Similar results hold for other procedures, and in particular forward-backward procedure by T.Z. and MC+ by C.H. Zhang.

Summary of Multi-stage Convex Relaxation

- A specialized procedure for solving concave regularizaton.
- lead to a local minimum
- optimal performance of the local minimum under RIP
- optimal for parameter estimation and variable selection
- Similar results hold for other procedures, and in particular forward-backward procedure by T.Z. and MC+ by C.H. Zhang.
- Can we prove something more general?
- What's the relationship among local minima from different procedures?
- What's the property of global optimal solution?
- Can we find global optimal solution efficiently of nonconvex sparse regularization under RIP type condition?

General Theory: outline

- Oracle Least Squares Solution
- least squares when support is known
- the target solution we hope to achieve using nonconvex regularization
- Theory of L_{0} regularization
- property of global solution
- local solution and algorithm (forward-backward greedy procedure)
- Smooth nonconvex penalty
- sparse local solution
- global solution
- approximate global solution and a numerical procedure

Oracle Least Squares

Least squares solution under the oracle of knowing the true support $\bar{F}=\operatorname{supp}(\bar{\beta})$

$$
\hat{\beta}_{\text {oracle }}=\arg \min _{\beta}\|Y-X \beta\|_{2}^{2}, \quad \text { subject to } \operatorname{supp}(\beta) \subset \bar{F}
$$

- Not a practical solution, but introduced for theoretical analysis
- it is variable selection sign consistent when $\left|\beta_{j}\right| \geq c \sigma \sqrt{\ln p / n}$ for $j \in \bar{F}$.
- it has oracle proprty for parameter estimation
- Goal of nonconvex penalty: close to $\hat{\beta}_{\text {oracle }}$ as much as possible.

Theory of L_{0} Regularizaton: global solution

If we can compute the global solution of L_{0} regularization problem

$$
\hat{\beta}_{L_{0}}=\arg \min _{\beta}\left[n^{-1}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{0}\right]
$$

what's the theoretical guarantees?

Theory of L_{0} Regularizaton: global solution

If we can compute the global solution of L_{0} regularization problem

$$
\hat{\beta}_{L_{0}}=\arg \min _{\beta}\left[n^{-1}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{0}\right]
$$

what's the theoretical guarantees?

- is the global solution sparse?

Theory of L_{0} Regularizaton: global solution

If we can compute the global solution of L_{0} regularization problem

$$
\hat{\beta}_{L_{0}}=\arg \min _{\beta}\left[n^{-1}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{0}\right]
$$

what's the theoretical guarantees?

- is the global solution sparse?
- how good is global solution?

Theory of L_{0} Regularizaton: global solution

If we can compute the global solution of L_{0} regularization problem

$$
\hat{\beta}_{L_{0}}=\arg \min _{\beta}\left[n^{-1}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{0}\right]
$$

what's the theoretical guarantees?

- is the global solution sparse?
- how good is global solution?
- does it recover support

Theory of L_{0} Regularizaton: global solution

If we can compute the global solution of L_{0} regularization problem

$$
\hat{\beta}_{L_{0}}=\arg \min _{\beta}\left[n^{-1}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{0}\right]
$$

what's the theoretical guarantees?

- is the global solution sparse?
- how good is global solution?
- does it recover support
- what is the relationship with oracle least squares solution?

Theoretical Results

Theorem (C.H. Zhang and T.Z. 12)

Assume $\lambda \geq c \sigma \sqrt{\ln p / n}$ for some constant $c>0$. The global solution of L_{0} regularization is sparse:

$$
\left\|\hat{\beta}_{L_{0}}\right\|_{0} \leq \frac{1+\eta^{2}}{1-\eta^{2}}\|\bar{\beta}\|_{0}, \quad\left\|X \hat{L}_{L_{0}}-X \bar{\beta}\right\|_{2}^{2} \leq \frac{(1+\eta) \lambda^{2}\|\bar{\beta}\|_{0}}{1-\eta} .
$$

Let $s=2\|\bar{\beta}\|_{0} /\left(1-\eta^{2}\right)$ and $\hat{\beta}_{\text {oracle }}$ be oracle least squares solution. Let $\delta^{0}=\#\left\{j \in \bar{F}:\left|\bar{\beta}_{j}\right|=O(\lambda)\right\}$, then

$$
|\bar{F}-\operatorname{supp}(\hat{\beta})|+|\operatorname{supp}(\hat{\beta})-\bar{F}|=O\left(\delta^{o}\right), \quad\left\|X\left(\hat{\beta}_{L_{0}}-\hat{\beta}_{\text {oracle }}\right)\right\|_{2}^{2} \leq 2 \lambda^{2} \delta^{0} .
$$

- if $\left|\bar{\beta}_{j}\right| \geq c \sigma \sqrt{\ln p / n}$ for some c, then $\delta^{o}=0$, which means

$$
\operatorname{supp}(\hat{\beta})=\bar{F} \quad \hat{\beta}_{L_{0}}=\hat{\beta}_{\text {oracle }} .
$$

- how to find local/global solution for L_{0} regularization?

Theory of Smooth Nonconvex Penalty

- L_{0} penalty is discountinuous.
- Can be tricky to optimize using traditional numerical methods
- Although some special procedures (FoBa) can be employed
- What if we have a smooth regularizer
- piece-wise differentiable

Theory of Smooth Nonconvex Penalty

- L_{0} penalty is discountinuous.
- Can be tricky to optimize using traditional numerical methods
- Although some special procedures (FoBa) can be employed
- What if we have a smooth regularizer
- piece-wise differentiable
- Key property of smooth regularizer:
- well-defined local optimal solution
- stuiable for traditional numerical methods

Sparsity of Global Solution

Consider concave regularization

$$
\hat{\beta}=\arg \min _{\beta}\left[n^{-1}\|Y-X \beta\|_{2}^{2}+\lambda \sum_{j=1}^{p} g\left(\beta_{j}\right)\right]
$$

Theorem (C.H. Zhang and T.Z. 12)

Under appropriate conditions, with $\lambda \geq \sigma \sigma \sqrt{\ln p / n}$ for some constant $c>0$. The global solution is sparse:

$$
|\operatorname{supp}(\hat{\beta})|=O(|\bar{F}|)
$$

The sparsity of global solution allows us to show its relationship to a sparse local soluiton.

Sparse Local Solution

Consider concave regularization

$$
\hat{\beta}=\arg \min _{\beta}\left[n^{-1}\|Y-X \beta\|_{2}^{2}+\lambda \sum_{j=1}^{p} g\left(\beta_{j}\right)\right]
$$

$\tilde{\beta} \in R^{p}$ is a local solution if for all $j \in R^{p}$

$$
X_{j}^{\top}(X \tilde{\beta}-Y) / n+\lambda g^{\prime}\left(\tilde{\beta}_{j}\right)=0 .
$$

Theorem (C.H. Zhang and T.Z. 12)

Suppose $g^{\prime}(t)=0$ for some $t>\min _{j \in \bar{F}}\left|\bar{\beta}_{j}\right| \geq c \lambda$ for some constant c. Then, there exists a unique sparse local solution $\tilde{\beta}$ at sparsity level $\|\tilde{\beta}\|_{0}=O(|\bar{F}|)$ such that $\operatorname{sgn}(\tilde{\beta})=\operatorname{sgn}(\bar{\beta})$ and $\tilde{\beta}=\hat{\beta}_{\text {oracle }}$. Moreover, $\tilde{\beta}$ is the global solution.

Approximate Global Optimal

Similar results hold for approximate local solution

$$
\left\|X^{\top}(X \tilde{\beta}-Y) / n+\lambda \nabla g(\tilde{\beta})\right\|_{2} \leq \nu
$$

Also define approximate global solution

$$
\left[\frac{1}{2 n}\|X \tilde{\beta}-\mathbf{y}\|_{2}^{2}+\lambda g(\tilde{\beta})\right] \leq\left[\frac{1}{2 n}\|X \bar{\beta}-\mathbf{y}\|_{2}^{2}+\lambda g(\bar{\beta})\right]+\nu
$$

Theorem (C.H. Zhang and T.Z 12)

The Lasso solution (L_{1} regularization) is an approximate global solution with $\nu=O\left(\lambda^{2}|\bar{F}|\right)$, and any approximate global solution with $\nu=O\left(\lambda^{2}|\bar{F}|\right)$ which is also an approximate local minimum is sparse:

$$
|\operatorname{supp}(\hat{\beta}) \backslash \bar{F}|=O(|\bar{F}|)
$$

Smooth Regularizer: Putting Things Together

If $g^{\prime}(t)=0$ for $t \geq c \sigma \sqrt{\ln p / n}$, then under appropriate conditions:

- global solution is sparse
- approximate global solution is sparse if it is also a local minimum
- approximate global solution can be achieved by Lasso
- sparse local solution is unique
- sparse local solution has appropriate oracle property
- optimal (up to a constant depending on RIP condition) both for estimation and variable selection

Smooth Regularizer: Putting Things Together

If $g^{\prime}(t)=0$ for $t \geq c \sigma \sqrt{\ln p / n}$, then under appropriate conditions:

- global solution is sparse
- approximate global solution is sparse if it is also a local minimum
- approximate global solution can be achieved by Lasso
- sparse local solution is unique
- sparse local solution has appropriate oracle property
- optimal (up to a constant depending on RIP condition) both for estimation and variable selection
- Computational idea:
- start with Lasso
- do gradient descent to decrease objective function.
- eventually converges to sparse local minimum which is global optimal

Simple Computational Procedure

- Start with Lasso solution $\hat{\beta}_{L_{1}}$
- Using gradient descent to decrease objective value with appropriate non-convex penalty until convergence.

Corollary

Under appropriate conditions, the solution from above procedure converges to the unique global solution that is sparse, and thus has appropriate oracle properties.

References

- J Fan and R Li, Variable selection via nonconcave penalized likelihood and its oracle properties, JASA, 2001.
- C-H Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 2010.
- T. Zhang, Analysis of multi-stage convex relaxation for sparse regularization, JMLR, 2010.
- C-H Zhang and T Zhang, A general theory of concave regularization for high-dimensional sparse estimation problems, Statistical Science, 2012.

