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Background

Convex methods have become tremendously popular
interesting formulations
computation: can be solved efficiently
formulations can be separated from computation

different computational procedures lead to the same solutions
some strong theoretical resutls can be proved

working with the KKD condition at the solution

Nonconvex methods are much more difficult to analyze
formulation and computation needs to be considered together

different computational procedures lead to different solutions
rigorously speaking, one cannot study one particular solution and its
KKD condition

may suffer from stability problems (multiple local solutions)

However, nonconvex formulations are natural for sparse learning.
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This Talk: analyzing nonconvex methods

Need to study formulation and computation together

Natural formualtion requires nonconvex penalty
Under certain assumptions (RIP), convex methods are not optimal

can be fixed by nonconvex procedures
What’s known before: exists a good local minimum solution
(better than Lasso)

but it is not clear one can find such a local solution efficiently
A specific computational procedure for nonconvex methods

we prove the procedure lead to good local solution better than
Lasso (under reasonable conditions)

A more general theory
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Sparse Regression

Y = X β̄ + ε

L1 regularization: convex relaxation (computationally efficient)

β̂L1 = arg min
β

[
‖Y − Xβ‖22 + λ‖β‖1

]

Theoretical question: recovery performance
Variable selection (can we find nonzero variables):

supp(β̂) ≈ supp(β̄)?

Parameter estimation (how well we can estimate β̄):

‖β̂ − β̄‖22 ≤?
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RIP Condition

Definition (RIP — Sparse Eigenvalue Condition)
X satisfies the sparse eigenvalue condition at sparsity level s if

inf{n−1‖Xβ‖2
2 : ‖β‖2 = 1, ‖β‖0 ≤ s} > c−,

sup{n−1‖Xβ‖2
2 : ‖β‖2 = 1, ‖β‖0 ≤ s} < c+.

for constants c− > 0 and c+ <∞

requires the condition to hold at s = O(‖β̄‖0)

Slightly more general than original RIP of Candes-Tao for
compressed sensing.
High dimensional generalization of classical regularity condition
of design matrix being rank-p
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Results under Restricted Isometry Property

Variable selection guarantees:
Lasso is not variable selection consistent under noise

Parameter estimation (oracle property):
Under variable selection consistency, we expect:

‖β̄ − β̂‖2 = O(σ2‖β̄‖0/n)

Lasso: bias shows up as ln p factor

‖β̄ − β̂‖2 = O(σ2‖β̄‖0ln p/n)

high dimensional version of Lasso bias first discussed by Fan and Li.
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Can we do better under RIP?

Want to: achieve optimal results under RIP
variable selection consistency and parameter estimation without bias

L1 not good enough approximation for L0 regularization

Improve convex relaxation:
require nonconvex optimization
difficult to analyze
computational efficiency statement for nonconvex optimization

This lecture:
a special computational procedure: multi-stage convex relaxation
a general theory of nonconvex regularization
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Non-convex formulation

Approximate L0 by smooth concave sparse regularization g
Find local minimum by solving nonconvex problem

β̂g = arg min
β

[
‖Y − Xβ‖22 + λg(β)

]
want g(β) to be closer to L0 regularization than L1 regularization
Examples

Lp regularization: g(β) =
∑

j |βj |p (p < 1)
smoothed Lp regularization: g(β) =

∑
j [(α + |βj |)p − α]/(pαp−1) (p < 1)

capped L1 regularization: g(β) =
∑

j min(α, |βj |).
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Sparse Regularizers (component-wise)
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Derivative of Sparse Regularizers
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Convex relaxation

Want to optimize:

β̂ = arg min
β∈Rp

[n−1‖Xβ − Y‖22 + λg(β)], (1)

g(β) concave with respect to element-wise vector function h(β) (e.g.
h(β) = |β|): exists g∗ so that

g(β) = inf
v∈Rp

[
vT h(β) + g∗(v)

]
.

Rewrite (1) as

[β̂, v̂] = arg min
β,v∈Rd

[
n−1‖Xβ − Y‖22 + λ[vT h(β) + g∗(v)]

]
,

with auxiliary convex relaxation parameter v.
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Multi-stage Convex Relaxation

Numerical algorithm for solving

[β̂, v̂] = arg min
β,v∈Rd

[
n−1‖Xβ − Y‖22 + λ[vT h(β) + g∗(v)]

]
.

Alternating Optimization: iterate from stage ` = 1,2, . . .
fix v and optimize β:

β̂(`) = arg min
β∈Rd

[
n−1‖Xβ − Y‖2

2 + λv̂T
oldh(β)

]
,

solving weighted Lasso in β
fix β and optimize v:

v̂new = arg min
v∈Rd

[vT h(β(`)) + g∗(v)], (2)

with closed form solution, leading to better and better convex relaxation.

T. Zhang (Rutgers) Nonconvex Regularization 12 / 27



Algorithm for h(β) = |β|

Algorithm

Initialization: v (0)
j = λ (j = 1, . . . ,p)

Iterate ` = 1,2, . . .

β̂(`) = arg min
β∈Rp

1
n
‖Xβ − Y‖22 +

p∑
j=1

v (`−1)
j |βj |


v (`)

j = λg′(|β̂(`)
j |) (j = 1, . . . ,p).

Remarks:
Computationally efficient
(solving convex/closed form solution problems each iteration)
Converge to a local minimum of non-convex formulation
Equivalent to local linear approximation of (Zou and Li)

Key question: is the local minimum good in high dimension?
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High Dimensional Theory under RIP

Theorem (T.Z. 10 & 12)
Under RIP, multi-stage convex relaxation with appropriate nonconvex
regularizer g(β) gives a solution

supp(β̂) = supp(β̄), ‖β̂ − β̄‖22 ≤ O(σ2‖β̄‖0/n)

after log(‖β̄‖0) stages; if for somce constant c:

min
j∈supp(β̄)

|β̄j | ≥ cσ
√

ln p/n.

local minimum found by the algorithm is good under RIP
Two-stage version is adaptive Lasso (Zou), which suffers from bias
(C.H. Zhang), and sub-optimal for variable selection under RIP:

min
j∈supp(β̄)

|β̄j | ≥ cσ
√
‖β̄‖0 ln p/n.
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An Illustrative Example

500 variables and 100 data points
True coefficients (5 nonzeros)

coefficient 2-norm error
truth [8.2,1.7,5.4,6.9,5.7,0.0,0.0,0.0,0.0, · · · ] 0

Stage 1 [6.0,0.0,4.7,4.8,3.9,0.6,0.7,1.2,0.0, . . .] 4.4
Stage 2 [7.7,0.4,5.7,6.3,5.7,0.0,0.0,0.2,0.0, . . .] 1.6
Stage 3 [7.8,1.2,5.7,6.6,5.7,0.0,0.0,0.0,0.0, . . .] 0.98

The result is with capped-L1 regularization: stablizes after stage 3.
Errors are highlighted.
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Summary of Multi-stage Convex Relaxation

A specialized procedure for solving concave regularizaton.
lead to a local minimum
optimal performance of the local minimum under RIP

optimal for parameter estimation and variable selection

Similar results hold for other procedures, and in particular
forward-backward procedure by T.Z. and MC+ by C.H. Zhang.
Can we prove something more general?

What’s the relationship among local minima from different
procedures?
What’s the property of global optimal solution?
Can we find global optimal solution efficiently of nonconvex sparse
regularization under RIP type condition?
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General Theory: outline

Oracle Least Squares Solution
least squares when support is known
the target solution we hope to achieve using nonconvex regularization

Theory of L0 regularization
property of global solution
local solution and algorithm (forward-backward greedy procedure)

Smooth nonconvex penalty
sparse local solution
global solution
approximate global solution and a numerical procedure
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Oracle Least Squares

Least squares solution under the oracle of knowing the true support
F̄ = supp(β̄)

β̂oracle = arg min
β
‖Y − Xβ‖22, subject to supp(β) ⊂ F̄ .

Not a practical solution, but introduced for theoretical analysis
it is variable selection sign consistent when |βj | ≥ cσ

√
ln p/n for j ∈ F̄ .

it has oracle proprty for parameter estimation

Goal of nonconvex penalty: close to β̂oracle as much as possible.
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Theory of L0 Regularizaton: global solution

If we can compute the global solution of L0 regularization problem

β̂L0 = arg min
β

[
n−1‖Y − Xβ‖22 + λ‖β‖0

]
what’s the theoretical guarantees?

is the global solution sparse?
how good is global solution?
does it recover support
what is the relationship with oracle least squares solution?
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Theoretical Results

Theorem (C.H. Zhang and T.Z. 12)

Assume λ ≥ cσ
√

ln p/n for some constant c > 0. The global solution
of L0 regularization is sparse:

‖β̂L0‖0 ≤
1 + η2

1− η2 ‖β̄‖0, ‖X β̂L0 − X β̄‖22 ≤
(1 + η)λ2‖β̄‖0

1− η
.

Let s = 2‖β̄‖0/(1− η2) and β̂oracle be oracle least squares solution. Let
δo = #{j ∈ F̄ : |β̄j | = O(λ)}, then

|F̄ − supp(β̂)|+ |supp(β̂)− F̄ | = O(δo), ‖X (β̂L0 − β̂oracle)‖22 ≤ 2λ2δo.

if |β̄j | ≥ cσ
√

ln p/n for some c, then δo = 0, which means

supp(β̂) = F̄ β̂L0 = β̂oracle.

how to find local/global solution for L0 regularization?
T. Zhang (Rutgers) Nonconvex Regularization 20 / 27



Theory of Smooth Nonconvex Penalty

L0 penalty is discountinuous.
Can be tricky to optimize using traditional numerical methods
Although some special procedures (FoBa) can be employed

What if we have a smooth regularizer
piece-wise differentiable

Key property of smooth regularizer:
well-defined local optimal solution
stuiable for traditional numerical methods
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Sparsity of Global Solution

Consider concave regularization

β̂ = arg min
β

n−1‖Y − Xβ‖22 + λ

p∑
j=1

g(βj)


Theorem (C.H. Zhang and T.Z. 12)

Under appropriate conditions, with λ ≥ cσ
√

ln p/n for some constant
c > 0. The global solution is sparse:

|supp(β̂)| = O(|F̄ |)

The sparsity of global solution allows us to show its relationship to a
sparse local soluiton.
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Sparse Local Solution

Consider concave regularization

β̂ = arg min
β

n−1‖Y − Xβ‖22 + λ

p∑
j=1

g(βj)


β̃ ∈ Rp is a local solution if for all j ∈ Rp

X>j (X β̃ − Y )/n + λg′(β̃j) = 0.

Theorem (C.H. Zhang and T.Z. 12)

Suppose g′(t) = 0 for some t > minj∈F̄ |β̄j | ≥ cλ for some constant c.
Then, there exists a unique sparse local solution β̃ at sparsity level
‖β̃‖0 = O(|F̄ |) such that sgn(β̃) = sgn(β̄) and β̃ = β̂oracle. Moreover, β̃
is the global solution.
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Approximate Global Optimal

Similar results hold for approximate local solution

‖X>(X β̃ − Y )/n + λ∇g(β̃)‖2 ≤ ν.

Also define approximate global solution[
1

2n
‖X β̃ − y‖22 + λg(β̃)

]
≤
[

1
2n
‖X β̄ − y‖22 + λg(β̄)

]
+ ν.

Theorem (C.H. Zhang and T.Z 12)
The Lasso solution (L1 regularization) is an approximate global
solution with ν = O(λ2|F̄ |), and any approximate global solution with
ν = O(λ2|F̄ |) which is also an approximate local minimum is sparse:

|supp(β̂) \ F̄ | = O(|F̄ |).
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Smooth Regularizer: Putting Things Together

If g′(t) = 0 for t ≥ cσ
√

ln p/n, then under appropriate conditions:
global solution is sparse
approximate global solution is sparse if it is also a local minimum
approximate global solution can be achieved by Lasso
sparse local solution is unique
sparse local solution has appropriate oracle property

optimal (up to a constant depending on RIP condition) both for
estimation and variable selection

Computational idea:
start with Lasso
do gradient descent to decrease objective function.
eventually converges to sparse local minimum which is global optimal
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Simple Computational Procedure

Start with Lasso solution β̂L1

Using gradient descent to decrease objective value with appropriate
non-convex penalty until convergence.

Corollary
Under appropriate conditions, the solution from above procedure
converges to the unique global solution that is sparse, and thus
has appropriate oracle properties.
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