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Overview

Let x1, x2, . . . , xn be a sequence of mean-zero dependent random
vectors in Rp, where xi = (xi1, xi2, . . . , xip)′ with 1 ≤ i ≤ n.

We provide a general (non-asymptotic) theory for quantifying:

ρn := sup
t∈R

|P(TX ≤ t)− P(TY ≤ t)| ,

where TX = max1≤j≤p
1√
n

∑n
i=1 xij and TY = max1≤j≤p

1√
n

∑n
i=1 yij

with yi = (yi1, yi2, . . . , yip)′ being a Gaussian vector.

Key techniques: Slepian interpolation and the leave-one-block out
argument (modification of Stein’s leave-one-out method).

Two examples on inference for high dimensional time series.
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Example I: Uniform confidence band

Consider a p-dimensional weakly dependent time series {xi}.

Goal: construct a uniform confidence band for µ0 = EXi ∈ Rp

based on the observations {xi}n
i=1 with n � p.

Consider the (1− α) confidence band:{
µ = (µ1, . . . , µp)′ ∈ Rp :

√
n max

1≤j≤p
|µj − x̄j | ≤ c(α)

}
,

where x̄ = (x̄1, . . . , x̄p)′ =
∑n

i=1 xi/n is the sample mean.

Question: how to obtain the critical value c(α)?
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Blockwise Multiplier Bootstrap
Capture the dependence within and between the data vectors.

Suppose n = bnln with bn, ln ∈ Z. Define the block sum

Aij =
ibn∑

l=(i−1)bn+1

(xlj − x̄j), i = 1, 2, . . . , ln.

When p = O(exp(nb)), bn = O(nb′
) with 4b′ + 7b < 1 and b′ > 2b.

Define the bootstrap statistic,

TA = max
1≤j≤p

1√
n

∣∣∣∣∣
ln∑

i=1

Aijei

∣∣∣∣∣ ,

where {ei} is a sequence of i.i.d N(0, 1) random variables that are
independent of {xi}.

Compute c(α) := inf{t ∈ R : P(TA ≤ t |{xi}n
i=1) ≥ α}.
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Some numerical results

Consider a p-dimensional VAR(1) process,

xt = ρxt−1 +
√

1− ρ2εt .

1 εtj = (εtj + εt0)/
√

2, where (εt0, εt1, . . . , εtp) ∼i.i.d N(0, Ip+1);

2 εtj = ρ1ζtj + ρ2ζt(j+1) + · · ·+ ρpζt(j+p−1), where {ρj}p
j=1 are

generated independently from U(2, 3), and {ζtj} are i.i.d N(0, 1)
random variables;

3 εtj is generated from the moving average model above with {ζtj}
being i.i.d centralized Gamma(4, 1) random variables.
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Some numerical results (Con’t)

Table: Coverage probabilities of the uniform confidence band, where
n = 120.

p = 500, 1 p = 500, 2 p = 500, 3

95% 99% 95% 99% 95% 99%

ρ = 0.3
bn = 4 89.7 97.2 90.5 97.5 90.1 97.1
bn = 6 92.5 98.3 91.6 97.8 91.6 97.7
bn = 8 94.6 99.0 91.5 97.6 92.4 97.9
bn = 10 95.0 99.2 91.8 97.8 91.6 97.7
bn = 12 94.8 99.3 91.3 97.9 92.0 97.5
ρ = 0.5
bn = 4 76.9 92.9 83.5 94.0 83.3 93.7
bn = 6 87.1 96.3 87.3 96.2 87.4 95.9
bn = 8 91.6 98.3 88.8 96.6 89.4 96.9
bn = 10 92.5 98.6 89.8 97.1 89.3 97.0
bn = 12 93.0 99.0 90.0 97.2 90.5 97.0
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Example II: Specification testing on the covariance structure

For a mean-zero p-dimensional time series {xi}, define
Γ(h) = Exi+hx ′i ∈ Rp×p.

Consider

H0 : Γ(h) = Γ̃(h) versus Ha : Γ(h) 6= Γ̃(h),

for some h ∈ Λ ⊆ {0, 1, 2 . . . }.

Special cases:

1 Λ = {0} : testing the covariance structure. See Cai and Jiang
(2011), Chen et al. (2010), Li and Chen (2012) and Qiu and Chen
(2012) for some developments when {xi} are i.i.d.

2 Λ = {1, 2, . . . , H} and Γ̃(h) = 0 for h ∈ Λ: white noise testing.
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Testing for white noise
Consider the white noise testing problem. Our test is given by

T =
√

n max
1≤h≤H

max
1≤j,k≤p

|γ̂jk (h)|,

where Γ̂(h) =
∑n−h

i=1 xi+hx ′i /n = (γ̂jk (h))p
j,k=1.

Let zi = (zi,1, . . . , zi,p2H) = (vec(xi+1x ′i )
′, . . . , vec(xi+Hx ′i )

′)′ ∈ Rp2H

for i = 1, . . . , N := n − H.

Suppose N = bnln for bn, ln ∈ Z. Define

TA = max
1≤j≤p2H

1√
n

∣∣∣∣∣
ln∑

i=1

Aijei

∣∣∣∣∣ , Aij =
ibn∑

l=(i−1)bn+1

(zl,j − z̄j),

where {ei} is a sequence of i.i.d N(0, 1) random variables that are
independent of {xi}, and z̄j =

∑N
i=1 zi,j/n.

Compute c(α) := inf{t ∈ R : P(TA ≤ t |{xi}n
i=1) ≥ α}, and reject

the white noise null hypothesis if T > c(α).
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Some numerical results
We are interested in testing,

H0 : Γ(h) = 0, for 1 ≤ h ≤ L,

versus
Ha : Γ(h) 6= 0, for some 1 ≤ h ≤ L.

Consider the following data generating processes:
1 multivariate normal: xtj = ρ1ζtj + ρ2ζt(j+1) + · · ·+ ρpζt(j+p−1),

where {ρj}p
j=1 are generated independently from U(2, 3), and {ζtj}

are i.i.d N(0, 1) random variables;

2 multivariate ARCH model: xt = Σ
1/2
t εt with εt ∼ N(0, Ip) and

Σt = 0.1Ip + 0.9xt−1x ′t−1, where Σ
1/2
t is a lower triangular matrix

based on the Cholesky decomposition of Σt ;

3 VAR(1) model: xt = ρxt−1 +
√

1− ρ2εt , where ρ = 0.2 and the
errors {εt} are generated according to 1 .
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Some numerical results (Con’t)

Table: Rejection percentages for testing the uncorrelatedness, where
n = 240 and the actual number of parameters is p2 × L.

p = 20, 1 p = 20, 2 p = 20, 3

5% 1% 5% 1% 5% 1%

L = 1
bn = 1 4.3 0.8 2.8 0.3 90.3 71.9
bn = 4 5.0 1.0 1.0 0.3 86.3 63.3
bn = 8 5.3 1.2 1.6 0.9 86.0 59.2
bn = 12 5.1 1.0 2.3 1.4 86.5 59.2
L = 3
bn = 1 4.7 1.0 2.3 0.3 79.4 57.7
bn = 4 3.6 0.7 0.6 0.3 74.0 46.2
bn = 8 3.7 0.4 1.3 0.8 71.4 41.0
bn = 12 4.0 0.6 2.2 1.3 72.1 40.6
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Maxima of non-Gaussian sum

The above applications hinge on a general theoretical result.

Let x1, x2, . . . , xn be a sequence of mean-zero dependent random
vectors in Rp, where xi = (xi1, xi2, . . . , xip)′ with 1 ≤ i ≤ n.

Target: approximate the distribution of

TX = max
1≤j≤p

1√
n

n∑
i=1

xij .

Xianyang Zhang (Mizzou) Bootstrapping high dimensional vector LDHD 2014 12 / 25



Gaussian approximation

Let y1, y2, . . . , yn be a sequence of mean-zero Gaussian random
vectors in Rp, where yi = (yi1, yi2, . . . , yip)′ with 1 ≤ i ≤ n.

Suppose that {yi} preserves the autocovariance structure of {xi},
i.e.,

cov(yi , yj) = cov(xi , xj).

Goal: quantify the Kolmogrov distance

ρn := sup
t∈R

|P(TX ≤ t)− P(TY ≤ t)| ,

where TY = max1≤j≤p
1√
n

∑n
i=1 yij .
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Existing results in the independent case

Question: how large p can be in relation with n so that ρn → 0?

Bentkus (2003): ρn → 0 provided that p7/2 = o(n).

Chernozhukov et al. (2013): ρn → 0 if p = O(exp(nb)) with
b < 1/7 (an astounding improvement).

Motivation: study the interplay between the dependence structure and
the growth rate of p so that ρn → 0.
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Dependence Structure I: M-dependent time series

A time series {xi} is called M-dependent if for |i − j | > M, xi and xj
are independent.

Under suitable restrictions on the tail of xi and weak dependence
assumptions uniformly across the components of xi , we show that

ρn .
M1/2 (log(pn/γ) ∨ 1)7/8

n1/8 + γ,

for some γ ∈ (0, 1).

When p = O(exp(nb)) for b < 1/11, and M = O(nb′
) with

4b′ + 7b < 1, we have

ρn ≤ Cn−c , c, C > 0.

If b′ = 0 (i.e., M = O(1)), our result allows b < 1/7
[Chernozhukov et al. (2013)].
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Dependence Structure II: Physical dependence measure [Wu
(2005)]

The sequence {xi} has the following causal representation,

xi = G(. . . , εi−1, εi),

where G is a measurable function and {εi} is a sequence of i.i.d
random variables.

Let {ε′i} be an i.i.d copy of {εi} and define

x∗i = G(. . . , ε−1, ε
′
0, ε1, . . . , εi).

The strength of the dependence can be quantified via

θi,j,q(x) = (E |xij − x∗ij |q)1/q, Θi,j,q(x) =
+∞∑
l=i

θl,j,q(x).
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Bound on the Kolmogrov distance

Theorem
Under suitable conditions on the tail of {xi} and certain weak
dependence assumptions, we have

ρn . n−1/8M1/2l7/8
n + (n1/8M−1/2l−3/8

n )
q

1+q

 p∑
j=1

Θq
M,j,q

 1
1+q

+ γ,

where Θi,j,q = Θi,j,q(x) ∨Θi,j,q(y).

The tradeoff between the first two terms reflects the interaction
between the dimensionality and dependence;

Key step in the proof: M-dependent approximation.
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Bound on the Kolmogrov distance (Con’t)

Corollary
Suppose that

1 max1≤j≤p ΘM,j,q = O(ρM) for ρ < 1 and q ≥ 2;
2 p = O(exp(nb)) for 0 < b < 1/11.

Then we have

ρn ≤ Cn−c , c, C > 0.
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Dimension free dependence structure

Question: is there any so-called “dimension free dependence
structure”? What kind of dependence assumption will not affect the
increase rate of p?

For a permutation π(·), (xiπ(1), . . . , xiπ(p)) = (zi1, zi2).

Suppose {zi1} is a s-dimensional time series and {zi2} is a p − s
dimensional sequence of independent variables.

Assume that {zi1} and {zi2} are independent, and s/p → 0.

Under suitable assumptions, it can be shown that for
p = O(exp(nb)) with b < 1/7,

ρn ≤ Cn−c , c, C > 0.
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Resampling

Summary: for M-dependent or more generally weakly dependent time
series, we have shown that

ρn := sup
t∈R

|P(TX ≤ t)− P(TY ≤ t)| ≤ Cn−c , c, C > 0.

Question: in practice the autocovariance structure of {xi} is typically
unknown. How can we approximate the distribution of TX or TY ?

Solution: Resampling method.
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Blockwise multiplier bootstrap

1 Suppose n = bnln. Compute the block sum,

Aij =
ibn∑

l=(i−1)bn+1

xlj , i = 1, 2, . . . , ln.

2 Generate a sequence of i.i.d N(0, 1) random variables {ei} and
compute

TA = max
1≤j≤p

1√
n

ln∑
i=1

Aijei .

3 Repeat step 2 several times and compute the α-quantile of TA

cTA(α) = inf{t ∈ R : P(TA ≤ t |{xi}n
i=1) ≥ α}.
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Validity of the blockwise multiplier bootstrap

Theorem

Under suitable assumptions, we have for p = O(exp(nb)) with
0 < b < 1/15,

sup
α∈(0,1)

∣∣P(TX ≤ cTA(α))− α
∣∣ . n−c , c > 0.
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Non-overlapping block bootstrap

1 Let A∗1j , . . . , A∗ln j be an i.i.d draw from the empirical distribution of
{Aij}ln

i=1 and compute

TA∗ = max
1≤j≤p

1√
n

ln∑
i=1

(A∗ij − Āj), Āj =
ln∑

i=1

Aij/ln.

2 Repeat the above step several times to obtain the α-quantile of
TA∗ ,

cTA∗ (α) = inf{t ∈ R : P(TA∗ ≤ t |{xi}n
i=1) ≥ α}.

Theorem
Under suitable assumptions, we have with probability 1− o(1),

sup
α∈(0,1)

∣∣P(TX ≤ cTA∗ (α)|cTA∗ (α))− α
∣∣ = o(1).
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Future works

1 Choice of the block size in the blockwise multiplier bootstrap and
non-overlapping block bootstrap;

2 Maximum eigenvalue of a sum of random matrices: a natural step
going from vectors to matrices.
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Thank you!
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