Bootstrapping high dimensional vector: interplay between dependence and dimensionality

Xianyang Zhang Joint work with Guang Cheng

University of Missouri-Columbia

LDHD: Transition Workshop, 2014

Overview

- Let x₁, x₂,..., x_n be a sequence of mean-zero *dependent* random vectors in ℝ^p, where x_i = (x_{i1}, x_{i2},..., x_{ip})' with 1 ≤ i ≤ n.
- We provide a general (non-asymptotic) theory for quantifying:

$$\rho_n := \sup_{t \in \mathbb{R}} |\mathcal{P}(\mathcal{T}_X \leq t) - \mathcal{P}(\mathcal{T}_Y \leq t)|,$$

where $T_X = \max_{1 \le j \le p} \frac{1}{\sqrt{n}} \sum_{i=1}^n x_{ij}$ and $T_Y = \max_{1 \le j \le p} \frac{1}{\sqrt{n}} \sum_{i=1}^n y_{ij}$ with $y_i = (y_{i1}, y_{i2}, \dots, y_{ip})'$ being a Gaussian vector.

- Key techniques: Slepian interpolation and the leave-one-block out argument (modification of Stein's leave-one-out method).
- Two examples on inference for high dimensional time series.

Outline

Inference for high dimensional time series

- Uniform confidence band for the mean
- Specification testing on the covariance structure

Gaussian approximation for maxima of non-Gaussian sum

- M-dependent time series
- Weakly dependent time series

3 Bootstrap

- Blockwise multiplier bootstrap
- Non-overlapping block bootstrap

Example I: Uniform confidence band

- Consider a *p*-dimensional *weakly dependent* time series {*x_i*}.
- Goal: construct a uniform confidence band for μ₀ = EX_i ∈ ℝ^p based on the observations {x_i}ⁿ_{i=1} with n ≪ p.
- Consider the (1α) confidence band:

$$\left\{\mu = (\mu_1, \dots, \mu_p)' \in \mathbb{R}^p : \sqrt{n} \max_{1 \le j \le p} |\mu_j - \bar{x}_j| \le c(\alpha)\right\},\$$

where $\bar{x} = (\bar{x}_1, \dots, \bar{x}_p)' = \sum_{i=1}^n x_i/n$ is the sample mean.

• Question: how to obtain the critical value $c(\alpha)$?

Blockwise Multiplier Bootstrap

- Capture the dependence within and between the data vectors.
- Suppose $n = b_n l_n$ with $b_n, l_n \in \mathbb{Z}$. Define the block sum

$$A_{ij} = \sum_{l=(i-1)b_n+1}^{ib_n} (x_{lj} - \bar{x}_j), \quad i = 1, 2, \dots, l_n.$$

- When $p = O(\exp(n^b))$, $b_n = O(n^{b'})$ with 4b' + 7b < 1 and b' > 2b.
- Define the bootstrap statistic,

$$T_{\mathcal{A}} = \max_{1 \leq j \leq \rho} \frac{1}{\sqrt{n}} \left| \sum_{i=1}^{l_n} A_{ij} \boldsymbol{e}_i \right|,$$

where $\{e_i\}$ is a sequence of i.i.d N(0, 1) random variables that are independent of $\{x_i\}$.

• Compute $c(\alpha) := \inf\{t \in \mathbb{R} : P(T_A \le t | \{x_i\}_{i=1}^n) \ge \alpha\}.$

Some numerical results

Consider a *p*-dimensional VAR(1) process,

$$\mathbf{x}_t = \rho \mathbf{x}_{t-1} + \sqrt{1 - \rho^2} \epsilon_t.$$

•
$$\epsilon_{tj} = (\varepsilon_{tj} + \varepsilon_{t0})/\sqrt{2}$$
, where $(\varepsilon_{t0}, \varepsilon_{t1}, \dots, \varepsilon_{tp}) \sim^{i.i.d} N(0, I_{p+1})$;

- 2 $\epsilon_{tj} = \rho_1 \zeta_{tj} + \rho_2 \zeta_{t(j+1)} + \dots + \rho_p \zeta_{t(j+p-1)}$, where $\{\rho_j\}_{j=1}^p$ are generated independently from U(2,3), and $\{\zeta_{tj}\}$ are i.i.d N(0,1) random variables;
- So ϵ_{tj} is generated from the moving average model above with $\{\zeta_{tj}\}$ being i.i.d centralized Gamma(4, 1) random variables.

Some numerical results (Con't)

Table: Coverage probabilities of the uniform confidence band, where n = 120.

	<i>p</i> = 500, 1		<i>p</i> = 500, 2		p = 500, 3	
	95%	99%	95%	99%	95%	99%
$\rho = 0.3$						
$b_n = 4$	89.7	97.2	90.5	97.5	90.1	97.1
$b_n = 6$	92.5	98.3	91.6	97.8	91.6	97.7
$b_n = 8$	94.6	99.0	91.5	97.6	92.4	97.9
$b_n = 10$	95.0	99.2	91.8	97.8	91.6	97.7
<i>b</i> _n = 12	94.8	99.3	91.3	97.9	92.0	97.5
$\rho = 0.5$						
$b_n = 4$	76.9	92.9	83.5	94.0	83.3	93.7
$b_n = 6$	87.1	96.3	87.3	96.2	87.4	95.9
$b_n = 8$	91.6	98.3	88.8	96.6	89.4	96.9
$b_n = 10$	92.5	98.6	89.8	97.1	89.3	97.0
<i>b</i> _n = 12	93.0	99.0	90.0	97.2	90.5	97.0

Example II: Specification testing on the covariance structure

- For a mean-zero *p*-dimensional time series $\{x_i\}$, define $\Gamma(h) = Ex_{i+h}x'_i \in \mathbb{R}^{p \times p}$.
- Consider

$$H_0: \Gamma(h) = \widetilde{\Gamma}(h)$$
 versus $H_a: \Gamma(h) \neq \widetilde{\Gamma}(h)$,

for some $h \in \Lambda \subseteq \{0, 1, 2...\}$.

- Special cases:
 - \$\Lambda = {0}\$: testing the covariance structure. See Cai and Jiang (2011), Chen et al. (2010), Li and Chen (2012) and Qiu and Chen (2012) for some developments when {*x_i*} are i.i.d.
 - 2 $\Lambda = \{1, 2, \dots, H\}$ and $\widetilde{\Gamma}(h) = 0$ for $h \in \Lambda$: white noise testing.

Testing for white noise

• Consider the white noise testing problem. Our test is given by

$$T = \sqrt{n} \max_{1 \le h \le H} \max_{1 \le j,k \le p} |\widehat{\gamma}_{jk}(h)|,$$

where $\widehat{\Gamma}(h) = \sum_{i=1}^{n-h} x_{i+h} x'_i / n = (\widehat{\gamma}_{jk}(h))_{j,k=1}^p$.

- Let $z_i = (z_{i,1}, \ldots, z_{i,p^2H}) = (\operatorname{vec}(x_{i+1}x'_i)', \ldots, \operatorname{vec}(x_{i+H}x'_i)')' \in \mathbb{R}^{p^2H}$ for $i = 1, \ldots, N := n - H$.
- Suppose $N = b_n I_n$ for $b_n, I_n \in \mathbb{Z}$. Define

$$T_{A} = \max_{1 \le j \le \rho^{2}H} \frac{1}{\sqrt{n}} \left| \sum_{i=1}^{l_{n}} A_{ij} e_{i} \right|, \quad A_{ij} = \sum_{l=(i-1)b_{n}+1}^{ib_{n}} (z_{l,j} - \bar{z}_{j}),$$

where $\{e_i\}$ is a sequence of i.i.d N(0, 1) random variables that are independent of $\{x_i\}$, and $\bar{z}_j = \sum_{i=1}^N z_{i,j}/n$.

Compute c(α) := inf{t ∈ ℝ : P(T_A ≤ t | {x_i}ⁿ_{i=1}) ≥ α}, and reject the white noise null hypothesis if T > c(α).

Some numerical results

We are interested in testing,

$$H_0: \Gamma(h) = 0$$
, for $1 \le h \le L$,

versus

$$H_a: \Gamma(h) \neq 0$$
, for some $1 \leq h \leq L$.

Consider the following data generating processes:

- multivariate normal: $x_{tj} = \rho_1 \zeta_{tj} + \rho_2 \zeta_{t(j+1)} + \dots + \rho_p \zeta_{t(j+p-1)}$, where $\{\rho_j\}_{j=1}^p$ are generated independently from U(2,3), and $\{\zeta_{tj}\}$ are i.i.d N(0,1) random variables;
- Solution multivariate ARCH model: $x_t = \sum_{t=1}^{1/2} \epsilon_t$ with $\epsilon_t \sim N(0, I_p)$ and $\sum_t = 0.1 I_p + 0.9 x_{t-1} x'_{t-1}$, where $\sum_{t=1}^{1/2} \epsilon_t$ is a lower triangular matrix based on the Cholesky decomposition of Σ_t ;
- **3** VAR(1) model: $x_t = \rho x_{t-1} + \sqrt{1 \rho^2} \epsilon_t$, where $\rho = 0.2$ and the errors $\{\epsilon_t\}$ are generated according to 1.

Some numerical results (Con't)

Table: Rejection percentages for testing the uncorrelatedness, where n = 240 and the actual number of parameters is $p^2 \times L$.

	<i>p</i> = 20, 1		<i>p</i> = 20, 2		<i>p</i> = 20, 3	
	5%	1%	5%	1%	5%	1%
<i>L</i> = 1						
$b_n = 1$	4.3	0.8	2.8	0.3	90.3	71.9
$b_n = 4$	5.0	1.0	1.0	0.3	86.3	63.3
$b_n = 8$	5.3	1.2	1.6	0.9	86.0	59.2
$b_n = 12$	5.1	1.0	2.3	1.4	86.5	59.2
L = 3						
$b_n = 1$	4.7	1.0	2.3	0.3	79.4	57.7
$b_n = 4$	3.6	0.7	0.6	0.3	74.0	46.2
$b_n = 8$	3.7	0.4	1.3	0.8	71.4	41.0
<i>b</i> _n = 12	4.0	0.6	2.2	1.3	72.1	40.6

Maxima of non-Gaussian sum

• The above applications hinge on a general theoretical result.

• Let $x_1, x_2, ..., x_n$ be a sequence of mean-zero *dependent* random vectors in \mathbb{R}^p , where $x_i = (x_{i1}, x_{i2}, ..., x_{ip})'$ with $1 \le i \le n$.

• Target: approximate the distribution of

$$T_X = \max_{1 \le j \le p} \frac{1}{\sqrt{n}} \sum_{i=1}^n x_{ij}.$$

Gaussian approximation

- Let y₁, y₂,..., y_n be a sequence of mean-zero Gaussian random vectors in ℝ^p, where y_i = (y_{i1}, y_{i2},..., y_{ip})' with 1 ≤ i ≤ n.
- Suppose that {*y_i*} preserves the autocovariance structure of {*x_i*}, i.e.,

$$\operatorname{cov}(y_i, y_j) = \operatorname{cov}(x_i, x_j).$$

• Goal: quantify the Kolmogrov distance

$$\rho_n := \sup_{t \in \mathbb{R}} |P(T_X \leq t) - P(T_Y \leq t)|,$$

where
$$T_Y = \max_{1 \le j \le p} \frac{1}{\sqrt{n}} \sum_{i=1}^n y_{ij}$$
.

Existing results in the independent case

Question: how large *p* can be in relation with *n* so that $\rho_n \rightarrow 0$?

- Bentkus (2003): $\rho_n \rightarrow 0$ provided that $p^{7/2} = o(n)$.
- Chernozhukov et al. (2013): ρ_n → 0 if p = O(exp(n^b)) with b < 1/7 (an astounding improvement).

Motivation: study the interplay between the dependence structure and the growth rate of p so that $\rho_n \rightarrow 0$.

Dependence Structure I: M-dependent time series

- A time series {*x_i*} is called *M*-dependent if for |*i* − *j*| > *M*, *x_i* and *x_j* are independent.
- Under suitable restrictions on the tail of x_i and weak dependence assumptions uniformly across the components of x_i, we show that

$$\rho_n \lesssim \frac{M^{1/2} \left(\log(pn/\gamma) \vee 1\right)^{7/8}}{n^{1/8}} + \gamma,$$

for some $\gamma \in (0, 1)$.

• When $p = O(\exp(n^b))$ for b < 1/11, and $M = O(n^{b'})$ with 4b' + 7b < 1, we have

$$\rho_n \leq Cn^{-c}, \quad c, C > 0.$$

• If b' = 0 (i.e., M = O(1)), our result allows b < 1/7 [Chernozhukov et al. (2013)].

Dependence Structure II: Physical dependence measure [Wu (2005)]

• The sequence $\{x_i\}$ has the following causal representation,

$$\mathbf{x}_i = \mathcal{G}(\ldots, \epsilon_{i-1}, \epsilon_i),$$

where G is a measurable function and $\{\epsilon_i\}$ is a sequence of i.i.d random variables.

Let {ε_i'} be an i.i.d copy of {ε_i} and define
 x_i^{*} = G(..., ε₋₁, ε'₀, ε₁,..., ε_i).

• The strength of the dependence can be quantified via

$$heta_{i,j,q}(x) = (E|x_{ij} - x_{ij}^*|^q)^{1/q}, \quad \Theta_{i,j,q}(x) = \sum_{l=i}^{+\infty} heta_{l,j,q}(x).$$

Bound on the Kolmogrov distance

Theorem

w

Under suitable conditions on the tail of $\{x_i\}$ and certain weak dependence assumptions, we have

$$\rho_n \lesssim n^{-1/8} M^{1/2} l_n^{7/8} + (n^{1/8} M^{-1/2} l_n^{-3/8})^{\frac{q}{1+q}} \left(\sum_{j=1}^p \Theta_{M,j,q}^q \right)^{\frac{1}{1+q}} + \gamma,$$

here $\Theta_{i,j,q} = \Theta_{i,j,q}(x) \lor \Theta_{i,j,q}(y).$

- The tradeoff between the first two terms reflects the interaction between the dimensionality and dependence;
- Key step in the proof: *M*-dependent approximation.

Bound on the Kolmogrov distance (Con't)

Corollary

Suppose that

Then we have

$$\rho_n \leq Cn^{-c}, \quad c, C > 0.$$

Dimension free dependence structure

Question: is there any so-called "dimension free dependence structure"? What kind of dependence assumption will not affect the increase rate of *p*?

- For a permutation $\pi(\cdot), (x_{i\pi(1)}, ..., x_{i\pi(p)}) = (z_{i1}, z_{i2}).$
- Suppose {*z_{i1}*} is a *s*-dimensional time series and {*z_{i2}*} is a *p*−*s* dimensional sequence of *independent* variables.
- Assume that $\{z_{i1}\}$ and $\{z_{i2}\}$ are independent, and $s/p \rightarrow 0$.
- Under suitable assumptions, it can be shown that for $p = O(\exp(n^b))$ with b < 1/7,

$$\rho_n \leq Cn^{-c}, \quad c, C > 0.$$

Resampling

Summary: for *M*-dependent or more generally weakly dependent time series, we have shown that

$$\rho_n := \sup_{t \in \mathbb{R}} |P(T_X \leq t) - P(T_Y \leq t)| \leq Cn^{-c}, \quad c, C > 0.$$

Question: in practice the *autocovariance structure* of $\{x_i\}$ is typically unknown. How can we approximate the distribution of T_X or T_Y ?

Solution: Resampling method.

Blockwise multiplier bootstrap

1 Suppose $n = b_n I_n$. Compute the block sum,

$$A_{ij} = \sum_{l=(i-1)b_n+1}^{ib_n} x_{lj}, \quad i = 1, 2, \dots, l_n.$$

Generate a sequence of i.i.d N(0, 1) random variables {e_i} and compute

$$T_{\mathcal{A}} = \max_{1 \leq j \leq p} \frac{1}{\sqrt{n}} \sum_{i=1}^{l_n} A_{ij} e_i.$$

3 Repeat step (2) several times and compute the α -quantile of T_A

$$c_{\mathcal{T}_{\mathcal{A}}}(\alpha) = \inf\{t \in \mathbb{R} : \mathcal{P}(\mathcal{T}_{\mathcal{A}} \leq t | \{x_i\}_{i=1}^n) \geq \alpha\}.$$

Validity of the blockwise multiplier bootstrap

Theorem

Under suitable assumptions, we have for $p = O(\exp(n^b))$ with $0 < b < \frac{1}{15}$,

$$\sup_{\alpha\in(0,1)}\left|\boldsymbol{P}(\boldsymbol{T}_{\boldsymbol{X}}\leq\boldsymbol{c}_{\boldsymbol{T}_{\boldsymbol{A}}}(\alpha))-\alpha\right|\lesssim\boldsymbol{n}^{-\boldsymbol{c}},\quad\boldsymbol{c}>\boldsymbol{0}.$$

Non-overlapping block bootstrap

• Let $A_{1j}^*, \ldots, A_{l_n j}^*$ be an i.i.d draw from the empirical distribution of $\{A_{ij}\}_{i=1}^{l_n}$ and compute

$$T_{A^*} = \max_{1 \le j \le p} \frac{1}{\sqrt{n}} \sum_{i=1}^{l_n} (A^*_{ij} - \bar{A}_j), \quad \bar{A}_j = \sum_{i=1}^{l_n} A_{ij}/l_n.$$

Repeat the above step several times to obtain the α-quantile of *T_{A*}*,

$$c_{\mathcal{T}_{\mathcal{A}^*}}(\alpha) = \inf\{t \in \mathbb{R} : \mathcal{P}(\mathcal{T}_{\mathcal{A}^*} \leq t | \{x_i\}_{i=1}^n) \geq \alpha\}.$$

Theorem

Under suitable assumptions, we have with probability 1 - o(1),

$$\sup_{\alpha \in (0,1)} \left| \mathcal{P}(\mathcal{T}_X \leq c_{\mathcal{T}_{A^*}}(\alpha) | c_{\mathcal{T}_{A^*}}(\alpha)) - \alpha \right| = o(1).$$

Xianyang Zhang (Mizzou)

Future works

 Choice of the block size in the blockwise multiplier bootstrap and non-overlapping block bootstrap;

Maximum eigenvalue of a sum of random matrices: a natural step going from vectors to matrices.

Thank you!