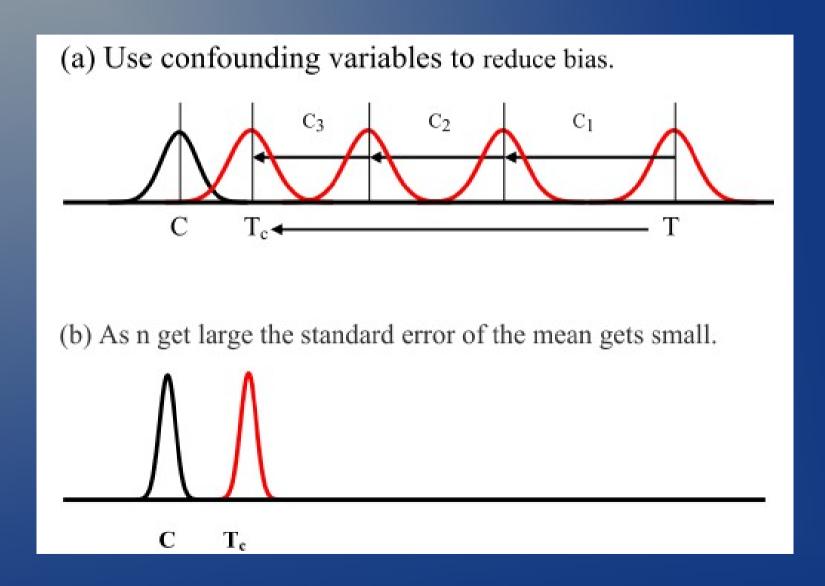
Methods for Mixtures

or the Subgroup Problem

S. Stanley Young NISS

27Aug2012

1


Large Observational Data Sets

- Logistically awkward
- Prompt multiple questions
- Invite multiple modeling
- Subject to bias
- Subject to data staging variability

Discussion

- Obenchain
- Madigan
- Data availability and quality
- To predict or to explain
- A blast from the past

The problem of big n

Obenchain

- 0. Design (see Rubin)
- 1. Cluster (number and method)
- 2. Local treatment differences within clusters
- 3. Distribution of LTDs vs simulation
- 4. LTD-Xvector, => Recursive partitioning

So simple, difficult to manipulate answers.

State of the Art, 1988

AMERICAN JOURNAL OF EPIDEMIOLOGY Copyright © 1988 by The Johns Hopkins University School of Hygiene and Public Health All rights reserved

Vol. 127, No. 3 Printed in U S.A.

ASYMMETRIC STRATIFICATION

AN OUTLINE FOR AN EFFICIENT METHOD FOR CONTROLLING CONFOUNDING IN COHORT STUDIES

E. FRANCIS COOK AND LEE GOLDMAN

Madigan

- 1. Data staging flexibility
- 2. Total experimental variability
- 3. Repeatability issues
- 4. Average versus individual

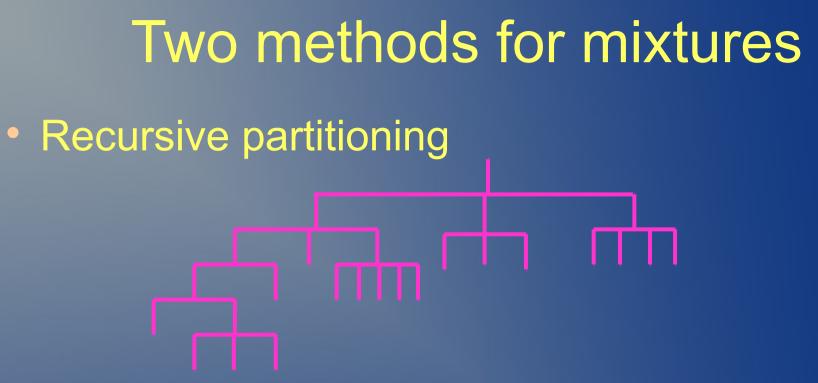
Data

- 1. Much data is effectively private
- 2. Synthetic/simulated for methods evaluation
- 3. Public data sources (Heejung Bang)
- 4. OMOP
- 5. Sentinel Congress/FDA

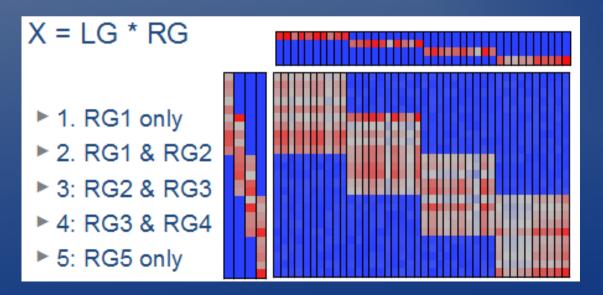
(Fire, Ready, Aim)

Mixtures, Predict/Explain

Statistical Science 2010, Vol. 25, No. 3, 289–310 DOI: 10.1214/10-STS330 © Institute of Mathematical Statistics, 2010


To Explain or to Predict?

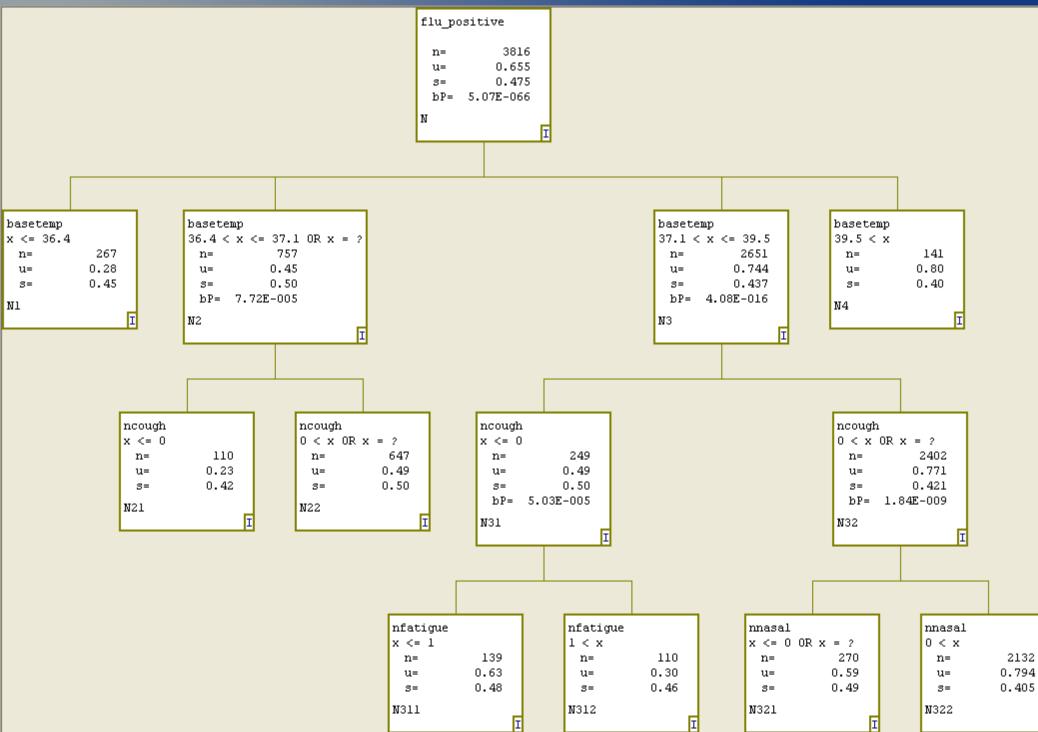
Galit Shmueli


RP single tree versus forest

PCA versus NMF

MLR versus SVM

Non-negative matrix factorization

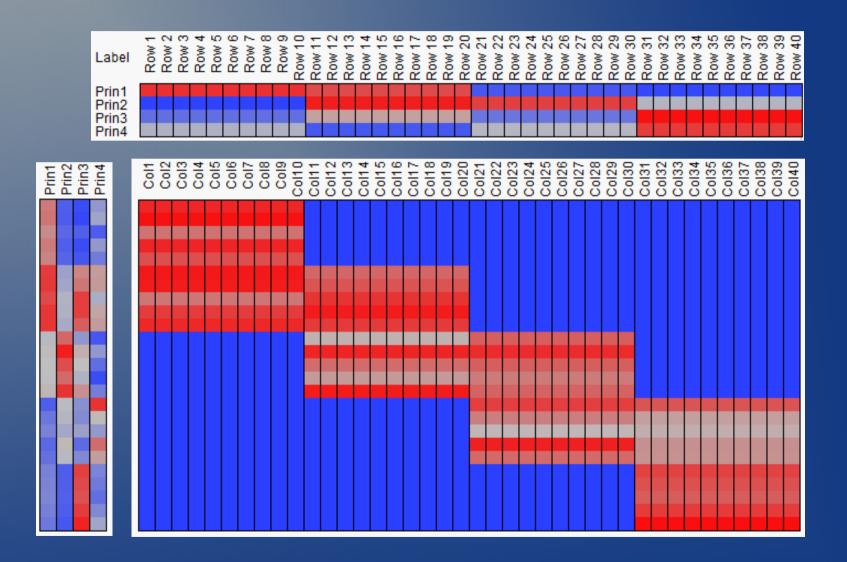


Recursive Partitioning – Finding Groups

Based on statistical hypothesis testing
Works for complex situations, mixtures and interactions
Statistical method easy to understand
Excellent for subgroup analysis
Handles more predictors than observations

Hawkins algorithms, Golden Helix, State of the Art RP

Partionator Tree



I

Crazy Synthetic Data Set

6	5	0	$\overline{\mathbf{o}}$	$\overline{\mathbf{O}}$	0	0	6	5 7	5 -	π.	-	1		- T		 <u>- CN</u>		- CN	N	- CN	- CN	- CN	- CN	CN.	സ	Col31	\mathbf{c}	\mathbf{c}	CO .	സ	\mathbf{c}	\sim	\sim	က	Co140

PCA – to predict

NMF – to explain

	abel.	Col1 Col2	Col3	Col5	Col6	Cols Cols	Col10	Col11	Col12	Col13	Col14	Col15	Col16	Col17	Col18	Col19	Col20	Col21	Col22	Col23	Col24	Col25	Col26	Col27	Col28	Col29	Col30	Col31	Col32	Col33	Col34	Col35	Col36	Col37	Col38	Col39	Col40
0000	Comp 1 Comp 2 Comp 3 Comp 4																																				
Comp 1 Comp 2 Comp 3	94	Col1 Col2	Col3 Col4	Col5	Col6	Col7	Col10	Col11	Col12	Col13	Col14	Col15	Col16	Col17	Col18	Col19	Col20	Col21	Col22	Col23	Col24	Col25	Col26	Col27	Col28	Col29	Col30	Col31	Col32	Col33	Col34	Col35	Col36	Col37	Col38	Col39	Col40

