Sensitivity analysis and polynomial chaos for differential equations

Dongbin Xiu
Department of Mathematics, Purdue University

Support: AFOSR, DOE, NNSA, NSF

Outline

- Basic approximation theory
- Formulation of SPDE
- "Basic-er" probability facts
- Sensitivity analysis
- Generalized polynomial chaos
- Numerical methods
- Stochastic Galerkin
- Stochastic collocation
- Xiu, Numerical methods for stochastic computations, Princeton Univ. Press, 2010

Spectral Accuracy: exponential convergence

Projection error of $\cos (\boldsymbol{\pi} x)$ by Legendre polynomials

Spectral Accuracy: algebraic convergence

Projection error of $|\sin (\pi x)|^{3}$ and $|x|$ by Legendre polynomials

Spectral Accuracy: Gibb's phenomenon

Legendre series expansion of sign function

$$
\operatorname{sgn}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(4 n+3)(2 n)!}{2^{2 n+1}(n+1)!n!} P_{2 n+1}(x)
$$

Probability distribution:

$$
F_{X}(x)=P(X<x) \in[0,1]
$$

Probability density function (PDF): $\quad \rho_{X}(x)=\frac{d F(x)}{d x}$

Gaussian distribution

Gamma distribution

Beta distribution

Expectation:

$$
\mathbb{E}(g(X))=\int g(x) d F_{X}(x)=\int g(x) \rho(x) d x
$$

Mean: $\quad \mu_{X}=\mathbb{E}(X)$
Variance: $\quad \sigma^{2}=\mathbb{E}\left(\left(X-\mu_{X}\right)^{2}\right)$
Skewness: $\mathbb{E}\left(\left(X-\mu_{X}\right)^{3}\right)$
Kurtosis: $\quad \mathbb{E}\left(\left(X-\mu_{X}\right)^{4}\right)$

(Re-)Formulation of PDE: Input Parameterization

$$
\frac{\partial u}{\partial t}(t, x)=\mathcal{L}(u) \quad+\text { boundary } / \text { initial conditions }
$$

- Goal: To characterize the random inputs by a set of random variables
- Finite number
- Mutual independence
- If inputs == parameters
- Identify the (smallest) independent set
- Prescribe probability distribution
- Else if inputs == fields/processes
- Approximate the field by a function of finite number of RVs
- Well-studied for Gaussian processes
- Under-developed for non-Gaussian processes
- Examples: Karhunen-Loeve expansion, spectral decomposition, etc.

$$
a(x, \omega) \approx \mu_{a}(x)+\sum_{i=1}^{d} \tilde{a}_{i}(x) Z_{i}(\omega)
$$

The Reformulation

- Stochastic PDE:

$$
\frac{\partial u}{\partial t}(t, x, Z)=\mathcal{L}(u) \quad+\text { boundary } / \text { initial conditions }
$$

- Solution:

$$
u(t, x, Z):[0, T] \times \bar{D} \times \mathbb{R}^{n_{z}} \rightarrow \mathbb{R}
$$

- Uncertain inputs are characterized by n_{z} random variables Z
- Probability distribution of Z is prescribed

$$
F_{Z}(s)=\operatorname{Pr}(Z \leq s), \quad s \in \mathbb{R}^{n_{Z}}
$$

gPC Basis

- Expectation:

$$
\mathbb{E}(g(Z))=\int_{\mathbb{R}} g(z) \rho(z) d z
$$

- Orthogonality:

$$
\int \Phi_{\mathbf{i}}(z) \Phi_{\mathbf{j}}(z) \rho(z) d z=\mathbb{E}\left[\Phi_{\mathbf{i}}(Z) \Phi_{\mathbf{j}}(Z)\right]=\delta_{\mathbf{i j}}
$$

Gaussian distribution

Gamma distribution
$\int_{0}^{\infty} \Phi_{\mathbf{i}}(z) \Phi_{\mathbf{j}}(z) e^{-z} d z=\delta_{\mathbf{i j}}$

Laguerre polynomial
Laguerre polynomial

Beta distribution

- Continuous Cases:
- Hermite Polynomials \longleftrightarrow Gaussian Distribution
- Laguerre Polynomials \longleftrightarrow Gamma Distribution (special case: exponential distribution)
- Jacobi Polynomials \longleftrightarrow Beta Distribution
- Legendre Polynomials \longleftrightarrow Uniform Distribution

Gaussian distribution

Gamma distribution

Beta distribution

- Discrete Cases :
- Charlier Polynomials \longleftrightarrow Poisson Distribution
- Krawtchouk Polynomials \longleftrightarrow Binomial Distribution
- Hahn Polynomials \longleftrightarrow Hypergeometric Distribution
- Meixner Polynomials \longleftrightarrow Pascal Distribution

Poisson distribution

Binomial distribution

Hypergeometric distribution

Hermite-Chaos Expansion of Beta Distribution

$$
\text { PDF: } f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, \alpha, \beta>0, \quad 0 \leq x \leq 1
$$

Exact PDF and PDF of $1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}$-order Hermite-Chaos Expansions

gPC Basis: the Choices

- Orthogonality:

$$
\int \Phi_{\mathbf{i}}(z) \Phi_{\mathbf{j}}(z) \rho(z) d z=\mathbb{E}\left[\Phi_{\mathbf{i}}(Z) \Phi_{\mathbf{j}}(Z)\right]=\delta_{\mathrm{ij}}
$$

- Example: Hermite polynomial

$$
\int_{-\infty}^{\infty} \Phi_{\mathbf{i}}(z) \Phi_{\mathbf{j}}(z) e^{-z^{2}} d z=\delta_{\mathrm{ij}}
$$

- The polynomials: $Z \sim N(0,1)$

$$
\Phi_{0}=1, \quad \Phi_{1}=Z, \quad \Phi_{2}=Z^{2}-1, \quad \Phi_{3}=Z^{3}-3 Z, \quad \cdots
$$

- Approximation of arbitrary random variable: Requires L^{2} integrability
- Example: Uniform random variable
- Convergence
- Non-optimal
- First-order Legendre is exact

Stochastic Galerkin

$$
\frac{\partial u}{\partial t}(t, x, Z)=\mathcal{L}(u) \quad+\text { boundary } / \text { initial conditions }
$$

- Galerkin method: Seek

$$
u_{N}(t, x, Z) \triangleq \sum_{\mathbf{k}=0}^{N} \hat{u}_{\mathbf{k}}(t, x) \Phi_{\mathbf{k}}(Z)
$$

Such that

$$
\mathbb{E}\left[\frac{\partial u_{N}}{\partial t}(t, x, Z) \Phi_{\mathbf{m}}(Z)\right]=\mathbb{E}\left[\mathcal{L}\left(u_{N}\right) \Phi_{\mathbf{m}}(Z)\right], \quad \forall|\mathbf{m}| \leq N
$$

- The result:
- Residue is orthogonal to the gPC space
- A set of deterministic equations for the coefficients
- The equations are usually coupled - requires new solver

Continuous Distribution : Gaussian (Hermite-Chaos)

- $d u / d t=-Z y, u(t=0)=1$
- Z is a Gaussian random variable :

$$
\text { PDF: } f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

Convergence w.r.t. expansion terms

- $4^{\text {th }}$-order Hermite-Chaos expansion
- Exponential convergence rate

Solution of expansion coefficients

Stochastic Collocation

$$
\frac{\partial u}{\partial t}(t, x, Z)=\mathcal{L}(u) \quad+\text { boundary/initial conditions }
$$

- Collocation: To satisfy governing equations at selected nodes
- Allow one to use existing deterministic codes repetitively
- Sampling: (solution statistics only)
- Random (Monte Carlo)
- Deterministic (lattice rule, tensor grid, cubature)
- Stochastic collocation: To construct polynomial approximations
- Node selection is critical to efficiency and accuracy
- More than sampling

Stochastic Collocation: Interpolation

$$
\frac{\partial u}{\partial t}(t, x, Z)=\mathcal{L}(u) \quad+\text { boundary } / \text { initial conditions }
$$

- Definition: Given a set of nodes and solution ensemble, find u_{N} in a proper polynomial space, such that $u_{N} \approx u$ in a proper sense.
- Interpolation Approaches: $u_{N}(Z)=\sum_{j=1}^{Q} u\left(Z^{j}\right) L_{j}(Z)$

$$
L_{i}\left(Z^{j}\right)=\delta_{i j}, \quad 1 \leq i, j \leq Q
$$

- Dimension-by-dimension space filling

Tensor grids: inefficient

Sparse grids: more efficient

1. Choose a nodal set $\left\{Z^{j}, \alpha^{j}\right\}_{j=1}^{Q}$ in \mathbb{R}^{n+2}
2. Solve for each $j=1, \cdots, Q$,

$$
\begin{aligned}
& \frac{\partial u}{\partial t}\left(t, x, Z^{j}\right)=\mathcal{L}(u), \quad \text { in }(0, T] \times D, \\
& \mathcal{B}(u)=0, \quad[0, T] \times \partial D, \\
& u=u_{0}\left(x, Z^{j}\right), \quad\{t=0\} \times D
\end{aligned}
$$

3. Evaluate the approximate gPC expansion coefficient

$$
\hat{w}_{\mathbf{k}}=\sum_{j=1}^{Q} u\left(t, x, Z^{j}\right) \Phi_{\mathbf{k}}\left(Z^{j}\right) \alpha^{j}, \quad 0 \leq|\mathbf{k}| \leq N ;
$$

4. Construct the $N^{\text {th }}$-order gPC approximation

$$
w_{N}(t, x, Z)=\sum_{|\mathbf{k}|=1}^{N} \hat{w}_{\mathbf{k}} \Phi_{\mathbf{k}}(Z)
$$

- Error bound:

$$
\varepsilon \triangleq\left\|u-w_{N}\right\|_{L^{2}(Z)} \leq\left(\varepsilon_{N}^{2}+\left(\varepsilon_{Q}^{2}\right)+M\left(\varepsilon_{\Delta}^{2} C_{Q}^{2}\right)^{1 / 2}\right.
$$

$$
\text { Error } \leq \text { Finite-term projection error }+ \text { aliasing error }+ \text { Numerical error }
$$

