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Lecture Outline

• Safety Factor

• Mean Value Method

• FORM

• Advanced Mean Value

• SORM

• Limit State Approximations

• Probability Calculations

• Global Reliability Methods
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Safety Factors

• Much of the early work on engineering reliability comes from the civil 

engineering field, concerned with reliability of structures

• In this lecture, the notation of L = load, R = resistance, we want L < R

• Nominal safety factor:  SF = Rnom/Lnom, where Rnominal is usually a 

conservative value (e.g. 2-3 standard deviations below the mean) and 

Lnominal is also a conservative value (2-3 standard deviations above the 

mean)

• Problem:  the nominal safety factor may not convey the true margin of 

safety in a design

RL
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Safety Factors

• Variety of approaches to improve a design

– Increase the distance between the relative positions of the 

two curves:  this reduces the probability of the overlapping 

area, and the probability of failure decreases

– Reduce the dispersion of the two curves

– Improve the shapes of the two curves
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Probability of Failure

In practice, this integration is hard to perform and doesn’t 

always have an explicit form, except in some special 

cases
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Probability of Failure

• Special Case:  R~N(
R
, 

R
) , L~N(

L
, 

L
)

• Define Z = R – L

• There are also modifications which treat multiple loads, 
or lognormal distributions (Haldar and Mahadevan)
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Reliability Analysis

• Assume that the probability of failure is based on a specific 

performance criterion which is a function of random variables, 

denoted Xi.

• The performance function is described by Z: 

Z = g(X1, X2, X3 , …, Xn)

• The failure surface or limit state is defined as Z = 0.  It is a 

boundary between safe and unsafe regions in a parameter 

space.  

• Now we have a more general form of Pfailure
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Reliability Analysis

• Note that the failure integral has the joint probability density 

function, f, for the random variables, and the integration is 

performed over the failure region

• If the variables are independent, we can replace this with the 

product of the individual density functions

• In general, this is a multi-dimensional integral and is difficult to 

evaluate.  

• People use approximations.  If the limit state is a linear function of 

the inputs (or is approximated by one), first-order reliability methods 

(FORM) are used. 

• If the nonlinear limit state is approximated by a second-order 

representation, second-order reliability methods (SORM) are used.
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Mean Value Method (FOSM)

• Often called the First-Order Second-Moment (FOSM) method or the 

Mean Value FOSM method

• The FOSM method is based on a first-order Taylor series expansion of 

the performance function

• It is evaluated at the mean values of the random variables, and only 

uses means and covariances of the random variables

• The mean value method only requires one evaluation of the response 

function at the mean values of the inputs, plus n derivative values if one 

assumes the variables are independent  n+1 evaluations in the 

simplest approach (CHEAP!)
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Mean Value Method (FOSM)

• Introduce the idea of a safety index  (think of this as how far in 
“normal space” that your design is away from failure)

• FOSM does not use distribution information when it is available

• When g(x) is nonlinear, significant error may be introduced by 
neglecting higher order terms in the expansion

• The safety index fails to be constant under different problem 
formulations

• It can be very efficient.  When g(x) is linear and the input variables 
are normal, the mean value method gives exact results!  
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Mean Value Method (FOSM)

Some extensions/notation
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Most Probable Point Methods

• Transform the uncertainty propagation problem 

into an optimization one:  first transform all of the 

non-normal random variables into independent, 

unit normal variables.  Then, find the point on the 

limit state surface with minimum distance to the 

origin.  

• The point is called the Most Probable Point 

(MPP).  The minimum distance, , is called the 

safety index or reliability index.

• X is often called the original space, U is the 

transformed space.
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MPP Search Methods

G(u)

Failure

region
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Uncertainty Transformations

• Want to go from correlated non-
normals to uncorrelated standard 
normals (u)

• Several methods

– Rosenblatt

– Rackwitz-Fiesler

– Chen-Lind

– Wu-Wirshing

– Nataf

• Rosenblatt:  First transform a set of 
arbitrarily, correlated random 
variables X1…Xn to uniform 
distributions, then transform to 
independent normals.

• Nataf:  First transform to correlated 
normals (z), then to independent 
normals u.  L is the Cholesky factor 
of the correlation matrix
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MPP Search Methods

Reliability Index 

Approach (RIA)

•Find min dist to G level curve

•Used for fwd map z p/

Performance Measure

Approach (PMA)

•Find min G at  radius

•Used for inv map p/ z
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Reliability Algorithm Variations:

First-Order Methods

AMV:

u-space AMV:

AMV+:

u-space AMV+:

FORM:  no linearization

Limit state linearizations

Integrations

1st-order:

Warm starting

When: AMV+ iteration increment, z/p/ level increment, or design variable change

What: linearization point & assoc. responses (AMV+) and MPP search initial guess

MPP search algorithm

[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)



17

2nd-order local limit state approximations

• e.g., x-space AMV2+:

• Hessians may be full/FD/Quasi

• Quasi-Newton Hessians may be BFGS or SR1

G(u)

Failure

region

2nd-order integrations

curvature correction

Synergistic features:

• Hessian data needed for 

SORM integration can enable

more rapid MPP convergence

• [QN] Hessian data accumulated during 

MPP search can enable more accurate 

probability estimates

Reliability Algorithm Variations:

Second-Order Methods
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G(u)

Failure

region

Multipoint limit state approximations

• e.g., TPEA, TANA:

Reliability Algorithm Variations:

Second-Order Methods

Importance Sampling

•Use of importance sampling to calculate prob of failure: 

•After MPP is identified, sample around MPP to estimate Pf more accurately
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Reliability Algorithm Variations:

Sample Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever

43 z levels 43 p levels



20

Efficient Global Reliability 

Analysis (EGRA)

True fn

GP surrogate

Expected

Improvement

From Jones, Schonlau, Welch, 1998

• Address known failure modes of local reliability methods:

– Nonsmooth: fail to converge to an MPP

– Multimodal: only locate one of several MPPs

– Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs

– Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)

– Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)
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Efficient Global Reliability 

Analysis (EGRA)
• Address known failure modes of local reliability methods:

– Nonsmooth: fail to converge to an MPP

– Multimodal: only locate one of several MPPs

– Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs

– Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)

– Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

10 samples 28 samples

explore

exploit
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Efficient Global Reliability 

Analysis (EGRA)
Mean Variance Expected Feasibility

•+

•Accuracy similar to exhaustive sampling at cost similar to local reliability assessment
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Optimization under Uncertainty 

• Design for reliability is a classic OUU problem, 

often called RBDO (reliability-based design 

optimization)

• Nice properties in that the reliability 

formulation itself generates quantities such as 

derivatives of performance function with 

respect to uncertain variables

• Variety of approaches (next page) 

• Simplest case:  think of a “nested” algorithm, 

with an optimization outer loop and sampling 

inner loop

Design

Optimization

Sampling

simulation
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RBDO Algorithms

Bi-level RBDO

• Constrain RIA z p/ result

• Constrain PMA p/ z result

RIA

RBDO

PMA

RBDO

KKT

of MPP

Unilevel RBDO:
• All at once: apply KKT conditions of 

MPP search as equality constraints

• Opt. increases in scale (d,u)

• Requires 2nd-order info for 

derivatives of 1st-order KKT

1st-order 

(also 2nd-order w/ QN)

Sequential/Surrogate-based RBDO:
• Break nesting: iterate between opt & UQ until target is met.

Trust-region surrogate-based approach is non-heuristic.
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New Topic: 

Importance Sampling for 

Black-Box Simulators
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Motivation

• USE CASE:  We have DAKOTA users who take an initial set of 
Latin Hypercube samples, then would like to perform some 
additional samples to help refine a failure probability estimate

• They want to do this with relatively small number of samples:  
100-200 initial samples and 100-200 samples from an 
importance sampling density. 

• We developed a customized importance sampler where the 
importance sampling densities are constructed based on kernel 
density estimators. 

Is importance sampling efficient and accurate for situations where 
we can only afford small numbers of samples?

Does importance sampling require the use of surrogate methods 
to generate a sufficient number of samples to increase the 
accuracy of the failure probability estimate?
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Background

• Importance sampling is a method used to sample random 

variables from different densities than originally defined.  

• These importance sampling densities are constructed to pick 

“important” values of input random variables to improve the 

estimation of a statistical response of interest, such as a mean or 

probability of failure. 
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Selection of importance density

• The variance of the importance sampling estimator is minimized 
when h(x)  |r(x)f(x)|. 

• For black-box simulations that have multiple uncertain inputs 
which may come from a wide variety of random input distribution 
types, we cannot generally assume that the importance 
sampling density will be normal or have a parametric form.  

“The most difficult part in parametric importance sampling is 
choosing a suitable distribution family to start with.  There is no 
general recipe, and the issue remains largely a matter of art in 
the literature.  Most parametric distributions fail to include g (the 
optimal importance sampling density) as a member.”

• Nonparametric methods:  Zhang (1996) demonstrates increased 
convergence but higher computational cost of nonparametric 
methods. 

Kernel density estimators
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Kernel density estimators

• Kernel Density Estimation (KDE) is a technique used to estimate 

the density of a random variable X given n independent samples 

X1, ..., Xn of it. 







n

i

iKDE

n
h

Xx
K

nh
xf

1

}{ )(
1

)(

2

2

1

2

1
)(

x

exK
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Rosenbrock test function

Failure region defined as 
(Rosenbrock function < 3)

Probability of failure = 0.0383 
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Importance Sampling Test Results

• Rosenbrock function:  X1, X2 both distributed as U[-2,2]

• Want to obtain estimate of failure probability (Rosenbrock < 3)

• For each combination of initial LHS/ IS points, we ran 100 replicates

• True value  0.0383

• Note that failure probabilities not significantly different but we have increased 

percentage of points that fail by a factor of three

• Additional analysis showed that the accuracy of the failure estimates is not 

greatly improved IS due to the limited number of samples. 

• The main benefit is that KDE IS estimators provide a quick way to generate 

more samples in the failure region. 

Number

of Importance 

samples

100 200 0.039 0.01096 0.03798 0.01139 0.1283

50 100 0.0432 0.01429 0.03854 0.01665 0.1159

100 100 0.036 0.01241 0.03986 0.01567 0.133

200 200 0.03785 0.00955 0.03774 0.00823 0.1412

200 400 0.03702 0.00843 0.03868 0.00768 0.1432

IS Std dev. 

Failure 

Probability

Mean percentage 

of IS that “fail”

Number of 

initial LHS 

samples

LHS Mean 

Failure 

probability

LHS Std dev. 

Failure 

Probability

IS Mean Failure 

probability



33

Next steps

• We tested this approach on a variety of test problems, focusing on 
situations with small sample sizes to be representative of expensive 
computational simulations.  

• We have looked at this approach for 5-D problems and a problem with a 
discontinuity in the response space:  it worked fine in both cases

• Further investigation into scaling up to multiple dimensions

• Adding points “near” the response threshold can help

• Also investigated surrogate methods:  need to have accurate surrogates

• This approach is reasonably robust and can produce failure probability 
estimates that are comparable to failure estimates produced by small 
numbers of LHS sample points.

• The main benefit we see by using this approach is that the kernel 
density estimators provide a quick way to generate more samples in the 
failure region. We found that importance sampling increased the 
number of samples in the failure region by a factor of 3 to 8 for our test 
cases.



34

Summary

• How can we identify “rare events” using 

computational simulations? 

– Importance Sampling

• Challenges for black-box, high-dimensional problems

– Reliability Methods

• Designed to explicitly calculate probability of failure

• Not widely used:  limitations for very nonlinear 

problems, problems with multiple failure modes

– Optimization methods in general

• Find parameters that correspond to extreme situations

– Use of surrogate models 

• very powerful and often necessary, but errors in tails, 

near boundaries

– Model errors


