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Outline

• A constrained ensemble - indistinguishable, 
truth plus error or both?

• CMIP mean result: why is it so good?
• Improving confidence in multi-model 

projections
• A weighting scheme accounting for inter-

model similarities
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Ensemble Interpretation

truth + error indistinguishable
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•unobserved	
  truth
•constrained	
  by	
  obs
•decreasing	
  uncertainty

•unknown	
  distribu%on
•weighted	
  by	
  obs
•possibly	
  0/1	
  weight

•model	
  distribu%on
•space-­‐filling?
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Performance
Metrics

Gleckler, P., et al, 
J. Geophys. Res (2008)
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Error of the mean

Knutti et al (2009)
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Indistinguishable Mean Annan et al. (2010)
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The mean result Reichler and Kim (2008)
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Annan and Hargreaves (2011)

+Statistically Indistinguishable
+Overdispersive

+Underdispersive
xModel Ensemble

Indistinguishable Mean
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Indistinguishable Mean Annan and Hargreaves (2010)
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Indistinguishable Mean Annan and Hargreaves (2010)
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Truth + error by design Sanderson & Knutti (in prep)
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Truth + error by design Sanderson & Knutti (in prep)

CAMcube Optimal CPDN Optimal

−15 −10 −5 0 5 10 15
JJA Temperature anomoly from NCEP (K)

Mean Optimal

Recipe for a perfect T+E ensemble for the present:
- independent irreducible errors
- sufficiently large ensemble
- perfect calibration
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Case 1: A predictable system Knutti & Sanderson (submitted)
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Qu and Hall (2007)A predictable system
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Knutti & Sanderson (submitted)Case II: unconstrained

17



Knutti & Sanderson (submitted)Observable Constraints
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Sanderson (in prep)A (less) predictable system

19



Knutti & Sanderson (submitted)Case III: structurally wrong
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Sanderson (submitted)Systematic prediction errors
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Knutti & Sanderson (submitted)Case IV: impossible constraint

22



Indistinguishable Mean Knutti and Sanderson (submitted)

“Common 
structural error 

may be difficult to 
separate from 

inter-model 
differences”
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Present Future

Truth+Error
by design

(with caveats)

-common systematic errors
-imperfect tuning
-small sample

-model interdependency
-feedback constraints
-missing processes

Indistinguishable
(with caveats)
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these two models close, despite significant changes that
were made to most components of the model. But relation-
ships go beyond the “same modeling center” attribute. MIUB
and ECHO‐G (both based on an ECHAM4 atmosphere)
cluster for temperature, and INGV‐ECHAM4 and MPI‐
ECHAM5 (both ECHAM based but with different versions)
cluster for precipitation. A less evident pair, BCCR‐BCM2‐0
and CNRM‐CM3, is identified for both temperature and
precipitation. These models share the same atmosphere and
land components.
[5] Pennell and Reichler [2011] performed a similar

analysis using hierarchical clustering but with a different
distance metric based on model biases and 35 climate vari-
ables. While their results for CMIP3 are similar to those
presented here, we show that a single variable (thus avoiding
normalization) is sufficient to reveal most of the dependency
structure, and that the key elements of dependence are sim-
ilar for both surface temperature and precipitation. Obser-
vation and reanalysis datasets are not needed for the analysis,
but when included like additional models they also cluster
together, with some distance to the models, but well within
the bulk of the simulations.
[6] The picture gets evenmore interesting when the QUMP

perturbed physics ensemble [Collins et al., 2010] and the
previous generation of models in CMIP2 is included, shown
in Figure 2. The CMIP2 and CMIP3 models from the same
institution also tend to cluster. For precipitation for example,
the old NCAR CSM, PCM1 and the NCAR‐WMmodels are
close. The newest NCAR CCSM3 in CMIP3 however was
developed almost independently from earlier NCAR models
and appears separated. Qualitatively, the history can be traced
back further for most models [Edwards, 2010]. But given the
rapid development, the increase in resolution in the models,
the inclusion of new processes and the availability of more
observations, we believe the connections between successive

model versions are unlikely to persist over more than one or
two generations.
[7] In most of the trees, there is no clear separation into two

or three clusters that are far apart, i.e., there is no evidence for
multiple classes of models, different mutually exclusive
theories or philosophies in how to build a model, or a clear
separation between CMIP2 and CMIP3. The climate model
landscape rather resembles an evolutionary process. Indi-
vidual models take small steps compared to the size of the
model space, successful pieces of a model are kept, inherited
and copied and less successful parts go extinct. Existing
models adapt to new environments (computer architecture
and capacity, new observations, improved understanding of
the climate system), although by deliberate rather than ran-
dom modifications. New models rarely are written from
scratch but evolve from combining, modifying and improv-
ing existing parts and ideas.
[8] The perturbed versions of the HadCM3 [Collins et al.,

2010] model separate themselves from the rest of the CMIP
models. For some aspects, a large PPE can span a “model
space” similar or larger than CMIP3, e.g., for the range of
feedbacks and climate sensitivity [Sanderson et al., 2010;
Collins et al., 2010; Stainforth et al., 2005]. However, if the
full spatiotemporal fields are considered, the underlying
model structure (grid, numerical scheme, parameterizations,
resolved processes) appears to be important. Note that
parameter perturbations in the QUMP ensemble are chosen to
maximize the spread in feedbacks but ensure good agreement
with climatology for each member (see auxiliary material).
Very different unconstrained model versions are likely to
exist, and those may well fall outside the QUMP cluster.

4. Conclusions

[9] Our analysis of spatial and temporal variations in
surface temperature and precipitation shows strong similar-

Figure 1. Hierarchical clustering of the CMIP3 models for (left) surface temperature and (right) precipitation in the model
control state. Models from the same institution and models sharing versions of the same atmospheric model are shown in the
same color. Observations also are marked by the same color. Models without obvious relationships are shown in black.

MASSON AND KNUTTI: CLIMATE MODEL GENEALOGY L08703L08703

2 of 4

Model
Similarity

Masson et al (2011)

Dissimilarity
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Sanderson & Knutti (in prep.)Inter-model Distances
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Sanderson & Knutti (in prep.)Dimensional Reduction
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Sanderson & Knutti (in prep.)Weighting
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Precipitation  Trends Knutti et al (2010)

30



Representative Mean? Sanderson (in preparation)
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GPCP Reconstruction Sanderson (in preparation)

Regression from GPCP & CMIP 3 Future temp Multi Model Mean
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Regression from GPCP & CMIP 3 Future temp Multi Model Mean
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Model Consistency Sanderson (in preparation)

34



40 30 20 10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

Percentage 2100 precip. change per Kelvin surface temperature change

Fr
ac

tio
n 

of
 g

rid
ce

lls

 

 
CMIP 3
CMIP 3 bin average
CMIP 3 multi model mean
Optimal Projection

Representative  estimate Sanderson (in preparation)

35



Conclusions
• Constrained ensembles like CMIP may be best understood 

as imperfect truth+error by design for observed climate 
periods

• Spread in the present day ensemble is likely due to a 
combination of systematic errors, tuning limitations and 
limited degrees of freedom, unlike future predictions which 
spread due to differences in feedbacks and forced response

• Some aspects of the climate system may be predictable, and 
will retain truth+error characteristics for a longer lead time

• A complete model weighting should include both aspects of 
model skill and inter-model similarity
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