

Interpretation of constrained climate model ensembles Ben Sanderson

Outline

- A constrained ensemble indistinguishable, truth plus error or both?
- CMIP mean result: why is it so good?
- Improving confidence in multi-model projections
- A weighting scheme accounting for intermodel similarities

truth + error

Ensemble Interpretation

indistinguishable

 Giorgi 2008 Murphy et al. 2007 Ruosteenoja et al. 2007 	 Moise and Hudson 2008 Palmer et al. 2008 Min et al. 2007 Giorgi and Mearns 2002 Pierce et al. 2009 Perkins and Pitman 2009 	
 Raisanen and Ruokolainen Dettinger 2006 Raisanen and Palmer 2001 	 Laurent and Cai 2007 Shukla et al. 2006 Dessai et al. 2005 Watterson 2008 Brekke et al. 2008 	•
	 Buser et al. 2009 Smith et al. 2009 Furrer et al. 2007 Boulanger et al. 2007 Greene et al. 2006 	•

truth + error

unweighted

cr. Claudia Tebaldi

indistinguishable

 model distribution space-filling? 	 unknown distribution weighted by obs possibly 0/1 weight
	unobserved truth
	•constrained by obs
	 decreasing uncertainty

truth + error

Performance Metrics

Gleckler, P., *et al*, J. Geophys. Res (2008)

Error of the mean

Knutti et al (2009)

$$\frac{1}{n} \sum ||m_i - O||^2 = \frac{1}{n} \sum ||m_i - M||^2 + ||O - M||^2$$

$$\frac{1}{n} \sum \|m_i - O\|^2 > \|O - M\|^2$$

Indistinguishable Mean Annan et al. (2010)

The mean result Reichler and Kim (2008)

Indistinguishable Mean

Annan and Hargreaves (2010)

Indistinguishable Mean

Annan and Hargreaves (2010)

CAMcube Optimal CPDN Optimal Mean Optimal Image: Comparison of the system of the syst

Recipe for a perfect T+E ensemble for the present:

- independent irreducible errors
- sufficiently large ensemble
- perfect calibration

Truth + error by design

Sanderson & Knutti (in prep)

Case 1: A predictable system

Knutti & Sanderson (submitted)

Case II: unconstrained Knutti & Sanderson (submitted)

Observable Constraints

Knutti & Sanderson (submitted)

A (less) predictable system Sanderson (in prep)

Case III: structurally wrong

Knutti & Sanderson (submitted)

Case IV: impossible constraint K

Knutti & Sanderson (submitted)

"Common structural error may be difficult to separate from inter-model differences"

Knutti and Sanderson (submitted)

Present Truth+Error by design (with careats)

-common systematic errors-imperfect tuning-small sample

-model interdependency-feedback constraints-missing processes

Future

Indistinguishable (with careats)

Weighting

Sanderson & Knutti (in prep.)

Multi-Model Mean

Pattern Projections

Sanderson (in preparation)

Annual Precipitation Change (cm) -40 -30 -20 -10 0 10 20 30 40

Model Consistency

Sanderson (in preparation)

Representative estimate

Sanderson (in preparation)

Conclusions

- Constrained ensembles like CMIP may be best understood as imperfect truth+error by design for observed climate periods
- Spread in the present day ensemble is likely due to a combination of systematic errors, tuning limitations and limited degrees of freedom, unlike future predictions which spread due to differences in feedbacks and forced response
- Some aspects of the climate system may be predictable, and will retain truth+error characteristics for a longer lead time
- A complete model weighting should include both aspects of model skill and inter-model similarity