Patient Flow Analysis: Improving the Quality and Efficiency of Healthcare Delivery

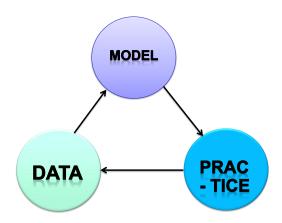
Discussant: Guodong (Gordon) PANG

Department of Industrial Engineering Pennsylvania State University

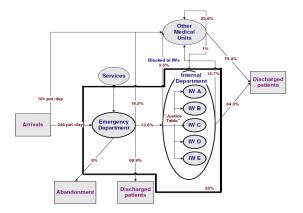
August 28, 2012

SAMSI Data-Driven Decisions in Healthcare: Opening Workshop

Patient Flow Analysis

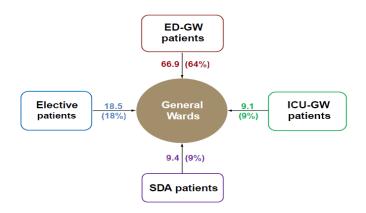


DATA gives the patient flow structure



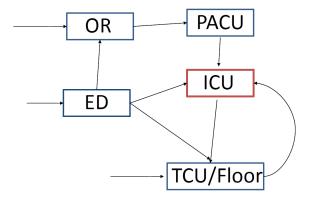
Resource: Mandelbaum et al. (2011)

DATA gives the patient flow structure



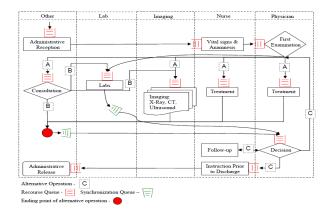
Resource: Dai et al. (2012)

DATA gives the patient flow structure



Resource: Chan et al. (2011)

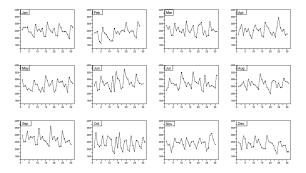
DATA gives the patient flow structure



Resource: Mandelbaum et al. (2011)

DATA provides the patient flow characteristics

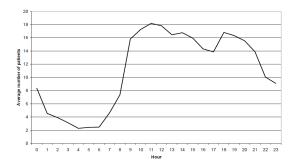
Daily arrival rate (by month) to Emergency Department



Resource: Yom-Tov (2011)

DATA provides the patient flow characteristics

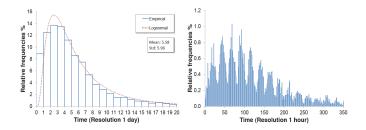
Hourly arrival rate to Emergency Department



Resource: Yom-Tov (2011)

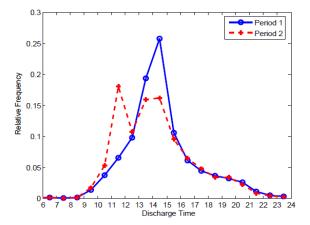
DATA provides the patient flow characteristics

LOS Distribution of IW



Resource: Mandelbaum et al. (2011)

DATA provides the patient flow characteristics



Resource: Dai et al. (2012)

DATA shows management challenges

- How can the performance measures be stabilized with time-varying arrival patterns?

- How to reduce the ICU congestion while providing good patient outcomes?

- What are the optimal discharge policies to streamline the patient flows more efficiently?

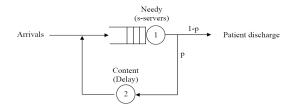
Patient Flows as Queueing Networks

What is NEW?

- Customers: Patients
- Servers: Beds, Doctors, Nurses, Equipments
- Stations: Medical Units
- Service Discipline
- Routing and Control Policies

Patient Flows as Queueing Networks

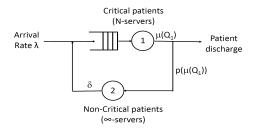
Erlang R Model for ED



Resource: Mandelbaum and Yom-Tov (2011)

Patient Flows as Queueing Networks

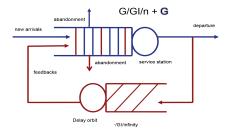
ICU Model with Speedup



Resource: Chan et al. (2011)

Patient Flows as Queueing Networks

Impatience Differentiation



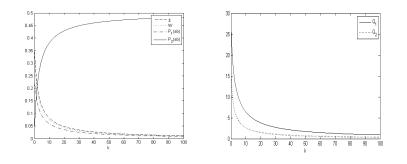
Resource: Kang and Pang (2012)

Impatience Differentiation

Markovian Models: $\lambda = 60$, $\mu = 1$, n = 100, p = 0.5, $\delta = 0.5$

Model	$ heta_1= heta_2=0.5$		$\theta_1 = 0.5, \ \theta_2 = 0.8$		$\theta_1 = 0.8, \ \theta_2 = 0.5$	
	Sim.	Approx.	Sim.	Approx.	Sim.	Approx.
Q_1	11.31	10.90	9.02	9.01	8.55	8.64
Q_2	8.95	9.09	6.98	7.07	6.87	6.95
$P_1(ab)$	0.0897	0.0909	0.0721	0.0723	0.1051	0.1094
$P_2(ab)$	0.0887	0.0909	0.1092	0.1134	0.0671	0.0695
W	0.1791	0.1823	0.1502	0.1468	0.1416	0.1427

Impatience Differentiation



 $G^{s} \sim H_{2}(m^{s} = 1, c_{s}^{2} = 2), G^{d} \sim H_{2}(0.5, 1.5), G_{1}^{r} \sim H_{2}(2, 3), G_{2}^{r} \sim H_{2}(2/k, 3), \lambda = 80, p = 0.4, N = 100$

Models with Dependent Service Times

 $M^B/M^D/n$ queue: Marshall-Olkin multivariate exponential within each batch with correlation ρ , $\mu = 1$, $\lambda_B = 50$, $B \sim Geom(0.5)$, $n = \lambda_B m_B/\mu + \beta \sqrt{\lambda_B m_B/\mu} = 110$, $\beta = 1$. Delay probability $P(W > 0) \approx \alpha(\beta/\sqrt{z})$ where $\alpha(\beta) = (1 + \beta \Phi(\beta)/\phi(\beta))^{-1}$ is the Halfin-Whitt function, and z is the

where $\alpha(\beta) = (1 + \beta \Phi(\beta))/\phi(\beta))^{-1}$ is the Halfin-Whitt function, and z is the peakedness measure in the associated $G/G/\infty$ queue, equal to the steady state variance divided by mean of the number in system. Here $z \approx 2 + \rho$.

ρ	Sim.	Approx.			
0	0.3656	0.3663			
0.1	0.3766	0.3764			
0.2	0.3857	0.3860			
0.3	0.3946	0.3951			
0.4	0.4041	0.4039			
0.5	0.4126	0.4122			

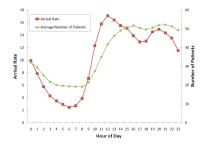
Source: Pang and Whitt (2011)

Models with Time-Varying Arrival Rates

How to compute the time-varying performance measures?

Fluid Models

- Markovian models: ODE
- non-Markovian models: algorithms
 - Liu and Whitt (2011)
 - Kang and Pang (2011)



Source: Mandelbaum et al. (2011)

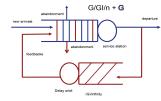
Models with Time-Varying Arrival Rates

How to compute the time-varying performance measures?

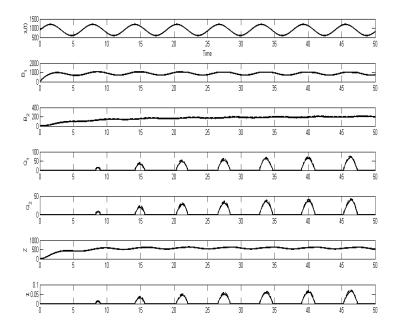
 $\lambda(t) = 900 + 300 \sin(t), N = 1200 (N = 650)$

- Service time of new customers LN(-1/2,1), $m_1^s = 1$

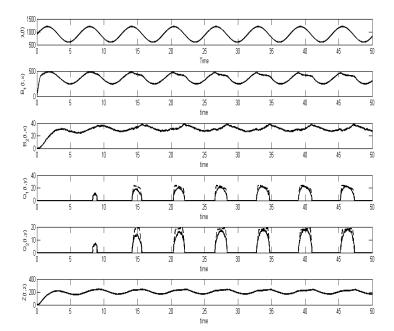
- Service time of reentrant customers $LN(\log(0.5) 4, 2\sqrt{2}), m_2^5 = 0.5$
- Patience time of new customers $H_2(1, 3.5)$
- Patience time of reentrant customers $H_2(2,6)$
- Delay time $H_2(1,4)$
- Reentrant probability p = 0.4

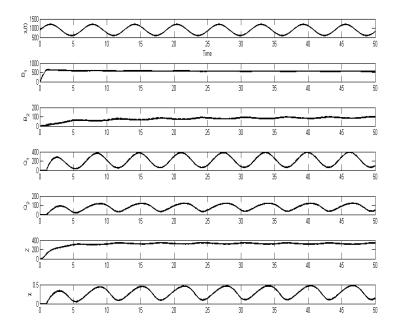


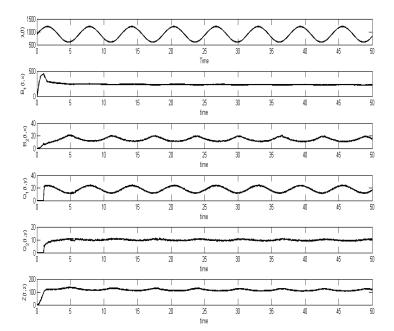
Source: Kang, Lu and Pang (2012)



21 / 29





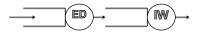


Many Open Problems

An Integrated System

Challenges:

- ED and IW in different time scales (hours, days)
- Patients receive service while waiting
- Structural dependence



Patient Flow Analysis: Practice

How can we use the models to guide practice?

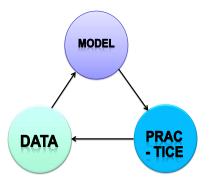
- Stabilizing performance (Liu and Whitt (2011))
- Admission and speedup decisions (Chan et al. (2011))
- Staffing with service dependence (Pang and Whitt (2011))
- Model Validation and Parameter Estimations (Chan et al. (2011))
- Predictions

Patient Flow Analysis: Practice

Model Validation and Parameter Estimations

- Validate the model assumptions from the data
- Estimate the model parameters from the data
- Use the model to help with inference

Patient Flow Analysis



Better FLOW \Rightarrow Better CARE

THANK YOU!