The Climate UQ Project at Lawrence Livermore National Laboratory

D. Lucas, G. Johannesson + many more

SAMSI Program on Uncertainty Quantification Climate Modeling Workshop Wednesday, August 31, 2011

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Lawrence Livermore National Laboratory

Advancing UQ Science: a Strategic Initiative at LLNL

Creating an Advanced UQ Science Capability for Predictive Simulations

Four focus areas for building and testing a UQ computational engine for exascale computing

- —Error Estimation
- -Curse of Dimensionality

(advanced statistical methods)

- -Climate Model

Modeling the climate system

- Climate models solve continuity equations for momentum, mass, energy and chemical constituents.
- Many processes occur at unresolved scales and require parameterizations (e.g. convection, cloud cover, rainfall, rough topography, urban centers)

It is difficult to identify the sources of uncertainty in a multi-model assessment: example from PCMDI

Model used in IPCC Fourth Assessment

LLNL-PRES-492559

Assessing Climate Model Uncertainties using UQ

- Perturbed input parameter ensembles of the Community Earth System Model (CESM)
- Carry out sensitivity and uncertainty analysis of climate simulations
- Collect a comprehensive set of observations to use for UQ (emphasis on cloud-related observations)
- Calibrate input parameters using observations
- Calculate PDF of climate sensitivity
- Perform UQ analysis of climate change using coupled models and adaptive sampling refinement in LLNL's UQ Pipeline

CESM configuration

Basic CESM configuration used:

- CESM v1.0.1 E/F_2000 compsets
- 1.9x2.5° horizontal resolution CAM4 physics
- 26 vertical levels Finite-Volume dynamical core
- CESM namelist code modified to allow for up to 37 parameters of interest to be set.
- CESM scripting system modified as needed.
- Extensive Python script developed to insulate user from CESM specifics.

36 Uncertain Parameters Considered in Atmospheric (CAM) and Sea Ice (CICE) Components (part I)

#	Name	Low	Default	High	Description	Package
1	rhminh^	0.65	0.80	0.85	Threshold RH for fraction of high stable clouds	cloud_fraction
2	rhminl^	0.80	0.91	0.99	Threshold RH for fraction of low stable clouds	cloud_fraction
3	rliqice	8.4	14.0	19.6	Effective radius of liq. cloud droplets over sea ice	pkg_cldoptics
4	rliqland	4.8	8.0	11.2	Effective radius of liquid cloud droplets over land	pkg_cldoptics
5	rliqocean	8.4	14.0	19.6	Effective radius of liquid cloud droplets over ocean	pkg_cldoptics
6	ice_stokes_f ac^	0.25	0.50	1.00	Scaling factor applied to ice fall velocity	pkg_cld_sedi mnent
7	capnc	30.0	150.0	155.0	Cloud particle num. density over cold land/ocean	cldwat
8	capnsi	10.0	75.0	100.0	Cloud particle number density over sea ice	cldwat
9	capnw	150.0	400.0	500.0	Cloud particle number density over warm land	cldwat
10	conke^	2.0e-6	5.0e-6	10.0e-6	Evaporation efficiency of stratiform precipitation	cldwat
11	icritc^	2.0e-6	9.5e-6	18.0e-6	Threshold for autoconversion of cold ice	cldwat
12	icritw^	1.0e-4	2.0e-4	10.0e-4	Threshold for autoconversion of warm ice	cldwat
13	r3lcrit	5.0e-6	10.0e-6	14.0e-6	Critical radius at which autocon. becomes efficient	cldwat
14	fac	10.0	100.0	200.0	ustar parameter in PBL height diagnosis	hb_diff
15	fak	4.25	8.50	17.00	Constant in surface temperature excess	hb_diff
16	ricr	0.1	0.3	1.0	Critical Richardson number for boundary layer	hb_diff
17	betamn	0.02	0.10	0.30	Minimum overshoot parameter	hk_conv
18	c0^	0.3e-4	1.0e-4	2.0e-4	Shallow convection precipitation efficiency	hk_conv
19	cmftau^	900.0	1800.0	14400.0	Time scale for consumption rate of shallow CAPE	hk_conv
20	sgh_scal_fac	0.8	1.0	1.2	Land roughness scaling factor	physpkg

36 Uncertain Parameters Considered in Atmospheric (CAM) and Sea Ice (CICE) Components (part II)

#	Name	Low	Default	High	Description	Package
21	alfa	0.05	0.10	0.60	Initial cloud downdraft mass flux	zm_conv
22	c0_Ind^	1.0e-3	3.5e-3	6.0e-3	Deep convection precipitation efficiency over land	zm_conv
23	c0_ocn^	1.0e-3	3.5e-3	6.0e-3	Deep convec. precipitation efficiency over ocean	zm_conv
24	capelmt	20.0	70.0	200.0	Threshold value for CAPE for deep convection	zm_conv
25	dmpdz	-2.0e-3	-1.0e-3	-0.2e-3	Parcel fractional mass entrainment rate	zm_conv
26	ke^	0.5e-6	1.0e-6	10.0e-6	Environmental air entrainment rate	zm_conv
27	tau	1800.0	3600.0	28800.0	Time scale for consumption rate of deep CAPE	zm_conv
28	cdn_scal_fac	0.8	1.0	1.2	Ocean roughness scaling factor	shr_flux_mod
29	z0m_scal_fac	0.8	1.0	1.2	Mois. & heat resistance to vegetation scaling factor	Biogeophysics 1Mod
30	dt_mlt_in^	0.10	1.50	1.80	Temperature at which melt begins	ice_shortwave
31	r_ice^	-1.9	0.0	1.9	Sea ice tuning parameter	ice_shortwave
32	r_pnd^	-1.9	0.0	1.9	Ponded ice tuning parameter	ice_shortwave
33	r_snw^	-1.9	1.5	1.9	Snow tuning parameter	ice_shortwave
34	rsnw_melt_in^	500.0	1500.0	2000.0	Maximum snow grain radius	ice_shortwave
35	Ksno	0.10	0.30	0.35	Thermal conductivity of snow	ice_therm_vert ical
36	mu_rdg	3.0	4.0	5.0	Gives e-folding scale of ridged ice	ice_mechred

Climate UQ Machinery

LLNL-PRES-492559

Summary of CESM UQ ensemble runs

Study Type	Ocean Mode	# Runs	Sim-Yrs/	Sim-Yrs/ Study Type	Stored	Study Description
ics	prescribed	88	12	1,056	1.5	Six different Initial condition files
ldh	prescribed	3	12	36	0.0	Low/Default/High params
lhs	prescribed	110	12	1,320	1.6	Surrogate-based UQ
moat	prescribed	720	12	8,640	10.8	MOAT parameter screenings
nond	prescribed	1,850	12	22,200	26.3	Surrogate-based UQ
oat	prescribed	257	12	3,084	3.7	One At a Time analysis
vbd	prescribed	121	12	1,452	1.7	Surrogate-based UQ
ldh	som	17	36-60	728	1.4	Low/Default/High params
nond	som	226	30-40	7,840	15.8	Surrogate-based UQ
FY11 S	Subtotals =>	1,772		26,916	38	
TOTALS =>		3,392		46,356	63	

Over 18.4M cpu-hrs used on LLNL's Atlas, more than 46,000 climate model years simulated, and 63TB of ensemble data generated

Analyzing Climate Model Sensitivities

- Morris (Technometrics, 1991)
- *M*ulti-path One-At-a-Time
 Sample along multiple paths and build up statistics of sensitivities throughout parameter space
- Easy to implement
- Relatively low computational cost $N_{\rm runs} = M (N_{\rm p} + 1)$

M = number of MOAT paths (usually 10-20)

- Screen and rank important parameters with linear or non-linear effects
- Gridded sensitivities for no extra cost

20 MOAT paths in 3 of 21 dimensions

Analyzing Climate Model Sensitivities

- Morris (Technometrics, 1991)
- Multi-path One-At-a-Time Sample along multiple paths and build up statistics of sensitivities throughout parameter space
- Easy to implement
- Relatively low computational cost $N_{runs} = M (N_p + 1)$ M = number of MOAT paths (usually 10-20)
- Screen and rank important parameters with linear or non-linear effects
- Gridded sensitivities for no extra cost

Example MOAT Screening Diagram

Analyzing Climate Model Sensitivities

- Highly ranked parameters are targets for calibration.
- A sensitivity ranking for CAM4 using the Morris screening method is shown on the right
- 27 parameters are ranked across 17 outputs
 - A handful of parameters are important to many outputs (++)
 - Many parameters are important to at least one output (+)

MOAT Sensitivity Ranking

Visualizing the Variance Decomposition of Climate Model Responses

Examples of Unfiltered Ensembles

- Unfiltered ensembles consider only the prior parameter uncertainties
- *Filtering* is the process of constraining the ensembles with observations
- Having a large unfiltered ensemble spread facilitates the filtering process (i.e. it's easier to interpolate than extrapolate)

Surrogate Models

- Surrogate models are validated using independent data.
- Examples of the actual and predicted LWCF and SWCF responses are displayed above.
 - surrogates were derived using Support Vector Regression trained on over 1,000 CAM4 runs and tested on 300 independent runs.
- Surrogate model errors are important and factored in the UQ analysis.

Initial Bayesian calibration of CAM

Sample joint posterior distribution given prior information (uniform PDFs) and observational constraints (likelihoods).

Trained and validated 24 Gaussian Process surrogate models on ~1,300 LHS CAM4 simulations: [FLUT, FSUTOA, LWCF, PRECT, Q_850, SWCF, T_850, Z3_500] x [ANN, DJF, JJA]

Observational constraints (w/ "loose" uncertainties): CERES (FLUT, LWCF, SWCF), GPCP (PRECT), NCEP (Z3_500)

Use a hierarchical Bayesian model OBS = SYS + OBS_err SYS = CAM4(p) + MOD_err CAM4(p) = SURR(p) + SURR_err

MCMC used to sample the joint posterior distribution.

 $\begin{array}{ll} P(\text{params} \mid \text{obs}) \propto P(\text{obs} \mid \text{params}) \ P(\text{params}) \\ \text{posterior} & \text{likelihood} & \text{flat priors} \end{array}$

Above: prior and posterior PDFs for a response to which observational constraints were not applied

Parameter PDFs are not well constrained

Posterior Parameter PDFs

Diagonal shows the marginal posterior distribution of 5 selected input parameters (those most constrained by the observations)

Off-diagonal shows posterior realizations (dots) from the bivariate distributions

Red dots show the default values

CAM responses are moderately well constrained

Posterior distribution of selected output variables

- Diagonal (marginal)
 - light-gray histograms show the prior (unfiltered) distributions
 - black histogram the posterior (filtered) distributions
 - red dots/bars show the observational constraints
- Off-diagonal (bivariate)
 - light-gray scatter plots show prior distributions
 - black scatter plots show posterior distributions
 - along with observations and error bars

Moving on to Sea Ice Model Ensembles

- Coupled climate model configuration (CAM-CICE-Slab Ocean)
- More expensive model, longer integrations
- Sampled 7 parameters using 70 LHS runs
- Trained surrogate model on ensemble simulations
- Used surrogate model to perform statistical inference given observational data

Surrogate Model of Sea Ice Ensemble

Surrogate model using Support Vector Machine

fit single surrogate using hemisphere, month and quantity as predictors $S = f(h, m, q, p_1, ..., p_7)$

Important difference with initial atmospheric calibration – used annual cycle information

Variance decomposition to select ice parameters for inference

Network Diagram of Sobol Indices

- Compute variance decomposition for each hemisphere, month and quantity
- Selection criterion keep parameter i if max(Vi/Vtot) > 5% keep parameters i,j if max(Vij/Vtot) > 5%
- Three parameters retained r_snw, rsnw_melt_in, ksno

node d

node diameter $\propto V_i / V_{tot}$ (main effects)

edge width $\propto V_{ij} / V_{tot}$ (interactions)

(only two-way interactions shown, but higher orders can also be displayed on the same graph)

- 1 = dt_mlt_in temperature at which melt begins (0.10, 1.50, 1.80) 2 = r_ice sea ice tuning parameter (-1.9, 0.0, 1.9) 3 = r_pnd ponded ice tuning parameter (-1.9, 0.0, 1.9)
- **4** = **r_snw** snow tuning parameter (-1.9, 1.5, 1.9)
- **5 = rsnw_melt_in** *maximum* snow grain radius (500, 1500, 2000)
- 6 = ksno thermal conductivity of snow (0.10, 0.30, 0.35)
- **7** = mu_rdg *e-folding* scale of ridged ice (3, 4, 5)

Posterior Sea Ice Parameter PDFs

Diagonals are marginals; offdiagonals are bivariates

Ice parameters are well constrained.

Samples from the posteriors will serve as the basis for climate change ensembles

LLNL-PRES-492559

Revisited CAM calibration using annual cycles of energy fluxes from satellite data

Given the success with the CICE calibration, we are revisiting CAM constraining with annual cycles of energy fluxes

Upper row: outgoing longwave radiation

Lower row: outgoing shortwave radiation

Parameter PDFs using annual cycles of energy fluxes are well constrained

Forward UQ: The posterior parameter PDFs from the atmospheric and sea ice models serve as a basis for propagating model uncertainties through CO_2 change ensembles

On Designing Ensembles of Climate Simulations: The Role of Sequential and Adaptive Sampling

Iterative Ensemble-based Climate UQ

- Start with simulations according to a given design LHS-based ensemble to train statistical output emulators MOAT-based design for sensitivity analysis (no emulator)
- Initial analysis, but too inaccurate due to few simulations
- Next runs to improve the accuracy of the analysis?

Q: global and/or local improvements?

- Improve prediction accuracy of emulators globally (e.g. global sensitivity analysis)
- Improve emulators in a region of the input space (e.g. statistical calibration)
- Iterate between analysis and sampling until the accuracy of the results are satisfactory

Sequential and Adaptive Sampling

And The Aggregation of Those

Multiple objectives

- Want to understand the response of multiple output variables of interest to variation in uncertain inputs
- What uncertain parameters drive the variation in a given output?
- Constrain the input uncertainty using observations (go from prior input uncertainty to posterior input uncertainty)

Multiple methods for sequential and adaptive sampling

- Such methods are often driven by single output quantity of interest (QoI)
 Examples:
- Improve the prediction accuracy of a statistical emulator for a Qol
- Input-space filling and response-shape driven designs

Aggregate the feedback from multiple adaptive sampling strategies

Adaptive sampling and aggregation strategies are being studied at LLNL

Example: Case Study of Adaptive Sampling of 21 Uncertain CAM Input Parameters

Goal: Compare different adaptive sampling strategies to select new CAM simulations

Setup: three sets of LHSdesigned ensembles of size 110, 120, and 440

Study:

- Train a GP emulator on 120 simulations to predict a scalar QoI and then validate on 110 runs
- Select additional runs, in batches of 10, from the existing ensemble of 440 simulations using four different adaptive sampling criteria

Summary

• We have performed UQ analysis on the CESM using:

- the UQ Pipeline to generate a large database of ensemble runs
- surrogate models as inexpensive proxies for the actual models
- multiple methods for combining observations and ensembles

Calibrating the CAM and CICE models depends critically on the observations and metrics

 Using surrogate models provides an efficient way to quantify the assumptions made during ensemble filtering. (e.g. What observations should we use? How should we combine the data and ensembles?)

• Using the information from the present-day calibration to propagate uncertainties through climate change simulations

- Equilibrium climate sensitivity using CAM + CICE + SOM (expensive)
- Transient climate change using CAM + CICE + POP (very expensive)
- Adaptive and sequential sampling guides the climate change ensembles

Extra slides

LLNL-PRES-492559

Perturbed Parameters vs. Initial Conditions

- Gray lines = perturbed parameters
- Colored bands = 10 different initial conditions for fix parameter set

Example: Case Study of Using Variable Selection and Statistical Filtering to Design a Batch of CAM-SOM Runs

- **Goal:** use prior knowledge from CAM3/CAM4 runs to design the batches of CAM4+SOM runs
- One Approach:
- Use variable selection to reduce the number of input CAM parameters considered
- Carry out a conservative statistical filtering to generate a large candidate set of points
- Thin the large candidate set of points down to a design set of points using, for example, a distance-based criterion

Moving to fully coupled climate UQ ensembles

Uncertainties in radiative forcing

WAT

"A Watt per meter squared"

Thanks S. Schwartz!

Largest uncertainties are due to the aerosolcloud interactions

Radiative forcing of climate between 1750 and 2005