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Lawrence Livermore National Laboratory

Advancing UQ Science: a Strategic Initiative at 
LLNL

Four focus areas for building and 

testing a UQ computational 

engine for exascale computing

—Error Estimation (algorithms)

—Curse of Dimensionality

(advanced statistical methods)

—UQ Pipeline (software 

development)

—Climate Model (application)

Solution 
uncertainty

Discretization 
error

Uncertain 
initial 

condition

Uncertain 
parameter 

values

Uncertain 
boundary 
condition

Creating an Advanced UQ Science Capability for Predictive Simulations
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Modeling the climate system

1990

1995

2001

2007

• Climate models solve continuity equations for momentum, mass, energy and 

chemical constituents. 

• Many processes occur at unresolved scales and require parameterizations 

(e.g. convection, cloud cover, rainfall, rough topography, urban centers)
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Latent heat flux at surface

Sensible heat flux at surface

Surface temperature

Reflected SW radiation (clear sky)

Reflected SW radiation

Outgoing LW radiation (clear sky)

Outgoing LW radiation

Total cloud cover

Precipitation

Total column water vapor

Sea-level pressure

Meridional wind stress

Zonal wind stress

Meridional wind at surface

Zonal wind at surface

Specific humidity at 400 mb

Specific humidity at 850 mb

Meridional wind at 200 mb

Zonal wind at 200 mb

Temperature at 200 mb

Geopotential height at 500 mb

Meridional wind at 850 mb

Zonal wind at 850 mb

Temperature at 850 mb  

“Worst”

“Best”
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Model used in IPCC Fourth Assessment

Median

It is difficult to identify the sources of uncertainty in a 

multi-model assessment: example from PCMDI

Gleckler et al JGR (2008) 
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LLNL UQ Pipeline
UQ technology

Self-guiding, self-adapting
Model input 

uncertainties

Surrogate 
models

Parameter 
calibration

Ensembles 
& PDFs

Sensitivities

Output 
uncertainties

Example of a sensitivity map calculated using 

the Morris method on CAM3 in a high 

dimensional parameter space.

Example of a response surface generated 

using polynomial chaos expansions on CAM3 

ensembles. (rendering by Kwei-Yu Chu)

 Perturbed input parameter ensembles of 

the Community Earth System Model

(CESM)

 Carry out sensitivity and uncertainty 

analysis of climate simulations

 Collect a comprehensive set of 

observations to use for UQ (emphasis on 

cloud-related observations)

 Calibrate input parameters using 

observations

 Calculate PDF of climate sensitivity

 Perform UQ analysis of climate change 

using coupled models and adaptive 

sampling refinement in LLNL's UQ Pipeline

Assessing Climate Model Uncertainties using UQ
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CESM configuration

 Basic CESM configuration used:

• CESM v1.0.1  E/F_2000 compsets

• 1.9x2.5° horizontal resolution  CAM4 physics

• 26 vertical levels  Finite-Volume dynamical core

CESM namelist code modified to allow for up to 37 
parameters of interest to be set.

CESM scripting system modified as needed.

Extensive Python script developed to insulate user from 
CESM specifics.
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36 Uncertain Parameters Considered in Atmospheric 

(CAM) and Sea Ice (CICE) Components    (part I)

# Name Low Default High Description Package

1 rhminh^ 0.65 0.80 0.85 Threshold RH for fraction of high stable clouds cloud_fraction

2 rhminl^ 0.80 0.91 0.99 Threshold RH for fraction of low stable clouds cloud_fraction

3 rliqice 8.4 14.0 19.6 Effective radius of liq. cloud droplets over sea ice pkg_cldoptics

4 rliqland 4.8 8.0 11.2 Effective radius of liquid cloud droplets over land pkg_cldoptics

5 rliqocean 8.4 14.0 19.6 Effective radius of liquid cloud droplets over ocean pkg_cldoptics

6
ice_stokes_f

ac^
0.25 0.50 1.00 Scaling factor applied to ice fall velocity

pkg_cld_sedi

mnent

7 capnc 30.0 150.0 155.0 Cloud particle num. density over cold land/ocean cldwat

8 capnsi 10.0 75.0 100.0 Cloud particle number density over sea ice cldwat

9 capnw 150.0 400.0 500.0 Cloud particle number density over warm land cldwat

10 conke^ 2.0e-6 5.0e-6 10.0e-6 Evaporation efficiency of stratiform precipitation cldwat

11 icritc^ 2.0e-6 9.5e-6 18.0e-6 Threshold for autoconversion of cold ice cldwat

12 icritw^ 1.0e-4 2.0e-4 10.0e-4 Threshold for autoconversion of warm ice cldwat

13 r3lcrit 5.0e-6 10.0e-6 14.0e-6 Critical radius at which autocon. becomes efficient cldwat

14 fac 10.0 100.0 200.0 ustar parameter in PBL height diagnosis hb_diff

15 fak 4.25 8.50 17.00 Constant in surface temperature excess hb_diff

16 ricr 0.1 0.3 1.0 Critical Richardson number for boundary layer hb_diff

17 betamn 0.02 0.10 0.30 Minimum overshoot parameter hk_conv

18 c0^ 0.3e-4 1.0e-4 2.0e-4 Shallow convection precipitation efficiency hk_conv

19 cmftau^ 900.0 1800.0 14400.0 Time scale for consumption rate of shallow CAPE hk_conv

20 sgh_scal_fac 0.8 1.0 1.2 Land roughness scaling factor physpkg
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# Name Low Default High Description Package

21 alfa 0.05 0.10 0.60 Initial cloud downdraft mass flux zm_conv

22 c0_lnd^ 1.0e-3 3.5e-3 6.0e-3 Deep convection precipitation efficiency over land zm_conv

23 c0_ocn^ 1.0e-3 3.5e-3 6.0e-3 Deep convec. precipitation efficiency over ocean zm_conv

24 capelmt 20.0 70.0 200.0 Threshold value for CAPE for deep convection zm_conv

25 dmpdz -2.0e-3 -1.0e-3 -0.2e-3 Parcel fractional mass entrainment rate zm_conv

26 ke^ 0.5e-6 1.0e-6 10.0e-6 Environmental air entrainment rate zm_conv

27 tau 1800.0 3600.0 28800.0 Time scale for consumption rate of deep CAPE zm_conv

28 cdn_scal_fac 0.8 1.0 1.2 Ocean roughness scaling factor shr_flux_mod

29 z0m_scal_fac 0.8 1.0 1.2
Mois. & heat resistance to vegetation scaling 

factor

Biogeophysics

1Mod

30 dt_mlt_in^ 0.10 1.50 1.80 Temperature at which melt begins ice_shortwave

31 r_ice^ -1.9 0.0 1.9 Sea ice tuning parameter ice_shortwave

32 r_pnd^ -1.9 0.0 1.9 Ponded ice tuning parameter ice_shortwave

33 r_snw^ -1.9 1.5 1.9 Snow tuning parameter ice_shortwave

34 rsnw_melt_in^ 500.0 1500.0 2000.0 Maximum snow grain radius ice_shortwave

35 Ksno 0.10 0.30 0.35 Thermal conductivity of snow
ice_therm_vert

ical

36 mu_rdg 3.0 4.0 5.0 Gives e-folding scale of ridged ice ice_mechred

36 Uncertain Parameters Considered in Atmospheric 

(CAM) and Sea Ice (CICE) Components    (part II)
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Climate UQ Machinery

simulations at sample points

p
1

p
2

p
3 R = f(p1, p2, p3, ...)

p
1

p
2

p
3

= = Surrogate predictions 

at new sample points

Hypercube Analysis

Surrogate Models 

(global sensitivities, unfiltered uncertainties)

Filtering Analysis
(parameter PDFs, response PDFs)

Filtering Methods

p
1

p
2

p
3

Uncertainty Propagation

PDFs of present day climate 

quantities of interest

PDFs of future climate 

quantities of interest 

(climate sensitivity)

(LHS & MOAT sampling)

• Maximum likelihood 

parameter estimation

• Statistical filtering 
– sample R using LHS

– calculate likelihoods

• Bayesian calibration 

using MCMC

• Gaussian process models

• Polynomial chaos expansions

• Support Vector Regression

• Multivariate Adaptive Regression 

Splines (MARS)

Observational 

constraint filter
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Summary of CESM UQ ensemble runs

Study

Type

Ocean

Mode

#

Runs

Sim-Yrs/

Run

Sim-Yrs/

Study Type

Stored

Size (TB)

Study

Description

ics prescribed 88 12 1,056 1.5
Six different Initial 

condition files

ldh prescribed 3 12 36 0.0
Low/Default/High 

params

lhs prescribed 110 12 1,320 1.6 Surrogate-based UQ

moat prescribed 720 12 8,640 10.8
MOAT parameter 

screenings

nond prescribed 1,850 12 22,200 26.3 Surrogate-based UQ

oat prescribed 257 12 3,084 3.7 One At a Time analysis

vbd prescribed 121 12 1,452 1.7 Surrogate-based UQ

ldh som 17 36-60 728 1.4
Low/Default/High 

params

nond som 226 30-40 7,840 15.8 Surrogate-based UQ

FY11 Subtotals => 1,772 26,916 38

TOTALS => 3,392 46,356 63

Over 18.4M cpu-hrs used on LLNL’s Atlas, more than 46,000 climate model years simulated, 

and 63TB of ensemble data generated
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Analyzing Climate Model Sensitivities

• Morris (Technometrics, 1991)

• Multi-path One-At-a-Time

Sample along multiple paths and build 

up statistics of sensitivities throughout 

parameter space

• Easy to implement

• Relatively low computational cost

Nruns = M (Np + 1) 

M = number of MOAT paths (usually 

10-20)

• Screen and rank important 

parameters with linear or non-linear 

effects

• Gridded sensitivities for no extra cost

20 MOAT paths in 3 of 21 dimensions 
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Analyzing Climate Model Sensitivities

• Morris (Technometrics, 1991)

• Multi-path One-At-a-Time

Sample along multiple paths and build 

up statistics of sensitivities throughout 

parameter space

• Easy to implement

• Relatively low computational cost

Nruns = M (Np + 1) 

M = number of MOAT paths (usually 

10-20)

• Screen and rank important 

parameters with linear or non-linear 

effects

• Gridded sensitivities for no extra cost

Example MOAT Screening Diagram

(i) (ii)

(iii)

(i) Not important

(ii) Important and linear

(iii) Important and non-linear

Sensitivity 

of the global 

average 

upwelling 

longwave 

flux (FLUT)  

at the top of 

model to 21 

parameters 

in CAM3

(W m-2)

(W
 m

-2
)

Red

Orange

Yellow

Green

Blue

Gray

Violet

cldfrc

cldopt

cldsed

cldwat

hbdiff

hkconv

zmconv
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• Highly ranked parameters 

are targets for calibration.

• A sensitivity ranking for 

CAM4 using the Morris 

screening method is shown 

on the right 

• 27 parameters are ranked 

across 17 outputs

• A handful of parameters 

are important to many 

outputs (++)

• Many parameters are 

important to at least one 

output (+)

+
+

+
+

+

+

+
+

+

++

++

++

++

+

+
+

++

Analyzing Climate Model Sensitivities 
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Visualizing the Variance Decomposition of 

Climate Model Responses

node diameter ∝ Vi / Vtot

(main effects)

edge width ∝ Vij / Vtot

(interactions)
(only two-way interactions shown, but higher 

orders can also be displayed on the same graph)

Network Diagram of Sobol Indices

The total variance is expressed as:

vt = Σvi + Σvij + Σvijk +  …, where 

vi = variations from parameter i

vij = co-variations from parameters 

i and j

We represent the variance 

contributions on a network graph.

Variance decomposition of global 

annual surface temperature
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Examples of Unfiltered Ensembles

• Unfiltered ensembles consider only the prior parameter uncertainties

• Filtering is the process of constraining the ensembles with observations

• Having a large unfiltered ensemble spread facilitates the filtering process 

(i.e. it's easier to interpolate than extrapolate)
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Surrogate Models

• Surrogate models are validated using independent data.
• Examples of the actual and predicted LWCF and SWCF responses are displayed above.

– surrogates were derived using Support Vector Regression trained on over 1,000 CAM4 

runs and tested on 300 independent runs.

• Surrogate model errors are important and factored in the UQ analysis.
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Initial Bayesian calibration of CAM 

Sample joint posterior distribution given prior 

information (uniform PDFs) and observational 

constraints (likelihoods). 

Trained and validated 24 Gaussian Process 

surrogate models on ~1,300 LHS CAM4 
simulations: [FLUT, FSUTOA, LWCF, PRECT, Q_850,
SWCF, T_850, Z3_500] x [ANN, DJF, JJA]

Observational constraints (w/ ―loose‖ uncertainties): 
CERES (FLUT, LWCF, SWCF), GPCP (PRECT), NCEP 

(Z3_500)

Use a hierarchical Bayesian model
OBS  =  SYS  +  OBS_err

SYS  =  CAM4(p)  +  MOD_err

CAM4(p)  =  SURR(p)  +  SURR_err

MCMC used to sample the joint posterior 

distribution.
Above: prior and posterior PDFs for a response to 

which observational constraints were not applied

P(params | obs)  P(obs | params) P(params)

flat priorslikelihoodposterior
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Posterior Parameter PDFs

Diagonal shows the 

marginal posterior 

distribution of 5 selected 

input parameters (those 

most constrained by the 

observations) 

Off-diagonal shows 

posterior realizations 

(dots) from the bivariate 

distributions

Red dots show the default 

values

Parameter PDFs are not well constrained
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CAM responses are moderately well constrained 

Posterior distribution of selected 

output variables

 Diagonal (marginal)

 light-gray histograms show the 

prior (unfiltered) distributions 

 black histogram the posterior 

(filtered) distributions

 red dots/bars show the 

observational constraints

 Off-diagonal (bivariate)

 light-gray scatter plots show 

prior distributions

 black scatter plots show 

posterior distributions

 along with observations and 

error bars
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Moving on to Sea Ice Model Ensembles

• Coupled climate model 

configuration (CAM-

CICE-Slab Ocean)

• More expensive model, 

longer integrations

• Sampled 7 parameters 

using 70 LHS runs

• Trained surrogate 

model on ensemble 

simulations

• Used surrogate model 

to perform statistical 

inference given 

observational data
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Surrogate Model of Sea Ice Ensemble

Surrogate model using 

Support Vector Machine

fit single surrogate using 

hemisphere, month and 

quantity as predictors

S = f(h, m, q, p1, …, p7)

Important difference with 

initial atmospheric 

calibration – used annual 

cycle information
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Variance decomposition to select ice 

parameters for inference

node diameter ∝ Vi / Vtot (main effects)

edge width ∝ Vij / Vtot (interactions)

Network Diagram of Sobol Indices

1 = dt_mlt_in temperature at which melt begins (0.10, 1.50, 1.80) 

2 = r_ice sea ice tuning parameter (-1.9, 0.0,1.9)

3 = r_pnd ponded ice tuning parameter (-1.9, 0.0, 1.9) 

4 = r_snw snow tuning parameter (-1.9, 1.5, 1.9) 

5 = rsnw_melt_in maximum snow grain radius (500, 1500, 2000)

6 = ksno thermal conductivity of snow (0.10, 0.30, 0.35)

7 = mu_rdg e-folding scale of ridged ice (3, 4, 5)

Sea Ice Area

NH, SEP

(only two-way interactions shown, but higher orders 

can also be displayed on the same graph)

• Compute variance decomposition for 

each hemisphere, month and quantity

• Selection criterion 

keep parameter i if max(Vi/Vtot) > 5%

keep parameters i,j if max(Vij/Vtot) > 5%

• Three parameters retained

r_snw, rsnw_melt_in, ksno
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Posterior Sea Ice Parameter PDFs

Diagonals are 

marginals; off-

diagonals are 

bivariates

Ice parameters are 

well constrained.

Samples from the 

posteriors will serve 

as the basis for 

climate change 

ensembles

r_snw 

rsnw _melt_in

ksno

default



24LLNL-PRES-492559

Revisited CAM calibration using annual cycles of 

energy fluxes from satellite data

Given the success 

with the CICE 

calibration, we are 

revisiting CAM 

constraining with  

annual cycles of 

energy fluxes

Upper row: out-

going longwave 

radiation

Lower row: out-

going shortwave 

radiation

ensembles

CAM default

CERES satellite
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Parameter PDFs using annual cycles of energy 

fluxes are well constrained

+

CAM posterior parameter PDFs CICE posterior parameter PDFs

and more …

Forward UQ: The posterior parameter 

PDFs from the atmospheric and sea 

ice models serve as a basis for 

propagating model uncertainties 

through CO2 change ensembles
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On Designing Ensembles of Climate Simulations:
The Role of Sequential and Adaptive Sampling

Iterative Ensemble-based Climate UQ

• Start with simulations according to a given design

LHS-based ensemble to train statistical output emulators
MOAT-based design for sensitivity analysis (no emulator)

• Initial analysis, but too inaccurate due to few simulations

• Next runs to improve the accuracy of the analysis?

Q: global and/or local improvements?

• Improve prediction accuracy of emulators globally (e.g. global sensitivity analysis)

• Improve emulators in a region of the input space (e.g. statistical calibration)

• Iterate between analysis and sampling until the accuracy of 
the results are satisfactory
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Sequential and Adaptive Sampling

And The Aggregation of Those

Multiple objectives
• Want to understand the response of multiple output variables of interest to 

variation in uncertain inputs

• What uncertain parameters drive the variation in a given output?

• Constrain the input uncertainty using observations (go from prior input 
uncertainty to posterior input uncertainty)

Multiple methods for sequential and adaptive sampling
• Such methods are often driven by single output quantity of interest (QoI)

Examples:

• Improve the prediction accuracy of a statistical emulator for a QoI

• Input-space filling and response-shape driven designs 

Aggregate the feedback from multiple adaptive sampling strategies

• Adaptive sampling and aggregation strategies are being studied at LLNL
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Example: Case Study of Adaptive Sampling of 21 

Uncertain CAM Input Parameters 

Goal: Compare different 

adaptive sampling strategies to 

select new CAM simulations

Setup: three sets of LHS-

designed ensembles of size 

110, 120, and 440

Study: 

• Train a GP emulator on 120 

simulations to predict a 

scalar QoI and then validate 

on 110 runs

• Select additional runs, in 

batches of 10, from the 

existing ensemble of 440 

simulations using four 

different adaptive sampling 

criteria
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Summary

• We have performed UQ analysis on the CESM using:

– the UQ Pipeline to generate a large database of ensemble runs

– surrogate models as inexpensive proxies for the actual models

– multiple methods for combining observations and ensembles

• Calibrating the CAM and CICE models depends critically on the 

observations and metrics

– Using surrogate models provides an efficient way to quantify the assumptions made 

during ensemble filtering. (e.g. What observations should we use? How should we 

combine the data and ensembles?) 

• Using the information from the present-day calibration to propagate 

uncertainties through climate change simulations

– Equilibrium climate sensitivity using CAM + CICE + SOM  (expensive)

– Transient climate change using CAM + CICE + POP  (very expensive)

– Adaptive and sequential sampling guides the climate change ensembles
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Extra slides
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Perturbed Parameters vs. Initial Conditions

• Gray lines = perturbed parameters

• Colored bands = 10 different initial conditions for fix parameter set
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Example: Case Study of Using Variable Selection and 

Statistical Filtering to Design a Batch of CAM-SOM Runs

Goal: use prior knowledge from 

CAM3/CAM4 runs to design the 

batches of CAM4+SOM runs

One Approach:

• Use variable selection to 

reduce the number of input 

CAM parameters considered

• Carry out a conservative 

statistical filtering to generate 

a large candidate set of

points

• Thin the large candidate set 

of points down to a design 

set of points using, for 

example, a distance-based 

criterion

Variable Selection Statistical Filtering

Posterior Sample 200 Selected Points
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―Prepare for coupled ocean-atmosphere UQ‖

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 512 1024 1536 2048

Time 
per 
sim

month
(min)

# Cores

CESM Timings

Intrepid/POP2/1Thrd Intrepid/POP2/2Thrd Intrepid/POP2/4Thrd

Atlas/POP2/2Thrd Atlas/POP2/4Thrd Atlas/SOM/4Thrd

• Performed extensive 
timings of the full 
atmosphere-ocean-ice 
CESM model on LLNL’s 
Atlas and ANL’s Intrepid

• Used timing results to 
design coupled climate 
UQ experiments

• Variation of CMIP5 exp 1.2

• 30-yr hindcast for 
calibration and model 
selection (about 1000 
ensemble members)

• 30-yr forecast for climate 
change UQ (about 150 
ensemble members)

• Submitted proposal to 
INCITE for 50M cpu-hr 
allocation

Moving to fully coupled climate UQ ensembles

FY11 FY12
Atmosphere (CAM)

+ Sea Ice (CICE) 
+ Slab Ocean Model (SOM) 

For equilibrium climate change UQ 

Atmosphere (CAM) + 
Sea Ice (CICE)  + 
Full Ocean Model (POP2)
Realistic time-evolving climate UQ
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Uncertainties in radiative forcing

“A Watt per meter squared”

Thanks S. Schwartz!

Largest uncertainties 

are due to the aerosol-

cloud interactions


