Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

Managing Time-Varying Service Systems with Flexible and Inflexible Staffing

Yunan Liu (joint with Ward Whitt)

Department of Industrial and Systems Engineering NC State University

SAMSI Workshop, August 28, 2012

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation

Call centers

Your call is important to us, just not as important as whatever else L we're doing.

Managing Service Systems

Liu and Whitt

Introductio

Motivation

Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・日 ・ モー・ モー・ うへの

Motivation

Health care

Managing Service Systems

Liu and Whitt

Introductio

Motivation

Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Queueing Models

Managing Service Systems

Liu and Whitt

Introductio

Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Queueing Models

Managing Service Systems

Liu and Whitt

Introductio

Motivatio

Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Queueing Models

Managing Service Systems

Liu and Whitt

Introduction

Motivatio

Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロット 小田マ ト 小田マ うらの

Realistic Models Features

Time-varying arrivals

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features

Part I: Elexible Staffin

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● ○○○

Non-exponential service and abandonment

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features

art I: Elavible Staffin

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

Brown et al. (2005)

The Base Queueing Model

$M_t/GI/s_t+GI$

- Poisson with a Time-varying arrival rate $\lambda(t)$ (the M_t)
- ▶ I.I.D. service times $\sim G(x) \equiv P(S \leq x)$ (the first GI)
- Time-varying staffing level s(t) (the s_t)
- ▶ I.I.D. abandonment times $\sim F(x) \equiv P(A \leq x)$ (the +GI)
- First-Come First-Served (FCFS)
- Unlimited waiting capacity

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features

The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

The Base Queueing Model

Performance measures of interest

Manager's perspective:

- Q(t): number of customers waiting in queue at t
- B(t): number of customers in service at t
- $X(t) \equiv Q(t) + B(t)$: total number in system at t

Customer's perspective:

- ► W(t): elapsed head-of-line waiting time at t
- V(t): potential waiting time of a virtual customer at t
- $P_t(Delay) \equiv P(B(t) = s(t))$: probability of delay at t
- $P_t(Ab) \equiv P(W(t) > A)$: probability of abandonment at t.

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features

The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusior

References

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Part I: Systems with Flexible Staffing

Design Staffing Functions to Stabilize Performance

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Objective

Service Level Agreements (SLA)

- $\mathbb{P}(waiting < 30 \text{ seconds}) > 0.8$
- ▶ E(wait)<30 seconds
- $\mathbb{P}(abandonment) < 0.02$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Objective

Service Level Agreements (SLA)

- $\mathbb{P}(\text{waiting} < 30 \text{ seconds}) > 0.8$
- ▶ 𝔼(wait)<30 seconds
- \blacktriangleright $\mathbb{P}(abandonment) < 0.02$

Goal: Staff to cope with arrivals and achieve SLA

Managing Service Systems

Liu and Whitt

Part I: Flexible Staffing

Selected Literature

- Pointwise Stationary Approximation Green and Kolesar (91,97,01)
 Short convice time, high quality of conv
 - Short service-time, high quality-of-service
- Modified Offered Load

Jagerman (75); Jennings et al.(96); Massey and Whitt (94,97); Feldman et al.(08)

- Long service-time, high quality-of-service
- Simulation-based Iterative Staffing Algorithm Feldman et al.(08)

- Stabilize probability of delay

Erlang-R Model Yom-Tov and Mandelbaum (2011)

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

Specific Aim

Relating Waiting time with Delay Probability:

- Potential delay W(t)
- Abandonment probability $\mathbb{P}_t(Ab)$
- $\blacktriangleright \mathbb{P}_t(Ab) = \mathbb{P}(A \le W(t)) = \mathbb{E}[F(W(t))]$

Objective:

- Input: Given $\{\lambda(t), 0 \le t \le T\}, F, G$
- *Decision*: Find $\{s_t, 0 \le t \le T\}$
- ► Aim: For $\mathbf{M}_t/\mathbf{GI}/\mathbf{s}_t + \mathbf{GI}$ model, $\mathbb{E}[W(t)] = w$ and $\mathbb{P}_t(Ab) = \alpha$, for $0 \le t \le T$, for w > 0, $\alpha > 0$, $\alpha \approx F(w)$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

An Approximating Model: Delayed Infinite-Server Model with Abandonment (DISMA)

Delayed $M_t/GI/\infty + GI$ with delay w

- Poisson arrival process, time-varying rate $\lambda(t)$
- Infinitely many servers
- ► Stay *w* in a waiting room with unlimited capacity
- While waiting can abandon I.I.D. $A \sim F$
- If not abandoned after w, receive service I.I.D. S \sim G

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA

MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

Network of IS Queues

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffin

DISMA

MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusio

References

してい 山田 ふかく キャー 日マン

Two $M_t/GI/\infty$ Models

Waiting Room

- Time-varying arrival rate $\lambda(t)$
- ▶ I.I.D. Service times $T = A \land w$, $A \sim F$
- $Q(t) \sim \text{Poisson}(E[Q(t)])$
- $\blacktriangleright E[Q(t)] = E[\lambda(t T_e)]E[T], \qquad T = A \wedge w$

Service Facility

- Time-varying arrival rate $\beta(t) = \overline{F}(w)\lambda(t-w)$
- I.I.D. Service times $S \sim G$
- $B(t) \sim \text{Poisson}(E[B(t)])$

$$\blacktriangleright E[B(t)] = \overline{F}(w)E[\lambda(t-w-S_e)]E[S]$$

Offered Load (OL) \equiv **m(t)** \equiv *E*[*B*(*t*)]

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA

MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Modified Offered Load Refinement

For fixed t, $s = \text{some } s_t$, $\lambda = \text{some } \lambda^{MOL}(t)$

$$(M_t/GI/s_t+GI)\approx (M/GI/s+GI)_t$$

$$\blacktriangleright \mathbf{M}_{\mathbf{t}}/\mathbf{GI}/\mathbf{s}_{\mathbf{t}} + \mathbf{GI} : \lambda(t), \ s_t, \ X(t)$$

•
$$M/GI/s + GI : \lambda, s, X_{\infty}$$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

ISMA

MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusio

References

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Modified Offered Load Refinement

For fixed t, $s = \text{some } s_t$, $\lambda = \text{some } \lambda^{MOL}(t)$

$$(M_t/GI/s_t+GI)\approx (M/GI/s+GI)_t$$

$$\blacktriangleright \mathsf{M}_{\mathsf{t}}/\mathsf{GI}/\mathsf{s}_{\mathsf{t}} + \mathsf{GI} : \lambda(t), s_t, X(t)$$

•
$$M/GI/s + GI : \lambda$$
, s, X_{∞}

Question 1: How to find such $\lambda^{MOL}(t)$? $\lambda^{MOL}(t) \equiv \frac{m(t)}{(1-\alpha)\mathbb{E}[S]}$ Little's Law

Question 2: How to find such s_t ? (Aim)

▶ for a given α , find s_t^{α} s.t. steady-state $P(Ab) \approx \alpha$

in M/GI/s + GI with $\lambda = \lambda^{MOL}(t)$

▶ to compute P(Ab), use approximation M/GI/s + GI ≈ M/M/s + M(n) Whitt (2005) Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

ISMA

MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

A Markovian Example

 $M_t/M/s_t + M$ with sinusoidal arrival rate

$$\lambda(t) = 100 + 20 \cdot \sin(t)$$

•
$$\bar{G}(x) = e^{-\mu x}, \ \mu = 1$$

•
$$\overline{F}(x) = e^{-\theta x}, \ \theta = 0.5$$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement

An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusio

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

PSA is Bad

120 Arrival rate 90 80 L 10 Time 14 16 20 0.2 F Abandonment probability 900 probability 0 10 Time 14 Expected delay ٥L 10 Time 12 18 14

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example

Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

してい 山田 エート 山田 エート

Simulation Verification

Heavy load: $5\% \le \alpha \le 20\%$

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example

An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Simulation Verification

Light load: $0.5\% \le \alpha \le 2\%$

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example

Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusio

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement

An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Step 1: Apply **DISMA** Approximation

$$\blacktriangleright E[Q_1(t)] = E[\lambda(t - T_e)]E[T]$$

$$\blacktriangleright E[B_1(t)] = \overline{F}(w)E[\lambda(t-w-S_e)]E[S]$$

•
$$E[O(t)] = (1-p)E[\sigma_1(t-U_e)]E[U]$$

$$\blacktriangleright E[Q_2(t)] = E[\lambda_F(t-T_e)]E[T]$$

$$\blacktriangleright E[B_2(t)] = \overline{F}(w)E[\lambda_F(t-w-S_e)]E[S]$$

Define the OL function $m(t) \equiv E[B_1(t)] + E[B_2(t)]$

Step 2: Apply **MOL** refinement to m(t)

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example

Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

An $M_t/M/s_t + M$ Example

- $\lambda(t) = 100 + 20 \cdot \sin(t)$
- $\bar{G}(x) = e^{-x}$
- $\bar{F}(x) = e^{-0.5x}$
- $\bar{H}(x) = e^{-x}$
- α = [0.05, 0.1, 0.15, 0.2]

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Part II: Systems with Inflexible Staffing

Approximating Performance in Systems Experiencing Periods of Underloading and Overloading

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Staffing without Flexibility

 $\alpha = 2\%$, staffing interval is 30 minutes

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・日 ・ モ ・ ・ 日 ・ うくの

Staffing without Flexibility

 $\alpha = 2\%$, staffing interval is 2 hours

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Fluid Model

$G_t / GI / s_t + GI$

arrival *λ(t)* service cdf *G* staffing S(t) abandonment cdf *F* Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model

A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

◆□ ▶ ◆■ ▶ ▲■ ▶ ▲■ ● ● ●

What Are Fluid Models

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

してい 山田 エート 山田 エート

What Are Fluid Models

NYC Marathon (Nov.4, 2011)

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MSHT Fluid Limit

2 S 1 2

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model

A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusio

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

MSHT Fluid Limit

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model

A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで
MSHT Fluid Limit

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model

A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Two-Parameter Fluid Functions

Fluid content

- Q(t, y): quantity of fluid in queue for up to y at $t \equiv \int_0^y q(t, x) dx$
- ► B(t, y): quantity of fluid in service for up to y at t $\equiv \int_0^y b(t, x) dx$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model

A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Two-Parameter Fluid Functions

Fluid content

- ► Q(t, y): quantity of fluid in queue for up to y at t $\equiv \int_0^y q(t, x) dx$
- B(t, y): quantity of fluid in service for up to y at $t \equiv \int_0^y b(t, x) dx$

Rate Functions

- Service completion rate: $\sigma(t) \equiv \int_0^\infty b(t, x) h_G(x) dx$
- Abandonment rate: $\alpha(t) \equiv \int_0^\infty q(t,x) h_F(x) dx$

where $h_F(x) \equiv \frac{f(x)}{F(x)}$, $h_G(x) \equiv \frac{g(x)}{G(x)}$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model

A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Flow Rates

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model

A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

A Simple Algorithm: Alternate UL and OL Regimes

for $t \in [t_1, t_2], \ldots$ Advance in time recursively.

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model

A Simple Algorithm An Example Diffusion Limits

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

A Non-Markovian Example

$M_t/LN/s_t+E_2 \ fluid \ model$

- $\boldsymbol{\succ} \ \lambda(t) = 1 + 0.6 \cdot \sin(t)$
- S = 1 (note: not a single-server queue)
- LN service: $1/\mu = 1$, $\sigma^2 = 4$ ($C_s^2 = 4$)
- E_2 abandonment: $A = X_1 + X_2$, where X_i i.i.d. $\sim \exp(1)$
- System initially empty

 $\lambda(t)$ and S will be scaled by n !

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithn

An Example Diffusion Limits Network Extension

Conclusion

Simulation Comparisons

$M_t/LN/s_t+E_2$ queueing model

▶ *n* = 20, 100, 2000

$$\lambda_n(t) = n \cdot \lambda(t) = n + 0.6 n \sin(t)$$

•
$$S_n(t) = \lceil n S(t) \rceil = n$$

Want to see

▶ When *n* is large:

 $\left(\frac{Q_n(t)}{n}, \frac{B_n(t)}{n}, \frac{X_n(t)}{n}, W_n(t)\right) \approx (Q(t), B(t), X(t), w(t))$

▶ When *n* is small:

 $\left(\frac{E[Q_n(t)]}{n},\frac{E[B_n(t)]}{n},\frac{E[X_n(t)]}{n},E[W_n(t)]\right)\approx (Q(t),B(t),X(t),w(t))$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

n = 100 and 3 sample paths

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

n = 2000 and a single sample path

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

n = 100 and a average of 100 sample paths

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ(?)

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm

An Example Diffusion Limits Network Extension

Conclusion

Diffusion Limits

$G_t / M / s_t + GI$

arrival λ(t) exponential service cdf $G(x) = 1 - e^{-\mu x}$ staffing *S(t)* abandonment cdf *F*

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits

Network Extension

Conclusion

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Separation of Variability

$$d\hat{W}(t) = H(t)\hat{W}(t)dt + J_s(t)d\mathcal{B}_s(t) + J_a(t)d\mathcal{B}_a(t) + J_\lambda(t)d\mathcal{B}_\lambda(t)$$

= $H(t)\hat{W}(t)dt + J^*(t)d\mathcal{B}^*(t)$

Independent Brown Motions

- \mathcal{B}_{λ} : arrival process
- B_s: service times
- ► B_a: abandonment times

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits

Network Extension

Conclusion

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Separation of Variability

$$d\hat{W}(t) = H(t)\hat{W}(t)dt + J_s(t)d\mathcal{B}_s(t) + J_a(t)d\mathcal{B}_a(t) + J_\lambda(t)d\mathcal{B}_\lambda(t)$$

= $H(t)\hat{W}(t)dt + J^*(t)d\mathcal{B}^*(t)$

Independent Brown Motions

- \mathcal{B}_{λ} : arrival process
- B_s: service times
- ► B_a: abandonment times

Analytic coefficients

$$H(t) = -(1 - w'(t)) \left(\frac{\lambda'(t - w(t))}{\lambda(t - w(t))} + h_F(w(t)) \right)$$

$$J_s(t) = -\frac{\sqrt{b(t,0) - s'(t)}}{\lambda(t - w(t))\bar{F}(w(t))}$$

$$J_a(t) = -\frac{\sqrt{F(w(t))b(t,0)}}{\lambda(t - w(t))\bar{F}(w(t))}$$

$$J_\lambda(t) = \frac{C_\lambda \sqrt{\bar{F}(w(t))b(t,0)}}{\lambda(t - w(t))\bar{F}(w(t))}$$

$$J^*(t) = \frac{\sqrt{b(t,0) - s'(t) + (F(w(t)) + C_\lambda^2 \bar{F}(w(t))) b(t,0)}}{\lambda(t - w(t))\bar{F}(w(t))}$$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits

Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Example: $M_t/M/s_t + H_2$ in Both UL and OL Intervals

n = 2000 and 500 sample path

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Engineering Refinement for Smaller n

 $\lambda(t) = 1 + 0.6 \sin(t), \ s(t) = 1, \ \mu = 1, \ \theta = 0.5$

n = 100 and 2000 sample path

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Engineering Refinement for Smaller n

 $\lambda(t) = 1 + 0.6 \sin(t), \ s(t) = 1, \ \mu = 1, \ \theta = 0.5$

n = 25 and 5000 sample path

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

Extension to Networks: $(G_t/GI/s_t + GI)^m/M_t$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example: Fluid Paths of $(M_t/M/s_t+M)^{10}/M_t$

Diffusion: multi-dimensional SDEs

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Summary

Flexible Staffing

- Develop an approximating model: DISMA
- Provide analytic staffing formulas to stabilize performance
- Conduct simulation evaluation

Inflexible Staffing

- Develop MSHT fluid and diffusion limits
- Provide approximations for mean and variance formulas
- Conduct simulation comparisons
- Extend to network queues

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

THANK YOU!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ●のへで

References

- L & W, Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals. Operations Research (2012)
- [2] L & W, The G_t/GI/s_t + GI Many-Server Fluid Queue. Queueing Systems (2012)
- [3] L & W, A Many-Server Fluid Limit for the G_t/GI/s_t + GI Queueing Model experiencing Periods of Overloading. Operations Research Letters (2012)
- [4] L & W, A Network of Time-Varying Many-Server Fluid Queues with Customer Abandonment. *Operations Research* 59 835-846 (2011)
- [5] L & W, Algorithms for Time-Varying Networks of Many-Server Fluid Queues. Submitted to INFORMS Journal on Computing (2012)
- [6] L & W, Many-Server Heavy-Traffic Limits for Queues with Time-Varying Parameters. Submitted to Annals of Applied Probability (2012)

All available at http://www.ise.ncsu.edu/liu

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・ 聞 ト ・ 画 ト ・ 画 ト ・ の へ の

Idea of the Proof of MSHT Theorems

- Recursively treat successive UL and OL intervals.
- Infinite-server (IS) MSHT limits (Pang&Whitt 2010) apply directly to treat UL intervals.
- ► In OL intervals first ignore flow into service; let Q
 _n(t, y) be the process.
- ► IS MSHT limits (Pang&Whitt 2010) apply to treat Q
 n in OL intervals.
- To go from Q
 n to Q
 n, focus on HOL waiting time W
 n: Equate two representations of the flow into service during OL interval:
 - new space available due to service completion and capacity change;
 - the flow into service from the queue, which occurs from the head of the line.

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

art I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

Fluid Constraints and Regimes

Two constraints

- Capacity constraint: $B(t) \leq S(t)$
- Non-idling constraint: $[B(t) S(t)] \cdot Q(t) = 0$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusio

References

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Fluid Constraints and Regimes

Two constraints

- Capacity constraint: $B(t) \leq S(t)$
- Non-idling constraint: $[B(t) S(t)] \cdot Q(t) = 0$

Two system regimes

- Underloaded: Q(t) = 0
- Overloaded: Q(t) > 0 (and B(t) = S(t))

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Flow Rates

Given q(t, x) and b(t, x)

- Service completion rate: $\sigma(t) \equiv \int_0^\infty b(t, x) h_G(x) dx$
- Abandonment rate: $\alpha(t) \equiv \int_0^\infty q(t,x) h_F(x) dx$

where
$$h_F(x) \equiv \frac{f(x)}{F(x)}$$
, $h_G(x) \equiv \frac{g(x)}{G(x)}$

• q(t,x) and b(t,x) determine everything !

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Engineering Refinement on Mean Values for Smaller n

 $\lambda(t) = 1 + 0.6\sin(t), \ s(t) = 1, \ \mu = 1, \ \theta = 0.5$

n = 25 and 5000 sample path

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Example: $M/M/s_t + M$ Fluid Queue

 $\lambda = 1$, $s(t) = 1 + 0.6 \sin(t)$, $\mu = 1$, $\theta = 0.5$.

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Many-Server Heavy-Traffic Limits

Fluid Limit

► LLN scaling:
$$\bar{Q}_n(t) \equiv \frac{Q_n(t)}{n}$$
, $\bar{B}_n(t) \equiv \frac{B_n(t)}{n}$, $\bar{X}_n(t) \equiv \frac{X_n(t)}{n}$

► FSLLN:
$$(\bar{Q}_n, \bar{B}_n, \bar{X}_n, W_n) \rightarrow (Q, B, X, W)$$
 in \mathbb{D}^4 , as $n \rightarrow \infty$

Diffusion Limit

• CLT scaling:

$$\hat{Q}_n(t) \equiv \sqrt{n} \left(\bar{Q}_n(t) - Q(t) \right) = \frac{Q_n(t) - n Q(t)}{\sqrt{n}},$$

 $\hat{W}_n(t) \equiv \sqrt{n} \left(W_n(t) - W(t) \right)$

► FCLT:

$$\begin{pmatrix} \hat{Q}_n, \hat{B}_n, \hat{X}_n, \hat{W}_n \end{pmatrix} \Rightarrow \begin{pmatrix} \hat{Q}, \hat{B}, \hat{X}, \hat{W} \end{pmatrix}$$
 in \mathbb{D}^4 , as $n \to \infty$

Approximations

•
$$Q_n(t) = n Q(t) + \sqrt{n} \hat{Q}(t) + o(\sqrt{n})$$

$$\blacktriangleright W_n(t) = W(t) + \frac{W(t)}{\sqrt{n}} + o(\frac{1}{\sqrt{n}})$$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Fluid Densities

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusio

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● ○○○

n = 20 and a average of 100 sample paths

Managing Service Systems

Liu and Whitt

Introductio

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで
Separation of Variability

Diffusion for the HWT \hat{W}

•
$$\sqrt{n}(W_n-ar{W})\Rightarrow \hat{W}$$
 in \mathbb{D} , as $n o\infty$

► An SDE:

$$d\hat{W}(t) = H(t)\hat{W}(t)dt + J_{s}(t)d\mathcal{B}_{s}(t) + J_{a}(t)d\mathcal{B}_{a}(t) + J_{\lambda}(t)d\mathcal{B}_{\lambda}(t)$$

$$= H(t)\hat{W}(t)dt + J^{*}(t)d\mathcal{B}^{*}(t)$$

- B_λ: arrival process
- ▶ B_s: service times
- ► B_a: abandonment times
- ▶ *H*, J_s , J_a , J_λ and J^* : analytic functions of λ , *s*, *F*, μ , C_λ^2 and fluid functions

•
$$\sigma^2_{\hat{W}}(t) \equiv Var(\hat{W}(t)) = \int_0^t \left(\hat{J}_s^2(t,u) + \hat{J}_a^2(t,u) + \hat{J}_\lambda^2(t,u)\right) du$$

Diffusion for the PWT \hat{V}

•
$$\hat{V}(t) = \frac{\hat{W}(t+v(t))}{1-w'(t+v(t))}$$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusio

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Two Waiting Times: HWT and PWT

Head-of-Line Waiting Time

• w(t) = elapsed head-of-line (HOL) waiting time at t

• An ODE:
$$w'(t) = 1 - \frac{b(t,0)}{q(t,w(t))}$$

Potential Waiting Time

• v(t) = virtual waiting time of an arrival at t

•
$$w \rightarrow v$$
: $v(t - w(t)) = w(t)$ or $w(t + v(t)) = v(t)$

Managing Service Systems

Liu and Whitt

Introduction

Motivation Queueing Model Realistic Features The Base Queue

Part I: Flexible Staffing

DISMA MOL Refinement An Example Network Extension

Part II: Inflexible Staffing

Fluid Model A Simple Algorithm An Example Diffusion Limits Network Extension

Conclusion

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・