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Outline

• Introduction and problem set-up.

• A model of consumer demand without deferment.

• Functional central limit theorem (FCLT) to derive a simple diffusion
model of the undeferred load on the utility.

• A discrete-time load-deferment framework, potentially resulting in over-
ages at the end of the deferment interval.

• A simple numerical study under idealized load deferment.

• Residual-demand/time slackness rule to decide whom to defer at each
given point in time.

• Problem variations and related issues.
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Introduction

• We consider the problem of management by a regional utility of its col-
lective PEV/PHEV load, likely borne in the earlier morning hours.

• To avoid spikes in demand due to synchronization, the consumers inde-
pendently and uniformly at random choose charging start-times.

• Given this, there may still be moderate overage periods which the utility
will need to manage by deferring demand.

• With aggregate load characterized by a Gaussian process (FCLT), a
regional utility can seek to minimize a weighted combination of

– the probability of overage (negative social welfare), and

– the (e.g., day ahead) contractual cost of their supply from an elec-
tricity distribution system.
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Problem Set-Up

• We consider a (finite) T -hour time period, e.g., T = 8 hours from 10PM
to 6AM, during which n consumers need to automatically schedule their
electrical demand.

• A unimodal power consumption profile h is more typical of an initially
empty, idealized Lithium-ion battery:

– the current is constant and the voltage grows until a peak-power
threshold at time ζ > 0 is reached,

– whereafter the voltage is constant and the current diminishes.

• The profile g(t) = h(t + ξ)u(t), where u is the unit step, accounts for
initial charge or available local supply at the consumer’s premises.
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Problem Set-Up (cont)

• Assume consumption profile parameters are mutually independent ran-
dom variables over consumer index i.

• Also, assume that start-times ξi ∈ [0, ηi] are chosen independently given
ηi.

• For K parameter classes of profiles/flags, each occurring with prob.
p(k) = n(k)/n, the total instantaneous power charging rate for class k
is

D(k)(t) =
n(k)∑
i=1

g(k)
i (t− ξ(k)

i ).

• As the total consumer/flag arrival rate λ→∞, with λ =
∑

k λ
(k) in fixed

proportions λ(k) = p(k)λ, the diffusion-scaled energy processes are

Ĉ(k)
λ (t) =

1√
λ

(∫ t

0
D(k)(s)ds− λµ(k)t

)
,

Ĉλ(t) =
K∑
k=1

Ĉ(k)
λ (t) =

1√
λ

(Cλ(t)− λµt) ,

where µ(k) := p(k)Eβ(k) := p(k)E
∫∞

0 g(k)(s)ds and µ :=
∑K

k=1 µ
(k).
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Diffusion Approximation of Undeferred Load

Theorem: (FCLT) If EH2+δ, Eη2+δ <∞ for some δ > 0, then as λ→∞,

(Ĉ(1)
λ , ..., Ĉ(K)

λ , Ĉλ) ⇒ (σ1B
(1), ..., σKB

(K), σB)

in D([0, T ],RK+1) (endowed with the Skorohod J1 product topology), where

• (B(1), ..., B(K)) is a K-dimensional standard BM,

• B is a standard BM such that σB
d
= σ1B(1) + · · ·+ σKB

(K) with

– σ2 = σ2
1 + · · ·+ σ2

K and

– σ2
k = var[β(k)] + λ̄2

kE[β(k)]2, k ∈ {1, ...,K}.
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Overages for Undeferred Load

• So, for large arrival rate λ, energy consumption up to time t is

C(t) ≈ X(t) := λµt+
√
λσB(t), t ≥ 0.

• Suppose we are given a threshold total charging rate L (L > λµ) and a
fixed time window to, e.g., each specified by a Day Ahead market-based
Demand Response Program (DADRP).

• So, the energy consumption overages above L over [0, To] are

C(to, L, To) :=

dTo/toe∑
i=1

[C(ito)− C((i− 1)to)− Lto]+

• Theorem: When the demand is large, the expected energy consumption
overages EC(to, L, To) over any time interval [0, To],

EC(to, L, To) ≈
(λµ− L)To

2
Φ

(
(λµ− L)

σ

√
to/λ

)
+ Toσ

√
λ

2πto
exp

(
−

(λµ− L)2to

2λσ2

)
,

where Φ(·) is the CDF of the standard normal distribution.

• Note that λµ < L, so the first term on RHS is < 0, but the second term
will dominate and the sum is ≥ 0.
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Load Deferral: Summary Framework

• Assume that the electricity pricing framework has two stages based on
aggregate demand X (rather than on a per-consumer basis) at each
epoch of duration to.

• If the aggregate demand exceeds a threshold (L), we assume that the
smart grid is capable of deferring the overage (X−L) to the next epoch.

• To do so, the grid needs to be able to predict that an overage will occur
at the start of the epoch, ascertain which consumers to defer, and be
able to pause the power supply to those consumers (discussed later).

• Note that the charging of Lithium-ion car batteries can be paused without
significant adverse effects on their performance or longevity.
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Load Deferral: Summary Framework

• Discretizing time by to seconds, we can obtain an approximate i.i.d. Gaus-
sian process for the new power demand Pj for epoch j ∈ Z+, i.e., at time
jto,

Pj
d
= N(λµto, λσ

2to)

• Assuming idealized deferment of the excess aggregate load, where the
carry-over load is the backlog of a discrete-time GI/D/1 queue X with
i.i.d. arrivals Pj and deterministic service Lto,

Xj = (Xj−1 + Pj − Lto)+, j ∈ Z+ with X0 = 0.
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Load Deferral: Residual Service Demand

• Let J = To/to and note that the residual demand over the final (post
deferment) epoch [To, T ] is

XJ
d
= max{Y0, Y1, ..., YJ}

where Yj =
∑j

i=1(Pi − Lto) for j ≥ 1, and Y0 = 0.

• By the reflection principle,

P(XJ > x) = 2P(YJ > x) = 2P(N([λµ− L]To, λσ
2To) > x).

• So, we assume the average total overages charged by the utility will be

πΩ := πE(XJ − L(T − To))+

where π $/kWh is the overage billing rate.

• One may expect that the contract between the electrical distribution
system and the utility will depend on the π, L, and φ ≤ π (the cost per
kWh consumed below L) will itself cost the utility in a manner increasing
in L.

• Also, one would expect that φ would be an increasing function of L, but
π may be decreasing in L.
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Load Deferral: Numerical Example

• The following figure on left depicts the overages Ω evaluated numerically
as a function of L and σ when: λ = 1000 consumers/h (hour), To = 5h
and T = 8h (so that n = λTo = 5000 consumers and ηmax = T −To = 3h),
to = 0.05h (i.e., 3 minutes), and µ = 5 kWh/consumer.

• The distribution of XJ is shown in the figure on right for L = 6000 (λµ)
and σ = 100.
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Load Deferral: Numerical Example (cont)

• Following intuition, overage Ω is decreasing in L and increasing in σ.

• Note that if the overage charging rate π(L) is increasing in L (again, such
that π(L) > φ(L) where φ is increasing), then the total overage charges
π(L)Ω(L) may be unimodal with a unique minimum L.
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Load Deferral: Choosing Which User to Defer

• Simply, if there is w% overage, then w% of consumers could be chosen
uniformly at random for deferment (⇒ higher var(XJ) than for idealized
deferment above).

• Alternatively, deferment could be based on a heuristic score S of each
consumer’s residual power-demand profile and the remaining time T − t.

• For example, for a consumer that started at time τ with initial charge
zero, a large score

S

(
h(t− τ),

∫ σ

t−τ
h(r)dr,

η − (t− τ)

T − t

)
would correspond to a larger probability of deferment where S would be

– an increasing function of its first argument (current/instantaneous
power demand) and

– a decreasing function of the last two arguments (residual energy de-
mand, and residual charge time as a fraction of remaining time).

• See, e.g., the decentralized “time/slackness” scheduling heuristic of [CK-
SGC-2010].
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Future Work and Problem Variations

• It would be more realistic to expect that the grid will only know the
instantaneous power demand X(jto) at the start of the jth interval, rather
than the overages in that interval a priori.

– Using the reflection principle, the grid can compute the risk of overage
for each epoch j, ρj = P(maxjto≤t<(j+1)toX(t) > L | X(jto)).

– So, if ρj > ρmax, the grid could defer some of the consumers so that
the overage risk in the interval is reduced to the maximum allowable,
ρmax.

• We have extended this model to accommodate additional variable (short-
term predictable) power supply (e.g., from wind farms) modulating the
overage threshold L upward.

• Can employ a large deviations principle to model aggregate demand.

• There is some research on the use of “excessively charged” car batteries
as sources of energy to avoid overages by the aggregate demand.
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Future Work and Problem Variations:
Policing the Consumer

• A demand deferment policy may need to rely on trusting the residual
demand reported by the consumer, unless that was somehow securely
metered by the grid.

• Again note that smart metering could be used to detect if a consumer
misstates their load, does not obey a request to defer, or simply does
not disclose their demand to the grid for purposes of “smart” deferment.

• Given simple applied cryptographic techniques (which may be in play in
any case to ensure privacy), the utility can accept load attestations from
the consumers in a non-repudiatable fashion (i.e., using accompanying
digital signatures)

• The grid can easily police whether the consumers start at random times
based on sampling their starting times night after night, obtain the
resulting empirical distribution, and comparing to a uniform via, e.g.,
Kolmogorov-Smirnov.
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