Bayesian Nonparametrics: An Overview

Wesley Johnson

Department of Statistics, UC Irvine

SAMSI July 2010

<ロ><回><一><日><日><日><日><日><日><日><日><日><日><日><日><1/73

- Hanson, Branscum and Johnson (2005). Bayesian Nonparametric Modeling and Data Analysis: An Introduction. *in* Handbook of Statistics. Elsevier.
- Christensen, Johnson, Branscum and Hanson (2010).
 Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians (Chapter 15). CRC Press.
- Hanson and Jara (2009). Unpublished Lecture Notes
- Müller (2009). Unpublished Lecture Notes

- Because parametric models are often overly restricted and/or lack robustness!
- So that we can find *biological bumps* that we might not otherwise find!
- So that we can see if parametric models might actually fit by embedding them in NP families!
- Because Bayesian NP modeling is feasible due to modern MCMC methods eg. *because we can*?

Bayesian Parametric Models

• Given data $x = (x_1, ..., x_n)$ we model them with a joint pdf

$${\it Pr}(X\in {\it A}\mid heta)=\int_{{\it A}}f(x\mid heta)\mu({\it d} x) \quad heta\in \Theta\subset {\it R}^k$$

• We treat the data as fixed and known and use the likelihood function to inform us about θ

$$L(\theta) \propto f(x \mid \theta)$$

 We model our uncertainty about unknown θ through the use of a prior pdf, p(θ), which must be based on information that is independent of x (failing in this results in Empirical Bayes methods) Bayesian inference is facilitated through calculation of posterior pdf

$$p(\theta \mid x) = rac{L(\theta) \, p(\theta)}{\int_{\Theta} L(\theta) \, p(\theta) d\theta}$$

- Due to intractability of integration, we use Markov chain Monte Carlo methods to sample from the joint posterior
 - Gibbs Sampling
 - Metropolis Sampling
 - Slice Sampling
 - Adaptive Rejection Sampling
 - Hybridizations of the above

We approximate integrals by

$$\int g(heta) p(heta \mid x) d heta \doteq \sum_{i=1}^{MC} g(heta^i) / MC$$

$$heta^{i} \stackrel{\textit{\it iid}}{\sim} p(heta \mid x)$$

- So the posterior mean (vector) is numerically approximated as the arithmetic average of samples from the joint posterior.
- We obtain approximate 95% Probability Intervals for γ ≡ g(θ) by ordering {γⁱ = g(θⁱ) : i = 1,..., MC} from smallest to largest and finding the 0.025 and 0.975 sample percentiles.
- The post med of γ is more sensible than the post mean

- Appropriateness of methods doesn't depend on having large sample sizes
- General ability to handle complex models without having to fall on mathematical swords
- Availability of statistical software is no longer an issue eg. WinBUGS, Open Bugs, JAGS, SAS, DP-Package etc.
- Inferences for complicated functions of θ, eg.γ = g(θ), are available for the asking
- Direct probability interpretations

The Sword We Do Have to Fall On

- The prior needs to be specified
- The more complex the model, the greater the potential difficulty in specifying a prior that will lead to a proper posterior (Hobert and Casella, JASA, 1996)
- Convergence of MCs can be challenging
- Some users of Bayesian statistics search for priors that will result in convergence of Markov chains
- With smaller sample sizes, the priors can matter a lot
- Even with large sample sizes, the priors can matter
- Sensitivity analysis and appropriate selection of prior is important

Types of BNP Modeling

 A standard semi-parametric regression model is the simple linear model, only without the assumption of a parametric family for the errors

$$y_i = x_i \beta + \varepsilon_i$$
 $\varepsilon_i \stackrel{iid}{\sim} P \quad P \in \mathbf{P}$

where **P** is a large family of (preferably median 0) distributions, possibly including the Normal. The problem becomes Bayesian when we place a prior on **P**

• Standard non-parametric models might simply assert

(i)
$$x_i \mid P \stackrel{iid}{\sim} P \quad P \in \mathbf{P}$$

(ii) $x_i \mid P_x \stackrel{iid}{\sim} P_x \quad y_j \mid P_y \stackrel{iid}{\sim} P_y \quad P_x \perp P_y$
 $x_i \perp y_j \quad (P_x, P_y) \in \mathbf{P_x} \times \mathbf{P_y}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A NP regression model might specify

$$y_i \mid x_i, P_{x_i} \stackrel{ind}{\sim} P_{x_i} \qquad \{P_{x_i}: i = 1, ..., n\} \in \mathbf{P}_{\mathbf{X}}$$

where the prior on P_X allows the P_{x_i} s to be correlated.

- So this model requires a distribution on multiple large families of distributions.
- This generality in principle allows one to estimate the regression functions eg. E(y | x), Var(y | x), as well as the density functions f(y | x).

Mean Regression Modeling

An entirely separate area involves the model

$$y_i = m(x_i) + \varepsilon_i \qquad \varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

but where $m(\cdot)$ is arbitrary.

• Usually, $m(\cdot)$ is modeled as

$$m(x) = \beta_0 + \sum_{k=1}^{\infty} \beta_k \phi_k(x)$$

where the $\phi_k(\cdot)$ s form a basis for the space spanned by functions like $m(\cdot)$.

- Typical basis functions are Wavelets, B-splines, splines etc. They are of course truncated and much effort is given to the topic of "thresholding" in the literature.
- A typical Bayesian model places priors on the regression coefficients that allows for point masses at 0, which handles the thresholding

- A typical Bayesian model places priors on the regression coefficients that allows for point masses at 0, which handles the thresholding
- Ethanol Data: Response *y* is the amount of nitric oxide and dioxide from a single engine in micrograms per joule, and the predictor, *x*, is a measure of he air to fuel ratio.
- We give estimates of the mean regression function using Cosine, Haar and B-spline basis functions truncated at *K*.

Haar estimate

Figure 15.10 Ethanol Data: Estimates of regression mean functions using Harr Wavelets.

Figure 15.13 Estimated trend using quadratic B-splines with K = 21 knots.

Popular Non-Parametric Priors

- Dirichlet Process (Ferguson, 1973)
- Dirichlet Process Mixtures (Lo, AOS 1994; Escobar, JASA 2004; Escobar and West, JASA 2005)
- Mixtures of Dirichlet Processes (Antoniak, AOS 1974, Berry and Christensen, AOS 1979; Hanson and Johnson, JCGS 2002)
- Mixtures of Polya Trees (Lavine, AOS 1992, 1994; Berger and Guglielmi, JASA 2001; Hanson and Johnson, JASA 2002; Hanson, JASA 2006)

Dirichlet Process (DP)

Sethuraman (1994)

$$P \mid F_0, c \sim DP(c, G_0)$$

 $\bullet \Leftrightarrow$

$$P = \sum_{h=1}^{\infty} p_h G_{\theta_h}(\cdot)$$

$$p_h = u_h \prod_{j=1}^{h-1} (1 - u_j) \quad u_h \stackrel{\textit{iid}}{\sim} \operatorname{Beta}(1, c)$$
 $heta_h \stackrel{\textit{iid}}{\sim} G_0$

Dirichlet Process as a Model for Data

- Bad, since discrete with probability one
- In the iid data case, the posterior mean behaves like the Empirical CDF (Susarla and VanRyzin, circa 1977) or like Kaplan-Meier in censored data case
- *E*(*G*) = *G*₀ ⇒ prior is centered on the specific prior guess *G*₀. Not so good.
- Bruce Hill was often quoted in the 1980's that "there should have been only one paper written on the DP" (eg. Ferguson 1973)
- If $X \sim G \Rightarrow$ then $Pr(X \in A) = G_0(A)$ eg. marginal for X is G_0
- Conjugacy: $G \mid X = x \sim DP(c+1, \frac{c}{c+1}G_0(\cdot) + \frac{1}{c+1}\delta_x(\cdot))$

Mixture of Dirichlet Processes (MDP)

- Let $G_0 = G_{\theta}$, a parametric model, and specify $p(\theta)$
- Then write

$$X \sim \int D {m{P}}({m{c}}, {m{G}}_{ heta}) {m{p}}(heta) d heta$$

eg. Mixture of DPs

- When *c* is large, the model tends to the parametric model G_{θ} with a standard prior on θ eg. $p(\theta)$
- When *c* is small, we have a large family of possible distributions that includes the parametric family.
- Since E[G(·) | θ] = G_θ(·) for all θ, we have centered the NP prior on the specified parametric family

• We say X is drawn from a DPM if:

$$egin{array}{rcl} X \mid heta &\sim & G_{ heta} \ heta \mid G &\sim & G \ G \mid G_0, c &\sim & DP(c,G_0) \end{array}$$

$$f(x \mid G) = \int f(x \mid \theta) dG(\theta) = \sum_{h=1}^{\infty} p_h f(x \mid \theta_h)$$
$$\theta_h \stackrel{\text{iid}}{\sim} G_0$$

Replace G₀ with G_γ and incorporate prior p(γ) eg. Mixture of DPMs

Dirichlet Process Mixture

- $\mathsf{E}[F(x) \mid G_0] = \int F(x \mid \theta) dG_0(\theta)$
- For large c,

$$f(x \mid G) \doteq \int f(x \mid \theta) dG_0(\theta)$$

- So G₀ behaves like a prior for θ in the large c (parametric) case
- But it's not the same as centering the NP model on a parametric family
- Expected number of terms in the mixture is approx $c\ell n(\frac{c+n}{c})$; can be small eg. 5 when c = 1, n = 150

Dirichlet Process Mixture

- The DPM is by far the most popular NP model for data
- The Bayesian part involves choice of G_0 (or G_γ) and c
- Prior is often placed on *c* (Escobar and West, 1995)
- Standard G₀ in the case of normal G_θ family is the usual conjugate prior eg Normal-Gamma
- Often, rather than selecting parameter values for Normal-Gamma, further priors placed on these
- Subjective priors not used in my limited experience
- "Non-informative" priors and/or resort to Empirical Bayes

Marginalized DPM

Early and perhaps most inferences through marginalization eg

$$f(x_i) = \int \int f(x_i \mid \theta_i) dG(\theta_i) dP(G)$$

- The *x_i* s are (jointly) exchangeable
- Gibbs sampling entails sampling θ_i | θ_(i), x using the (updated) Polya Urn scheme

$$\begin{aligned} \rho_{\theta_i}(\theta \mid \theta_{(i)}, x) &= \frac{cf(x_i \mid \theta_i) dG_0(\theta) + \sum_{j \neq i} f(x_i \mid \theta) \delta_{\theta_j}(\theta)}{c \int f(x_i \mid \theta) dG_0(\theta) + \sum_{j \neq i} f(x_i \mid \theta_j)} \\ &\equiv q_0 \rho_{\theta_i}(\theta \mid x_i) + \sum_{j \neq i} q_j \delta_{\theta_j}(\theta) \end{aligned}$$

 From this, the seed is planted for the development of random partition models

Marginalized DPM: Predictive Density

• Let
$$\theta = \{\theta_i : i = 1, ..., n\}$$
. Then

$$f(x_{n+1} | x) = \int f(x_{n+1} | \theta, \theta_{n+1}, x) p(\theta_{n+1}, \theta | x) d\theta_{n+1}$$

= $\int f(x_{n+1} | \theta_{n+1}) \int [p(\theta_{n+1} | \theta) p(\theta | x) d\theta] d\theta_{n+1}$

• The above can be numerically approximated by taking the Gibbs Sample of θ^j : j = 1, ..., MC; then sample θ^j_{n+1} from the Polya Urn scheme

$$heta_{n+1} \mid heta \sim rac{c}{c+n} G_0(\cdot) + rac{1}{c+n} \sum_{i=1}^n \delta_{ heta_i}(\cdot)$$

so $f(x_{n+1} | x) \doteq \sum_{j=1}^{MC} f(x_{n+1} | \theta_{n+1}^j) / MC$

• Recalling the Sethuraman representation, sample from

$$\sum_{h=1}^{K} p_h \delta_{\theta_h}(\cdot)$$

for sufficiently large *K* (let $p_K = 1$).

- It's a random finite distribution (Gelfand and Kottas, JCGS 2002)
- Obtain θ^j : j = 1, ..., MC as before
- By conjugacy of DP

$$G \mid \theta = heta^j \sim DP(c+n, rac{c}{c+n}G_0(\cdot) + rac{1}{c+n}\sum_{i=1}^n \delta_{ heta_i^j}(\cdot)$$

Truncated DP

- GK approximate as a truncated DP where the Beta's used to construct p_hs are Beta(1, c + n) and the θ_hs are iid from the updated base
- So obtain $\{G_j : j = 1, ..., MC\}$. Inferences about functionals T(G) are based on $\sum_{i=1}^{MC} T(G^i) / MC$
- For example, $T(G) = \int F(x \mid \theta) dG(\theta)$, the CDF for a new observation
- Many contributions including: Doss (1994), Ishwaran and Zarepour (2000), Ishwaran and James (2002), Papaspiliopolus and Roberts (2005), Walker (2007) and Kalli, Griffin and Walker (2009)

Another Finite Approximation

 Mulliere and Sacci (1995), Ishwaran and Zarepour (2002). Let

$$G_{K} = \sum_{h=1}^{K} p_{h} \delta_{\theta_{h}}(\cdot)$$

with

$$(p_1,...,p_K) \sim \mathsf{Dirch}(c/K,\ldots,c/K)$$

 $heta_h \stackrel{iid}{\sim} G_0$

• Then for large K, $G_K \sim DP(c, G_0)$

Finite Approximation

- EXAMPLE: GALAXY DATA. *n* = 82 galaxy velocities obtained from Roeder (1990)
- Approximate a DPM of N(μ, 1/τ) variates based on a finite mixture; K = 50, c = 1
- Take G₀ in two dimensions to be the reference prior N(0, 1000) independent of Gam(0.001, 0.001)
- Let $(p_1, ..., p_K) \sim \text{Dir}(1/50, ..., 1/50)$

Figure 15.3: Galaxy data: fits from finite mixture models, K = 3, 4, 6.

Figure 15.4 Galaxy data: Dirichlet process mixture (dashed) and mixture of Polya trees (solid) fits.

Polya Trees

 Split sample space Ω into two disjoint sets B₀ and B₁; further split B₀ into B₀₀ etc:

$$\begin{array}{c|c} B_0 & B_1 \\ \hline B_{00} & B_{01} & B_{10} & B_{11} \\ \end{array}$$

۲

$$\begin{array}{ll} Y_0 = P(X \in B_0), & Y_1 = P(X \in B_1), \\ & Y_{00} = P(X \in B_{00} | X \in B_0), \\ & Y_{01} = P(X \in B_{01} | X \in B_0), \\ & Y_{10} = P(X \in B_{10} | X \in B_1), \\ & Y_{11} = P(X \in B_{11} | X \in B_1). \end{array}$$

$$\begin{array}{l} \bullet \text{ Then } P(X \in B_{ij}) = Y_i Y_{ij} \end{array}$$

Sets and corresponding conditional probabilities

R			
B ₀		B ₁	
$(Y_0, Y_1) \sim \operatorname{Dir}(\alpha_0, \alpha_1)$			
B ₀₀	B ₀₁	B ₁₀	B ₁₁
$(Y_{00}, Y_{01}) \sim \text{Dir}(\alpha_{00}, \alpha_{01})$		$(Y_{10}, Y_{11}) \sim \text{Dir}(\alpha_{10}, \alpha_{11})$	
B ₀₀₀ B ₀₀₁	B ₀₁₀ B ₀₁₁	B ₁₀₀ B ₁₀₁	B ₁₁₀ B ₁₁₁
$(Y_{000}, Y_{001}) \sim$	$(Y_{010}, Y_{011}) \sim$	$(Y_{100}, Y_{101}) \sim$	$(Y_{110}, Y_{111}) \sim$
$Dir(\alpha_{000}, \alpha_{001})$	$Dir(\alpha_{010}, \alpha_{011})$	$Dir(\alpha_{100}, \alpha_{101})$	Dir($\alpha_{110}, \alpha_{111}$)

Instead of \mathbb{R} , let's look at $\Omega = [0, 1] \subset \mathbb{R}$.

Probability of partition sets

Say we want $G(B_{101})$.

Probability of partition sets

 $B_{101} \subset B_{10}$.
Probability of partition sets

 $B_{101} \subset B_{10} \subset B_1$.

Probability of partition sets

G-measure of first few sets in Π

$G(B_0)$	=	<i>Y</i> ₀
$G(B_1)$	=	<i>Y</i> ₁
$G(B_{00})$	=	$Y_0 Y_{00}$
$G(B_{01})$	=	$Y_0 Y_{01}$
$G(B_{10})$	=	$Y_1 Y_{10}$
$G(B_{11})$	=	$Y_1 Y_{11}$
$G(B_{000})$	=	$Y_0 Y_{00} Y_{000}$
$G(B_{001})$	=	$Y_0 Y_{00} Y_{001}$
$G(B_{010})$	=	$Y_0 Y_{01} Y_{010}$
$G(B_{011})$	=	Y ₀ Y ₀₁ Y ₀₁₁
$G(B_{100})$	=	$Y_1 Y_{10} Y_{100}$
$G(B_{101})$	=	$Y_1 Y_{10} Y_{101}$
$G(B_{110})$	=	<i>Y</i> ₁ <i>Y</i> ₁₁ <i>Y</i> ₁₁₀
$G(B_{111})$	=	<i>Y</i> ₁ <i>Y</i> ₁₁ <i>Y</i> ₁₁₁

Let ε = ε₁ · · · ε_m be an arbitrary binary number of dimension m

• Split
$$B_{\epsilon} \to \{B_{\epsilon 0}, B_{\epsilon 1}\} \quad \forall \epsilon.$$

Then

$$egin{aligned} &Y_{\epsilon 0}=P(X\in B_{\epsilon 0}|X\in B_{\epsilon})\ &Y_{\epsilon 1}=P(X\in B_{\epsilon 1}|X\in B_{\epsilon})\ \end{pmatrix} \Rightarrow &P(X\in B_{\epsilon_{1}\cdots \epsilon_{m}})=\prod_{j=1}^{m}Y_{\epsilon_{1}\cdots \epsilon_{j}} \end{aligned}$$

<ロト<部ト<Eト<Eト 目 のQで 40/73 • Random PM for G:

 $(Y_{\epsilon 0}, Y_{\epsilon 1}) \sim \text{Beta}(\alpha_{\epsilon 0}, \alpha_{\epsilon 1})$

- Center on *G*₀ by selecting the partition sets to be appropriate quantiles of *G*₀
- Let $\alpha_{\epsilon} = cm^2$ at level $m, \forall m \ (\Rightarrow abs \ cont \ G \ w/ \ prob \ 1)$
- We say $G|G_0, c \sim PT(c, G_0), \qquad E(G(\cdot)) = G_0(\cdot)$
- Finite Polya Tree is truncated at say level M
- Large c results in a parametric analysis, and small c results in a more non-parametric analysis

• Partitions defining the Polya tree are induced by *single fixed* centering distribution.

• Sensible choice of M: $2^M \doteq n$

• Will be difficult in practice to specify a single centering distribution.

• Random densities g(x) = G'(x) are discontinuous at every partition point. Infinite number of discontinuities!

Figure: Finite Polya tree partition sets determined by G_{θ} : $\pi_1 = \{B_0, B_1\}, \pi_2 = \{B_{00}, B_{01}, B_{10}, B_{11}\}, \pi_3 = \{B_{000}, B_{001}, B_{010}, B_{011}, B_{100}, B_{101}, B_{110}, B_{111}\}.$ $G_0 = N(0, 1)$

Mixture of Finite PTs

• Center on parametric family $\{G_{\theta}, \theta \in \Theta\}$ eg. want $E[G(\cdot) \mid \theta)] = G_{\theta}(\cdot) \quad \forall \theta$

- Mixtures of Polya trees (Lavine, 1992; Hanson and Johnson, 2002) smooth out partitioning effects and allow robustness against misspecification of (only one) centering distribution
- Prior on θ , $p(\theta)$

• We say
$$G|G_{ heta}, c \sim PT(c, G_{ heta})$$

$$\textit{G} \sim \int \textit{PT}(\textit{c},\textit{G}_{ heta})\textit{p}(\textit{d} heta)$$

- Predictive density g(y_{n+1}|Y₁,...,Y_n) can be differentiable in infinite tree; random densities g(y|Y₁,...,Y_n) continuous.
- Truncated at level *M* results in an MFPT
- Large *c* results in analysis based on the parametric family

Figure: All pairs $(Y_{\epsilon 0}, Y_{\epsilon 1})$ are 0.5.

Figure: Pair of level j = 1 probabilities (Y_0, Y_1).

-	2 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2
	0.	7	0.	3	0	.5	0	.5	
		0.	45			0.	55		

Figure: Pair of level j = 2 probabilities (Y_{00}, Y_{01}).

-	2 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2
-	0.	7	0.	3	0	.6	0	.4	
-	0.45					0.	55		

Figure: Pair of level M = 2 probabilities (Y_{10}, Y_{11}).

Figure: Pair of level M = 3 probabilities (Y_{000}, Y_{001}).

Figure: Pair of level M = 3 probabilities (Y_{010}, Y_{011}).

Figure: Pair of level M = 3 probabilities (Y_{100}, Y_{101}).

Figure: Pair of level M = 3 probabilities (Y_{110}, Y_{111}).

,			\frown	J					
-3	2 0.8	0.2	0.7	0.3	0.4	0.6	0.55	0.45	2
	0.	7	0.	3	0	.6	0	.4	
-		0.	45			0.	55		

Figure: Mixture of Finite Polya trees.

Mixture of Finite PTs

• Even with M = 3 can get interesting density shapes.

- Allowing θ to be random smooths density
- Notation: G ~ PT_M(c, G_θ). G is random probability measure centered at G_θ, parametric on R.
- Further taking $\theta \sim p(\theta)$ induces MFPT.
- *c* is overall weight attached to $\{G_{\theta} : \theta \in \Theta\}$.

Proposition

(Hanson and Johnson, 2002). Let $G \sim PT_{\infty}(c, j^2, \Phi_{\mu,\sigma})$ and $w_1, \ldots, w_n | G \stackrel{iid}{\sim} G$. Let $(\mu, \sigma^{-2}) \sim N(m, s^2) \times \Gamma(a, b)$. Then the density of $g(w_{n+1} | \mathbf{w}_{1:n})$ is differentiable on $\mathbb{R} \setminus \{w_1, \ldots, w_n\}$ but continuous everywhere.

This also holds for finite MPTs.

Proposition

(Hanson, 2006). Let $G \sim PT_J(c, j^2, \Phi_{\mu,\sigma})$ and $w_1, \ldots, w_n | G \stackrel{iid}{\sim} G$. Let $(\mu, \sigma^{-2}) \sim N(m, s^2) \times \Gamma(a, b)$. Then the density $g(w | \mathbf{w}_{1:n}, \mathfrak{Y}) = \int_{\Theta} g(w | \mathbf{w}_{1:n}, \mathfrak{Y}, \theta) db\theta$ is differentiable on \mathbb{R} .

Holds for multivariate Polya trees as well.

- Simple Polya tree prior $G \sim PT_5(1, \exp(1))$.
- MPT prior $G \sim \int PT_5(1, \exp(\theta))P(d\theta)$ where $\theta \sim \Gamma(10, 10)$ so $E(\theta) = 1$.
- For both $\rho(j) = j^2$, m = 5, and c = 1.
- Look at densities from 10 random G's.

57/73

< ロ > < 回 > < 回 > < 回 > < 回 >

Figure: $G_1, \ldots, G_{10} \stackrel{iid}{\sim} \int PT_5(1, \exp(\theta)) P(d\theta).$

- A randomized study was conducted to assess the assoc between amount of calcium intake and reduction of syst blood pressure (SBP) in black males
- Of 21 healthy black men, 10 were randomly assigned to receive a calcium supplement (group 1) over a 12 week period. The other men received a placebo (group 2)
- The response variable was amount of decrease in systolic blood pressure Negative responses correspond to increases in SBP.
- The data were fitted to the DP, MDP, DPM, PT, and MPT models.

Fig. 2. Blood pressure data: posterior CDF estimates for both groups using the MDP (jagged), DPM (dashed), and MPT (solid) models. The longer tick marks along the x-axis correspond to the observed data for the placebo group and the shorter tick marks to the observed data for the calcium group.

60/73

・ロン ・回 と ・ ヨ と ・ ヨ と

Table 1

	n	Mean	Median	Std. Dev.	Min	Max
Calcium	10	5.0	4	8.7	-5	18
Placebo	11	-0.27	-1	5.9	-11	12

Blood pressure data: summary statistics for the decrease in systolic blood pressure data for the calcium and placebo groups

Table 2

Blood pressure data: prior and posterior medians and 95% probability intervals for functionals T(F) for the two-sample problem. The mean and median functionals are denoted by $\mu(\cdot)$ and $\eta(\cdot)$, respectively

	DP		MDP		DPM	
T(F)	Prior	Posterior	Prior	Posterior	Prior	Posterior
$\mu(F_1)$	5.08	4.96	4.90	4.97	5.05	5.08
	(-10.4, 20.3)	(0.5, 9.9)	(-14.7, 25.9)	(0.6, 10.0)	(-5.2, 16.5)	(0.3, 9.9)
$\mu(F_2)$	-0.08	-0.31	0.02	-0.25	0.13	-0.30
	(-9.5, 9.3)	(-3.3, 3.0)	(-16.2, 15.3)	(-3.2, 3.1)	(-8.8, 9.6)	(-3.3, 2.8)
$m(\mathbf{F}_{i})$	5.01	5.17	4.93	5.27	5.14	4.89
$\eta(r_1)$	(-10.3, 20.3)	(-3.0, 11.0)	(-16.4, 27.6)	(-3.0, 11.0)	(-4.6, 15.9)	(0.2, 9.9)
$m(E_{\tau})$	-0.10	-1.1	-0.10	-1.1	0.25	-0.35
$\eta(\mathbf{r}_2)$	(-12.4, 11.9)	(-3.1, 2.9)	(-17.8, 17.1)	(-3.1, 2.9)	(-8.1, 8.7)	(-3.3, 2.6)
$\mu(F_1)-\mu(F_2)$	5.12	5.23	4.86	5.23	5.08	5.24
	(-9.8, 20.5)	(-0.3, 11.1)	(-19.4, 31.5)	(-0.3, 10.8)	(-8.94, 20.4)	(0.0, 10.6)
$m(\mathbf{F}_{i}) = m(\mathbf{F}_{i})$	5.19	4.91	4.86	5.01	5.22	4.99
$\eta(r_1) = \eta(r_2)$	(-14.0, 24.7)	(-3.9, 14.1)	(-22.3, 34.2)	(-3.9, 14.1)	(-8.4, 18.9)	(-0.3, 10.8)

The DPM model used was, for k = 1, 2, and $i = 1, \dots, n_k$ with $n_1 = 10, n_2 = 11$,

$$\begin{aligned} x_{ki} | (\mu_{ki}, \sigma_{ki}^2) &\stackrel{\text{ind}}{\longrightarrow} N(\mu_{ki}, \tau \sigma_{ki}^2) \\ (\mu_{ki}, \sigma_{ki}^2) | G_k &\stackrel{\text{ind}}{\sim} G_k \\ G_k | \alpha, G_{k0} &\stackrel{\text{ind}}{\longrightarrow} \text{DP}(\alpha G_{k0}). \end{aligned}$$

61/73

Illustration: Environmental Data

- Bivariate Density Estimation.
- n = 111 bivariate observations w_i = (w_{i1}, w_{i2})' on cube root of ozone concentration (w_{i2}) and radiation (w_{i1}) modeled.
- Previously modeled using DPM of bivariate Gaussian densities.
- Here look at G ~ ∫ PT₄(1, Φ_θ)dP(θ), where p(θ) Jeffreys' prior for MVN.
- $BF \approx 45$ in favor of MPT model over Gaussian model.
- MPT model can adapt locally and capture interesting aspects of the data without resorting to finite mixtures...

Median Regression (Hanson and Johnson, 2002)

•
$$y_i = x_i eta + arepsilon_i$$
 $arepsilon_i \mid G \sim G$
 $G \sim \int FPT_K(c, G_{ heta}) p(heta) d heta$

 Errors forced to have median 0, so it's a median regression model, eg.

$$med(y \mid x) = x\beta$$

64/73

Cow Abortion Data

- Joint modeling of cow-abortion yes/no and time to abortion given that the pregnancy ends in abortion.
- Multiple cycles so need random effects for abortion indicator and time to abortion
- Covariates are NPA (number of prev abortions), Age, Timing of Previous Abortion (early, late, none), Days Open (DO) and Gravidity (Gr)
- Two known causes of abortion:
 - Abortions due to uterine damage (early term abortions)
 - Abortions due to infection (late abortions)

<ロト < 部 ト < 臣 ト < 臣 ト 三 の Q (や) 66/73

・ロ・・ 白・ ・ ヨ・ ・ ヨ・ うへぐ

67/73

	Effect	Mean	Standard deviation
Baseline	21	0.534	0.034
	72	0.285	0.026
	2/3	0.181	0.016
	μ_1	4.453	0.068
	μ2	4.924	0.055
	μ3	5.374	0.058
	σ_1^{-2}	8.809	1.077
	σ_2^{-2}	182.6	32.94
	$\tilde{\sigma_3^{-2}}$	47.96	7.503
Variance components	λ_{11}	78.04	36.81
	λ_{12}	-0.801	12.88
	λ22	18.29	9.845

Table II. Posterior summaries for baseline distribution and variance components.

Table III. Predictive probability of abortion - Logistic model estimates for herds.

DO	GR	AGE	AB	Herd 3	Herd 6
40	2	3	0	0.143	0.077
40	2	3	1	0.293	0.173
40	3	3	0	0.107	0.056
40	3	3	1	0.228	0.129
150	2	3	0	0.140	0.075
150	2	3	1	0.287	0.168
150	3	3	0	0.096	0.050
150	3	3	1	0.207	0.116
40	2	4.5	0	0.240	0.137
40	2	4.5	1	0.395	0.249
40	3	4.5	0	0.183	0.101
40	3	4.5	1	0.318	0.190
150	2	4.5	0	0.234	0.133
150	2	4.5	1	0.388	0.243
150	3	4.5	0	0.165	0.090
150	3	4.5	1	0.292	0.172

Linear Dependent DPM (LDDP)

۰

 MacEachern (1999, 2000), Delorio et al. 2004, Delorio et al. 2009

$$f(y_i \mid x_i) = \int N(y_i \mid x_i\beta, 1/\tau) dG(\beta, \tau)$$

= $\sum_h p_h N(y_i \mid x_i\beta_h, 1/\tau_h)$

where $G \sim DP(c, G_{\delta})$ and $\delta \sim p(\delta)$

In the linear case, it's just a DPM of Normal regressions

Weighted Dependent DPM (WDDP)

۲

 Müller, Erkanli and West (1996), MacEachern (1999), Griffin and Steel (2006), Dunson, Pillai and Park (2007), Dunson and Park (2008)

> $f(y_i \mid x_i) = \int N(y_i \mid x_i\beta, 1/\tau) dG_{x_i}(\beta, \tau)$ = $\sum_h p_h(x_i) N(y_i \mid x_i\beta_h, 1/\tau_h)$

where $p_h(x_i)$ are selected in various clever ways

Motivating Example Early Developments Recent Developments Illustrations

Bayesian density regression Dependent random effects distributions

DDP results - x = 0.10

 Motivating Example Early Developments Recent Developments Illustrations

Bayesian density regression Dependent random effects distributions

DDP results - x = 0.25

72/73
Motivating Example Early Developments Recent Developments Illustrations

Bayesian density regression Dependent random effects distributions

DDP results - x = 0.48

73/73