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Why Bayesian Nonparametrics?

@ Because parametric models are often overly restricted
and/or lack robustness!

@ So that we can find biological bumps that we might not
otherwise find!

@ So that we can see if parametric models might actually fit
by embedding them in NP families!

@ Because Bayesian NP modeling is feasible due to modern
MCMC methods eg. because we can?



Bayesian Parametric Models

@ Given data x = (xq, ..., X,) we model them with a joint pdf
Pr(XeA|9):/f(x|0)M(dx) 6coc Rk
A

@ We treat the data as fixed and known and use the
likelihood function to inform us about 6

L(6)  f(x | 6)

@ We model our uncertainty about unknown 6 through the
use of a prior pdf, p(6), which must be based on
information that is independent of x (failing in this results in
Empirical Bayes methods)



Parametric Inference

@ Bayesian inference is facilitated through calculation of
posterior pdf

o)
S NIOF L

@ Due to intractability of integration, we use Markov chain
Monte Carlo methods to sample from the joint posterior
e Gibbs Sampling
Metropolis Sampling
Slice Sampling
Adaptive Rejection Sampling
Hybridizations of the above



Parametric Inference

@ We approximate integrals by

/g 9|xd0—Zg )/MC

o' p(6 | x)

@ So the posterior mean (vector) is numerically approximated
as the arithmetic average of samples from the joint
posterior.

@ We obtain approximate 95% Probability Intervals for
~v = g(0) by ordering {r' =g(0') : i=1,..., MC} from
smallest to largest and finding the 0.025 and 0.975 sample
percentiles.

@ The post med of v is more sensible than the post mean



Wonderful Aspects

@ Appropriateness of methods doesn’t depend on having
large sample sizes

@ General ability to handle complex models without having to
fall on mathematical swords

@ Availability of statistical software is no longer an issue eg.
WinBUGS, Open Bugs, JAGS, SAS, DP-Package etc.

@ Inferences for complicated functions of 6, eg.y = g(0), are
available for the asking

@ Direct probability interpretations



The Sword We Do Have to Fall On

@ The prior needs to be specified

@ The more complex the model, the greater the potential
difficulty in specifying a prior that will lead to a proper
posterior (Hobert and Casella, JASA, 1996)

@ Convergence of MCs can be challenging

@ Some users of Bayesian statistics search for priors that will
result in convergence of Markov chains

@ With smaller sample sizes, the priors can matter a lot
@ Even with large sample sizes, the priors can matter

@ Sensitivity analysis and appropriate selection of prior is
important



Types of BNP Modeling

@ A standard semi-parametric regression model is the simple
linear model, only without the assumption of a parametric
family for the errors

Yi= X3+ ¢€; EIQS’P PeP

where P is a large family of (preferably median 0)
distributions, possibly including the Normal. The problem
becomes Bayesian when we place a prior on P

@ Standard non-parametric models might simply assert
(i) x|PEp pPecp
(i) x|PxSP.  yIP2P, P LP



BNP Modeling

@ A NP regression model might specify
vilxi. Py % P {Py:i=1,..n}ePyx
where the prior on Px allows the Py, s to be correlated.

@ So this model requires a distribution on multiple large
families of distributions.

@ This generality in principle allows one to estimate the
regression functions eg. E(y | x), Var(y | x), as well as the
density functions f(y | x).
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Mean Regression Modeling

@ An entirely separate area involves the model
y,-:m(x,~)+g,- E,’iif\d/N(O,Uz)
but where m(-) is arbitrary.
@ Usually, m(-) is modeled as

m(x) = Bo+ Y _ Bk (X)
k=1

where the ¢,(-) s form a basis for the space spanned by
functions like m(-).

@ Typical basis functions are Wavelets, B-splines, splines
etc. They are of course truncated and much effort is given
to the topic of “thresholding” in the literature.

@ A typical Bayesian model places priors on the regression
coefficients that allows for point masses at 0, which
handles the thresholding
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Mean Regression Modeling

@ A typical Bayesian model places priors on the regression
coefficients that allows for point masses at 0, which
handles the thresholding

@ Ethanol Data: Response y is the amount of nitric oxide and
dioxide from a single engine in micrograms per joule, and
the predictor, x, is @ measure of he air to fuel ratio.

@ We give estimates of the mean regression function using
Cosine, Haar and B-spline basis functions truncated at K.
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Haar estimate
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Figure 15.10 Ethanol Data: Estimates of regression mean functions us-
ing Harr Wavelets.
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Figure 15.13 Estimated trend using quadratic B-splines with K = 21
knots.
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Popular Non-Parametric Priors

@ Dirichlet Process (Ferguson, 1973)

@ Dirichlet Process Mixtures (Lo, AOS 1994; Escobar, JASA
2004; Escobar and West, JASA 2005)

@ Mixtures of Dirichlet Processes (Antoniak, AOS 1974,
Berry and Christensen, AOS 1979; Hanson and Johnson,
JCGS 2002)

@ Mixtures of Polya Trees (Lavine, AOS 1992, 1994; Berger

and Guglielmi, JASA 2001; Hanson and Johnson, JASA
2002; Hanson, JASA 2006)
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Dirichlet Process (DP)

@ Sethuraman (1994)
P| Fy,c ~ DP(c, Gp)

Qo =

P =" pnGy,(-)

h=1
h—1 )
Pn = Up H(1 — Uj) Unp % Beta(1 , C)
j=1

jid
0, ~ Go
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Dirichlet Process as a Model for Data

@ Bad, since discrete with probability one

@ In the iid data case, the posterior mean behaves like the
Empirical CDF (Susarla and VanRyzin, circa 1977) or like
Kaplan-Meier in censored data case

@ E(G) = Gy = prior is centered on the specific prior guess
Gp. Not so good.

@ Bruce Hill was often quoted in the 1980’s that “there should
have been only one paper written on the DP” (eg.
Ferguson 1973)

@ If X ~ G = then Pr(X € A) = Gp(A) eg. marginal for X is
Go

Conjugacy: G| X = x ~ DP(c+ 1, 5% Go(") + 5550x("))
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Mixture of Dirichlet Processes (MDP)

@ Let Gy = Gy, a parametric model, and specify p(0)

@ Then write
X ~ / DP(c, Gy)p(8)do

eg. Mixture of DPs

@ When c is large, the model tends to the parametric model
Gy with a standard prior on 6 eg. p(6)

@ When cis small, we have a large family of possible
distributions that includes the parametric family.

@ Since E[G(-) | 0] = Gy(-) for all 6, we have centered the NP
prior on the specified parametric family
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Dirichlet Process Mixture

@ We say X is drawn from a DPM if:

X0 ~ Gy
0|G ~ G
G| Go,c ~ DP(c,Go)

f(x | G) = /fx|9)dG thfxw,,
9h”“qGo

@ Replace Gy with G, and incorporate prior p(v) eg. Mixture
of DPMs
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Dirichlet Process Mixture

® E[F(x) | Go] = | F(x | 6)dGo(9)
@ For large c,

f(x| G) = / f(x | 8)dGo(6)

@ So Gy behaves like a prior for 8 in the large ¢ (parametric)
case

@ But it's not the same as centering the NP model on a
parametric family

@ Expected number of terms in the mixture is approx
cln(%"); can be small eg. 5when ¢ =1,n =150
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Dirichlet Process Mixture

@ The DPM is by far the most popular NP model for data
@ The Bayesian part involves choice of Gy (or G,) and ¢
@ Prior is often placed on ¢ (Escobar and West, 1995)

@ Standard Gy in the case of normal Gy family is the usual
conjugate prior eg Normal-Gamma

@ Often, rather than selecting parameter values for
Normal-Gamma, further priors placed on these

@ Subjective priors not used in my limited experience

@ “Non-informative” priors and/or resort to Empirical Bayes
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Marginalized DPM

@ Early and perhaps most inferences through marginalization

eg
f(x;) //fx,|0dG )dP(G)

@ The x;s are (jointly) exchangeable

@ Gibbs sampling entails sampling 0; | 6;, x using the
(updated) Polya Urn scheme

cf(x; | 0;)dGo(0) + >_).; f(xi | 0)d,(0)
c [ f(xi | 0)dGo(0) + >z f(xi | 6))

= qops, (0| X;) + Y _ qjdg,(0)
J#i

Py, (0 | Ojy, x) =

@ From this, the seed is planted for the development of
random partition models
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Marginalized DPM: Predictive Density

@ Letd={0;: i=1,..,n}. Then
Gt0s1 10 = [ 100411 0.0011.50P(Or11.0 | )00,
— [ a1 1010) [ 19(On1]0)p(61x) 10
@ The above can be numerically approximated by taking the

Gibbs Sample of ¢/ : j =1, ..., MC; then sample ¢/, , from
the Polya Urn scheme

c 1
9n+1 |9 C n 0() c n E 91()

i=1

80 f(Xn11 | X) = S f(xay1 | 6,,4)/MC
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Truncated DP

@ Recalling the Sethuraman representation, sample from

K
> P, ()
h=1

for sufficiently large K (let px = 1).

@ It's a random finite distribution (Gelfand and Kottas, JCGS
2002)

@ Obtain ¢ :j=1,..., MC as before
@ By conjugacy of DP

, c 1 <
— 9 ~ DP . (.
G|O=¢ (C+n’c+nG°()+c+n;56¥()
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Truncated DP

@ GK approximate as a truncated DP where the Beta’s used
to construct p, s are Beta(1, ¢ + n) and the 6 s are iid from
the updated base

@ Soobtain {G;: j=1,..., MC}. Inferences about
functionals T(G) are based on Z/"i? T(G)/MC

@ For example, T(G) = [ F(x | )dG(6), the CDF for a new
observation

@ Many contributions including: Doss (1994), Ishwaran and
Zarepour (2000), Ishwaran and James (2002),
Papaspiliopolus and Roberts (2005), Walker (2007) and
Kalli, Griffin and Walker (2009)
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Another Finite Approximation

@ Mulliere and Sacci (1995), Ishwaran and Zarepour (2002).

Let
K
Gk = Y _ Pnda,(*)
h=1
with
(p1,...,px) ~ Dirch(c/K,...,c/K)
0n " Go

@ Then for large K, Gk ~ DP(c, Go)
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Finite Approximation

@ EXAMPLE: GALAXY DATA. n = 82 galaxy velocities
obtained from Roeder (1990)

@ Approximate a DPM of N(u, 1/7) variates based on a finite
mixture; K =50, c =1

@ Take Gy in two dimensions to be the reference prior
N(0, 1000) independent of Gam(0.001,0.001)

@ Let(py,...,pk) ~ Dir(1/50,...,1/50)
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Figure 15.3: Galagy dat: fits from finite misture models, K = 3,4,6.
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Figure 15.4 Galasy dota: Dirichlet process mizture (doshed) and mizture
of Polya trees (solid) fits.
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Polya Trees

@ Split sample space Q into two disjoint sets By and By;
further split By into By etc:
. B | B |
| Boo | Bot | Bio | Bi1 |

Yo—= P(X € By), Yi=P(XeBy),
Yoo = P(X € Buo|X € Bp),
Yo1 = P(X € By1|X € By
= P(X € Byo|X € By
Yi1 = P(X € By1|X € By).
@ Then P(X € Bj) = Y;Yj

)

)

)
)
)
)

32/73



Sets and corresponding conditional probabilities

R
By { By
(Yo, Y1) ~ Dir(a, 1)
Boo ] o1 10 N By
(Yoo, Yo1) ~ Dir(ago, 1) (Y10, Y11) ~ Dir(avqg, a11)
Booo | Boot Boto [ Boit Bioo [ Biot Biio [ Bii1

(Yo00, Yoo1) ~ (Yo10, Yor1) ~ (Y100, Y101) ~ (Y1105 Y111) ~
Dir(cgog, @001) Dir(cg10, @o11) Dir(a100, @101) Dir(ay19, @111)
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Probability of partition sets

Q=10,1]
By B;
Boo Bo: Bio B
Booo | Boot | Boto | Bot1 | Bioo | Biot | Biio | Bis

Instead of R, let’s look at 2 = [0,1] C R.
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Probability of partition sets

Buo By Bio Bi;
Booo \ Boo1 | Boio \ Bo11 | Bioo \ Bio1 | Bi1o \ Bi11

Say we want G(Bio1).
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Probability of partition sets

Booo \ Boo1 | Boio \ Bo11 | Bioo | Biot | Bito \ Bi11
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Probability of partition sets

BOO BO1 B10 B11
BOOO ‘ BOO1 BO10 ‘ BO11 B100 ‘ B101 B110 ‘ B111

B101 C B10 C B1.
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Probability of partition sets

Q=10,1]

BOO BO1 B10 B11
BOOO ‘ BOO1 BO1O ‘ BO11 B100 ‘ B101 B110 ‘ B111

G(Bio1) = G(Bio1 N BioNBy)
= G(Bi01|B10, B1)G(B10|B1)G(By)
= Yi01Y10Yi.
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G-measure of first few sets in I

G(Bo)
G(By)
G(Boo)
G(Bo1)
G(Bio)
G(B11)
G(Booo)
G(Boo1)
G(Bo10)
G(Bo11)
G(Bioo)
G(Bio1)
G(Bi110)
G(B111)

Yo

Yi

Yo Yoo

Yo Yo

Y1 Y10
YiYn

Yo Yoo Yooo
Yo Yoo Yoot
Yo Yo1 Yoto
Yo Yo1 Yo
Y1 Y10 Y100
Y1 Y10 Y101
Y1 Y11 Y110
Y1Yi1 Yin
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@ Lete =¢q---¢m be an arbitrary binary number of
dimension m

o Split B. — {B.o, By} Ve

@ Then
Yo = P(X € BeO’X € B€)
Yo =P(X € B4|X € B)

m
P(X € Beyoep) = [ Yereg
j=1
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@ Random PM for G:

(Yeo, Ye1) ~ Beta(owo, cet)

@ Center on Gy by selecting the partition sets to be
appropriate quantiles of Gy

@ Let o = cm? at level m,Vm (= abs cont G w/ prob 1)
e Wesay G|Go,c~ PT(c,Go),  E(G()) = Go(")
@ Finite Polya Tree is truncated at say level M

@ Large cresults in a parametric analysis, and small ¢
results in @ more non-parametric analysis
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@ Partitions defining the Polya tree are induced by single
fixed centering distribution.

@ Sensible choice of M : oM — p

@ Will be difficult in practice to specify a single centering
distribution.

@ Random densities g(x) = G'(x) are discontinuous at every
partition point. Infinite number of discontinuities!
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Figure: Finite Polya tree partition sets determined by G:
7 = {Bo, B1}, m2 = {Boo, Bo1, Bio, Bi1},
73 = {Booo, Boo1, Bo1o, Bo11, B1oo, Bio1, Bi10, B111}. Go = N(0, 1)
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Mixture of Finite PTs

@ Center on parametric family {Gy, 6 € ©} eg. want
E[G() [ 0)] = Go(-) VO

@ Mixtures of Polya trees (Lavine, 1992; Hanson and
Johnson, 2002) smooth out partitioning effects and allow
robustness against misspecification of (only one) centering
distribution

@ Prior on 6, p(0)

@ We say G|Gy, c ~ PT(c, Gy)

G~ / PT(c, Gs)p(db)

@ Predictive density g(yn+1]Y1,..., Yn) can be differentiable
in infinite tree; random densities g(y| Y, ..., Yn)
continuous.

@ Truncated at level M results in an MFPT

@ Large c results in analysis based on the parametric family
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Figure: All pairs (Yeo, Y1) are 0.5.
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-2 0.5 0.5 0.5‘0.5
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Figure: Pair of level j = 1 probabilities ( Yo, Y1).
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-2 0.5 0.5 0.5‘0.5

0.5‘0.5

0.45

Figure: Pair of level j = 2 probabilities ( Yoo, Yo1)-
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Figure: Pair of level M = 2 probabilities ( Y10, Y11).
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Figure: Pair of level M = 3 probabilities ( Yooo, Yoo1)-
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Figure: Pair of level M = 3 probabilities ( Yo10, Yo11)-
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Figure: Pair of level M = 3 probabilities ( Y100, Y101)-
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Figure: Pair of level M = 3 probabilities ( Y110, Y111).
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Figure: Mixture of Finite Polya trees.
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Mixture of Finite PTs

@ Even with M = 3 can get interesting density shapes.

@ Allowing 6 to be random smooths density

@ Notation: G ~ PTy(c, Gy). G is random probability
measure centered at Gy, parametric on R.

@ Further taking 6 ~ p(6) induces MFPT.

@ cis overall weight attached to {Gy : 6 € ©}.

54/73



Smoothness properties

Proposition

(Hanson and Johnson, 2002). Let G ~ PT(c,j?,%,.,) and
Wi, ..., ws G2 G. Let (u,0-2) ~ N(m, s2) x T(a, b). Then the
density of g(Wn.1|W1.n) is differentiable on R\{wx, ..., wn} but

continuous everywhere.

This also holds for finite MPTs.

Proposition

(Hanson, 2006). Let G ~ PT,(c,j?,®,.,) and

Wi, ..., ws|G 2 G. Let (u,0-2) ~ N(m, s?) x T(a, b). Then the
density g(w|W1.n, Y) = [g 9(w|W1.p, Y, 8)db0 is differentiable on
R.

Holds for multivariate Polya trees as well.
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Random draws PT and MPT

@ Simple Polya tree prior G ~ PTs(1,exp(1)).

@ MPT prior G ~ [ PTs(1,exp(6))P(db)
where 6 ~ T(10,10) so E(9) = 1.

@ For both p(j) =j2, m=5,and ¢ = 1.

@ Look at densities from 10 random G's.
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Figure: Gy, ..., Gio % PTs(1,exp(1)).
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MPT

Figure: Gy, ..., Gio %fPT5(1,exp(0))P(d0).
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Blood Pressure Data

@ A randomized study was conducted to assess the assoc
between amount of calcium intake and reduction of syst
blood pressure (SBP) in black males

@ Of 21 healthy black men, 10 were randomly assigned to
receive a calcium supplement (group 1) over a 12 week
period. The other men received a placebo (group 2)

@ The response variable was amount of decrease in systolic
blood pressure Negative responses correspond to
increases in SBP.

@ The data were fitted to the DP, MDP, DPM, PT, and MPT
models.
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Fig. 2. Blood pressure data: posterior CDF estimates for both groups using the MDP (jagged), DPM (dashed),
and MPT (solid) models. The longer tick marks along the x-axis correspond to the observed data for the
placebo group and the shorter tick marks to the observed data for the calcium group.
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Tablel
Blood pressure data: summary statistics for the decreasein systolic blood pres-
sure data for the calcium and placebo groups

n Mean Median Std. Dev. Min Max
Calcium 10 5.0 4 8.7 -5 18
Placebo 11 —0.27 -1 5.9 —11 12

Table 2
Blood pressure data: prior and posterior medians and 95% probability intervals for functionals 7' (F) for the
two-sample problem. The mean and median functionals are denoted by () and ,(-), respectively

DP MDP DPM
T(F) Prior Posterior Prior Posterior Prior Posterior
Fp 5.08 4.96 4.90 4.97 5.05 5.08
mir (—10.4,20.3) (05,9.9) (—14.7,259) (0.6, 10.0) (—5.2, 16.5) (0.3, 9.9)
—0.08 —0.31 0.02 —0.25 0.13 —0.30
n(F2) (—9.5,93) (-383,30 (-16.2,153) (-3.2,31 (—88,96) (—3.3,28)
(Fp) 5.01 517 4.93 5.27 514 4.89
nirL (—10.3, 20.3) (—3.0,11.0)0 (—16.4,27.6) (—3.0,11.0) (—4.6, 15.9) (0.2,9.9
(F) —0.10 —11 —0.10 —11 0.25 —0.35
ntr2 (—12.4,119) (-3.1,29 (-17.8,17.1) (-3.1,29 (-81,87) (—3.3,2.6)
512 5.23 4.86 5.23 5.08 5.24
wFD=pr(F2) 98 205 (—0.3 11.1) (—19.4, 3L5) (—0.3,10.8) (—8.94, 20.4) (0.0, 10.6)

F1) — n(FD) 5.19 4.91 4.86 5.01 5.22 4.99
MED =N (_14.0,247) (-39, 141) (—22.3,34.2) (-39, 141) (-84, 189) (—0.3,10.8)

The DPM model used was, fork = 1,2, andi = 1, ..., nx withny = 10, np = 11,
ind
xuil (1kir 02 = N (ki T073)
ind
(Mki,dkz,-)\Gk = Gk

ind
Gila, Gro ~ DP(aGjo).
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[llustration: Environmental Data

@ Bivariate Density Estimation.

@ n = 111 bivariate observations w; = (w;, wj2)’ on cube
root of ozone concentration (wj2) and radiation (w;;)
modeled.

@ Previously modeled using DPM of bivariate Gaussian
densities.

@ Here look at G ~ [ PT4(1,®y)dP(6), where p(9) Jeffreys’
prior for MVN.

@ BF ~ 45 in favor of MPT model over Gaussian model.

@ MPT model can adapt locally and capture interesting
aspects of the data without resorting to finite mixtures...
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Median Regression (Hanson and Johnson, 2002)

° yi=xi8+e  ¢|G~G
G~ / FPTx(c, Gy)p(0)do

@ Errors forced to have median 0, so it's a median regression
model, eg.
med(y | x) = X
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Cow Abortion Data

@ Joint modeling of cow-abortion yes/no and time to abortion
given that the pregnancy ends in abortion.

@ Multiple cycles so need random effects for abortion
indicator and time to abortion

@ Covariates are NPA (number of prev abortions), Age,
Timing of Previous Abortion (early, late, none), Days Open
(DO) and Gravidity (Gr)

@ Two known causes of abortion:

e Abortions due to uterine damage (early term abortions)
@ Abortions due to infection (late abortions)
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Fig 2. Estimated Parametric and Semi-Parametric Baseline Density of FLD

a. Time in Days: The Parametric Estimate is Smoother
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Table II. Posterior summaries for baseline distribution and variance components.

Effect Mean Standard deviation
Baseline bal 0.534 0.034
72 0.285 0.026
73 0.181 0.016
IC 4.453 0.068
I3 4.924 0.055
s 5.374 0.058
a? 8.809 1.077
¢y’ 182.6 32.94
6y’ 47.96 7.503
Variance components n 78.04 36.81
A1z —0.801 12.88
j22 18.29 9.845

Table III. Predictive probability of abortion — Logistic model estimates for herds.

DO GR AGE AB Herd 3 Herd 6
40 2 3 0 0.143 0.077
40 2 3 1 0.293 0.173
40 3 3 0 0.107 0.056
40 3 3 1 0.228 0.129

150 2 3 0 0.140 0.075

150 2 3 1 0.287 0.168

150 3 3 0 0.096 0.050

150 3 3 1 0.207 0.116
40 2 4.5 0 0.240 0.137
40 2 4.5 1 0.395 0.249
40 3 45 0 0.183 0.101
40 3 4.5 1 0.318 0.190

150 2 4.5 0 0.234 0.133

150 2 4.5 1 0.388 0.243

150 3 4.5 0 0.165 0.090

150 3 4.5 1 0.292 0.172

68/73



Linear Dependent DPM (LDDP)

@ MacEachern (1999, 2000), Delorio et al. 2004, Delorio et
al. 2009

%) = [ NG | 9.1/7)dG(3.7)
= Y PaN(i | Xi8n,1/7h)
h

where G ~ DP(c, Gs) and 6 ~ p(6)
@ In the linear case, it’s just a DPM of Normal regressions
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Weighted Dependent DPM (WDDP)

@ Muller, Erkanli and West (1996), MacEachern (1999),
Griffin and Steel (2006), Dunson, Pillai and Park (2007),
Dunson and Park (2008)

i | x) = / N | Xi6,1/7)dGy (5, 7)
= th X/ }// ’ XiBn, 1/7'h)

where pp(x;) are selected in various clever ways
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Bayesian density regression
Dependent random effects distributions

lllustrations

DDP results - x =0.10
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L
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Bayesian density regression
Dependent random effects distributions

lllustrations

DDP results - x = 0.25
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Bayesian density regression
Dependent random effects distributions

lllustrations

DDP results - x =0.48
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