Bayesian Nonparametrics: An Overview

Wesley Johnson

Department of Statistics, UC Irvine

SAMSI July 2010

- Hanson, Branscum and Johnson (2005). Bayesian Nonparametric Modeling and Data Analysis: An Introduction. in Handbook of Statistics. Elsevier.
- Christensen, Johnson, Branscum and Hanson (2010). Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians (Chapter 15). CRC Press.
- Hanson and Jara (2009). Unpublished Lecture Notes
- Müller (2009). Unpublished Lecture Notes

Why Bayesian Nonparametrics?

- Because parametric models are often overly restricted and/or lack robustness!
- So that we can find biological bumps that we might not otherwise find!
- So that we can see if parametric models might actually fit by embedding them in NP families!
- Because Bayesian NP modeling is feasible due to modern MCMC methods eg. because we can?
- Given data $x=\left(x_{1}, \ldots, x_{n}\right)$ we model them with a joint pdf

$$
\operatorname{Pr}(X \in A \mid \theta)=\int_{A} f(x \mid \theta) \mu(d x) \quad \theta \in \Theta \subset R^{k}
$$

- We treat the data as fixed and known and use the likelihood function to inform us about θ

$$
L(\theta) \propto f(x \mid \theta)
$$

- We model our uncertainty about unknown θ through the use of a prior pdf, $p(\theta)$, which must be based on information that is independent of x (failing in this results in Empirical Bayes methods)
- Bayesian inference is facilitated through calculation of posterior pdf

$$
p(\theta \mid x)=\frac{L(\theta) p(\theta)}{\int_{\Theta} L(\theta) p(\theta) d \theta}
$$

- Due to intractability of integration, we use Markov chain Monte Carlo methods to sample from the joint posterior
- Gibbs Sampling
- Metropolis Sampling
- Slice Sampling
- Adaptive Rejection Sampling
- Hybridizations of the above
- We approximate integrals by

$$
\begin{gathered}
\int g(\theta) p(\theta \mid x) d \theta \doteq \sum_{i=1}^{M C} g\left(\theta^{i}\right) / M C \\
\theta^{i} \stackrel{i d}{\sim} p(\theta \mid x)
\end{gathered}
$$

- So the posterior mean (vector) is numerically approximated as the arithmetic average of samples from the joint posterior.
- We obtain approximate 95% Probability Intervals for $\gamma \equiv g(\theta)$ by ordering $\left\{\gamma^{i}=g\left(\theta^{i}\right): i=1, \ldots, M C\right\}$ from smallest to largest and finding the 0.025 and 0.975 sample percentiles.
- The post med of γ is more sensible than the post mean

Wonderful Aspects

- Appropriateness of methods doesn't depend on having large sample sizes
- General ability to handle complex models without having to fall on mathematical swords
- Availability of statistical software is no longer an issue eg. WinBUGS, Open Bugs, JAGS, SAS, DP-Package etc.
- Inferences for complicated functions of θ, eg. $\gamma=g(\theta)$, are available for the asking
- Direct probability interpretations
- The prior needs to be specified
- The more complex the model, the greater the potential difficulty in specifying a prior that will lead to a proper posterior (Hobert and Casella, JASA, 1996)
- Convergence of MCs can be challenging
- Some users of Bayesian statistics search for priors that will result in convergence of Markov chains
- With smaller sample sizes, the priors can matter a lot
- Even with large sample sizes, the priors can matter
- Sensitivity analysis and appropriate selection of prior is important

Types of BNP Modeling

- A standard semi-parametric regression model is the simple linear model, only without the assumption of a parametric family for the errors

$$
y_{i}=x_{i} \beta+\varepsilon_{i} \quad \varepsilon_{i} \stackrel{i i d}{\sim} P \quad P \in \mathbf{P}
$$

where \mathbf{P} is a large family of (preferably median 0) distributions, possibly including the Normal. The problem becomes Bayesian when we place a prior on \mathbf{P}

- Standard non-parametric models might simply assert

$$
\begin{array}{ll}
\text { (i) } & x_{i} \mid P \stackrel{\text { iid }}{\sim} P \quad P \in \mathbf{P} \\
\text { (ii) } & x_{i}\left|P_{x} \stackrel{i i d}{\sim} P_{x} \quad y_{j}\right| P_{y} \stackrel{i i d}{\sim} P_{y} \\
& x_{i} \perp y_{j} \\
& \left(P_{x}, P_{y}\right) \in \mathbf{P}_{\mathbf{x}} \times \mathbf{P}_{\mathbf{y}}
\end{array}
$$

- A NP regression model might specify

$$
y_{i} \mid x_{i}, P_{x_{i}} \stackrel{i n d}{\sim} P_{x_{i}} \quad\left\{P_{x_{i}}: i=1, \ldots, n\right\} \in \mathbf{P}_{\mathbf{x}}
$$

where the prior on $\mathrm{P}_{\mathbf{x}}$ allows the $P_{x_{i}} \mathrm{~s}$ to be correlated.

- So this model requires a distribution on multiple large families of distributions.
- This generality in principle allows one to estimate the regression functions eg. $\mathrm{E}(y \mid x), \operatorname{Var}(y \mid x)$, as well as the density functions $f(y \mid x)$.

Mean Regression Modeling

- An entirely separate area involves the model

$$
y_{i}=m\left(x_{i}\right)+\varepsilon_{i} \quad \varepsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)
$$

but where $m(\cdot)$ is arbitrary.

- Usually, $m(\cdot)$ is modeled as

$$
m(x)=\beta_{0}+\sum_{k=1}^{\infty} \beta_{k} \phi_{k}(x)
$$

where the $\phi_{k}(\cdot)$ s form a basis for the space spanned by functions like $m(\cdot)$.

- Typical basis functions are Wavelets, B-splines, splines etc. They are of course truncated and much effort is given to the topic of "thresholding" in the literature.
- A typical Bayesian model places priors on the regression coefficients that allows for point masses at 0, which handles the thresholding

Mean Regression Modeling

- A typical Bayesian model places priors on the regression coefficients that allows for point masses at 0, which handles the thresholding
- Ethanol Data: Response y is the amount of nitric oxide and dioxide from a single engine in micrograms per joule, and the predictor, x, is a measure of he air to fuel ratio.
- We give estimates of the mean regression function using Cosine, Haar and B-spline basis functions truncated at K.

Cosine basis functions

Haar basis functions

Haar estimate

Figure 15.10 Ethanol Data: Estimates of regression mean functions using Harr Wavelets.

Figure 15.13 Estimated trend using quadratic B-splines with $K=21$ knots.

- Dirichlet Process (Ferguson, 1973)
- Dirichlet Process Mixtures (Lo, AOS 1994; Escobar, JASA 2004; Escobar and West, JASA 2005)
- Mixtures of Dirichlet Processes (Antoniak, AOS 1974, Berry and Christensen, AOS 1979; Hanson and Johnson, JCGS 2002)
- Mixtures of Polya Trees (Lavine, AOS 1992, 1994; Berger and Guglielmi, JASA 2001; Hanson and Johnson, JASA 2002; Hanson, JASA 2006)

Dirichlet Process (DP)

- Sethuraman (1994)

$$
P \mid F_{0}, c \sim D P\left(c, G_{0}\right)
$$

- \Leftrightarrow

$$
\begin{gathered}
P=\sum_{h=1}^{\infty} p_{h} G_{\theta_{h}}(\cdot) \\
p_{h}=u_{h} \prod_{j=1}^{h-1}\left(1-u_{j}\right) \quad u_{h} \stackrel{i i d}{\sim} \operatorname{Beta}(1, c) \\
\theta_{h} \stackrel{i i d}{\sim} G_{0}
\end{gathered}
$$

Dirichlet Process as a Model for Data

- Bad, since discrete with probability one
- In the iid data case, the posterior mean behaves like the Empirical CDF (Susarla and VanRyzin, circa 1977) or like Kaplan-Meier in censored data case
- $E(G)=G_{0} \Rightarrow$ prior is centered on the specific prior guess G_{0}. Not so good.
- Bruce Hill was often quoted in the 1980's that "there should have been only one paper written on the DP" (eg.
Ferguson 1973)
- If $X \sim G \Rightarrow$ then $\operatorname{Pr}(X \in A)=G_{0}(A)$ eg. marginal for X is G_{0}
- Conjugacy: $G \left\lvert\, X=x \sim D P\left(c+1, \frac{c}{c+1} G_{0}(\cdot)+\frac{1}{c+1} \delta_{x}(\cdot)\right)\right.$

Mixture of Dirichlet Processes (MDP)

- Let $G_{0}=G_{\theta}$, a parametric model, and specify $p(\theta)$
- Then write

$$
X \sim \int D P\left(c, G_{\theta}\right) p(\theta) d \theta
$$

eg. Mixture of DPs

- When c is large, the model tends to the parametric model G_{θ} with a standard prior on θ eg. $p(\theta)$
- When c is small, we have a large family of possible distributions that includes the parametric family.
- Since $\mathrm{E}[G(\cdot) \mid \theta]=G_{\theta}(\cdot)$ for all θ, we have centered the NP prior on the specified parametric family

Dirichlet Process Mixture

- We say X is drawn from a DPM if:

$$
\begin{aligned}
& x \mid \theta \sim G_{\theta} \\
& \theta \mid G \sim G \\
& G \mid G_{0}, c \sim D P\left(c, G_{0}\right) \\
& f(x \mid G)=\int f(x \mid \theta) d G(\theta)=\sum_{h=1}^{\infty} p_{h} f\left(x \mid \theta_{h}\right) \\
& \theta_{h} \stackrel{i i d}{ } G_{0}
\end{aligned}
$$

- Replace G_{0} with \boldsymbol{G}_{γ} and incorporate prior $p(\gamma)$ eg. Mixture of DPMs

Dirichlet Process Mixture

- $\mathrm{E}\left[F(x) \mid G_{0}\right]=\int F(x \mid \theta) d G_{0}(\theta)$
- For large c,

$$
f(x \mid G) \doteq \int f(x \mid \theta) d G_{0}(\theta)
$$

- So G_{0} behaves like a prior for θ in the large c (parametric) case
- But it's not the same as centering the NP model on a parametric family
- Expected number of terms in the mixture is approx $c \ell n\left(\frac{c+n}{c}\right)$; can be small eg. 5 when $c=1, n=150$

Dirichlet Process Mixture

- The DPM is by far the most popular NP model for data
- The Bayesian part involves choice of $G_{0}\left(\right.$ or $\left.G_{\gamma}\right)$ and c
- Prior is often placed on c (Escobar and West, 1995)
- Standard G_{0} in the case of normal G_{θ} family is the usual conjugate prior eg Normal-Gamma
- Often, rather than selecting parameter values for Normal-Gamma, further priors placed on these
- Subjective priors not used in my limited experience
- "Non-informative" priors and/or resort to Empirical Bayes

Marginalized DPM

- Early and perhaps most inferences through marginalization eg

$$
f\left(x_{i}\right)=\iint f\left(x_{i} \mid \theta_{i}\right) d G\left(\theta_{i}\right) d P(G)
$$

- The x_{i} s are (jointly) exchangeable
- Gibbs sampling entails sampling $\theta_{i} \mid \theta_{(i)}, x$ using the (updated) Polya Urn scheme

$$
\begin{aligned}
p_{\theta_{i}}\left(\theta \mid \theta_{(i)}, x\right) & =\frac{c f\left(x_{i} \mid \theta_{i}\right) d G_{0}(\theta)+\sum_{j \neq i} f\left(x_{i} \mid \theta\right) \delta_{\theta_{j}}(\theta)}{c \int f\left(x_{i} \mid \theta\right) d G_{0}(\theta)+\sum_{j \neq i} f\left(x_{i} \mid \theta_{j}\right)} \\
& \equiv q_{0} p_{\theta_{i}}\left(\theta \mid x_{i}\right)+\sum_{j \neq i} q_{j} \delta_{\theta_{j}}(\theta)
\end{aligned}
$$

- From this, the seed is planted for the development of random partition models

Marginalized DPM: Predictive Density

- Let $\theta=\left\{\theta_{i}: i=1, \ldots, n\right\}$. Then

$$
\begin{aligned}
f\left(x_{n+1} \mid x\right) & =\int f\left(x_{n+1} \mid \theta, \theta_{n+1}, x\right) p\left(\theta_{n+1}, \theta \mid x\right) d \theta \theta_{n+1} \\
& =\int f\left(x_{n+1} \mid \theta_{n+1}\right) \int\left[p\left(\theta_{n+1} \mid \theta\right) p(\theta \mid x) d \theta\right] d \theta_{n+1}
\end{aligned}
$$

- The above can be numerically approximated by taking the Gibbs Sample of $\theta^{j}: j=1, \ldots, M C$; then sample θ_{n+1}^{j} from the Polya Urn scheme

$$
\theta_{n+1} \left\lvert\, \theta \sim \frac{c}{c+n} G_{0}(\cdot)+\frac{1}{c+n} \sum_{i=1}^{n} \delta_{\theta_{i}}(\cdot)\right.
$$

so $f\left(x_{n+1} \mid x\right) \doteq \sum_{j=1}^{M C} f\left(x_{n+1} \mid \theta_{n+1}^{j}\right) / M C$

Truncated DP

- Recalling the Sethuraman representation, sample from

$$
\sum_{h=1}^{K} p_{h} \delta_{\theta_{h}}(\cdot)
$$

for sufficiently large K (let $p_{K}=1$).

- It's a random finite distribution (Gelfand and Kottas, JCGS 2002)
- Obtain $\theta^{j}: j=1, \ldots, M C$ as before
- By conjugacy of DP

$$
G \left\lvert\, \theta=\theta^{j} \sim D P\left(c+n, \frac{c}{c+n} G_{0}(\cdot)+\frac{1}{c+n} \sum_{i=1}^{n} \delta_{\theta_{i}^{j}}(\cdot)\right.\right.
$$

- GK approximate as a truncated DP where the Beta's used to construct $p_{h} \mathrm{~s}$ are $\operatorname{Beta}(1, c+n)$ and the $\theta_{h} s$ are iid from the updated base
- So obtain $\left\{G_{j}: j=1, \ldots, M C\right\}$. Inferences about functionals $T(G)$ are based on $\sum_{j=1}^{M C} T\left(G^{j}\right) / M C$
- For example, $T(G)=\int F(x \mid \theta) d G(\theta)$, the CDF for a new observation
- Many contributions including: Doss (1994), Ishwaran and Zarepour (2000), Ishwaran and James (2002), Papaspiliopolus and Roberts (2005), Walker (2007) and Kalli, Griffin and Walker (2009)

Another Finite Approximation

- Mulliere and Sacci (1995), Ishwaran and Zarepour (2002). Let

$$
G_{K}=\sum_{h=1}^{K} p_{h} \delta_{\theta_{h}}(\cdot)
$$

with

$$
\begin{gathered}
\left(p_{1}, \ldots, p_{K}\right) \sim \operatorname{Dirch}(c / K, \ldots, c / K) \\
\theta_{h} \stackrel{\text { iid }}{\sim} G_{0}
\end{gathered}
$$

- Then for large $K, G_{K} \dot{\sim} D P\left(c, G_{0}\right)$

Finite Approximation

- Example: Galaxy Data. $n=82$ galaxy velocities obtained from Roeder (1990)
- Approximate a DPM of $N(\mu, 1 / \tau)$ variates based on a finite mixture; $K=50, c=1$
- Take G_{0} in two dimensions to be the reference prior $N(0,1000)$ independent of $\operatorname{Gam}(0.001,0.001)$
- Let $\left(p_{1}, \ldots, p_{K}\right) \sim \operatorname{Dir}(1 / 50, \ldots, 1 / 50)$

Figure 15.3: Galaxy data: fits from finite mixture models, $K=3,4,6$.

Figure 15.4 Galaxy data: Dirichlet process mixture (dashed) and mixture of Polya trees (solid) fits.

- Split sample space Ω into two disjoint sets B_{0} and B_{1}; further split B_{0} into B_{00} etc:

B_{0}		B_{1}	
B_{00}	B_{01}	B_{10}	B_{11}

$$
\begin{gathered}
Y_{0}=P\left(X \in B_{0}\right), \quad Y_{1}=P\left(X \in B_{1}\right), \\
Y_{00}=P\left(X \in B_{00} \mid X \in B_{0}\right), \\
Y_{01}=P\left(X \in B_{01} \mid X \in B_{0}\right), \\
Y_{10}=P\left(X \in B_{10} \mid X \in B_{1}\right), \\
Y_{11}=P\left(X \in B_{11} \mid X \in B_{1}\right)
\end{gathered}
$$

- Then $P\left(X \in B_{i j}\right)=Y_{i} Y_{i j}$

Sets and corresponding conditional probabilities

Probability of partition sets

Instead of \mathbb{R}, let's look at $\Omega=[0,1] \subset \mathbb{R}$.

Probability of partition sets

$\Omega=[0,1]$							
B_{0}			B_{1}				
B_{00}		B_{01}		B_{10}		B_{11}	
B_{000}	B_{001}	B_{010}	B_{011}	B_{100}	B_{101}	B_{110}	

Say we want $G\left(B_{101}\right)$.

Probability of partition sets

$\Omega=[0,1]$							
B_{0}			B_{1}				
B_{00}		B_{01}		B_{10}		B_{11}	
B_{000}	B_{001}	B_{010}	B_{011}	B_{100}	B_{101}	B_{110}	

$B_{101} \subset B_{10}$.

Probability of partition sets

$\Omega=[0,1]$							
B_{0}			B_{1}				
B_{00}		B_{01}		B_{10}		B_{11}	
B_{000}	B_{001}	B_{010}	B_{011}	B_{100}	B_{101}	B_{110}	B_{111}

$B_{101} \subset B_{10} \subset B_{1}$.

Probability of partition sets

$\Omega=[0,1]$							
B_{0}			B_{1}				
B_{00}		B_{01}		B_{10}		B_{11}	
B_{000}	B_{001}	B_{010}	B_{011}	B_{100}	B_{101}	B_{110}	B_{111}

$$
\begin{aligned}
G\left(B_{101}\right) & =G\left(B_{101} \cap B_{10} \cap B_{1}\right) \\
& =G\left(B_{101} \mid B_{10}, B_{1}\right) G\left(B_{10} \mid B_{1}\right) G\left(B_{1}\right) \\
& =Y_{101} Y_{10} Y_{1} .
\end{aligned}
$$

G-measure of first few sets in Π

$$
\begin{aligned}
G\left(B_{0}\right) & =Y_{0} \\
G\left(B_{1}\right) & =Y_{1} \\
G\left(B_{00}\right) & =Y_{0} Y_{00} \\
G\left(B_{01}\right) & =Y_{0} Y_{01} \\
G\left(B_{10}\right) & =Y_{1} Y_{10} \\
G\left(B_{11}\right) & =Y_{1} Y_{11} \\
G\left(B_{000}\right) & =Y_{0} Y_{00} Y_{000} \\
G\left(B_{001}\right) & =Y_{0} Y_{00} Y_{001} \\
G\left(B_{010}\right) & =Y_{0} Y_{01} Y_{010} \\
G\left(B_{011}\right) & =Y_{0} Y_{01} Y_{011} \\
G\left(B_{100}\right) & =Y_{1} Y_{10} Y_{100} \\
G\left(B_{101}\right) & =Y_{1} Y_{10} Y_{101} \\
G\left(B_{110}\right) & =Y_{1} Y_{11} Y_{110} \\
G\left(B_{111}\right) & =Y_{1} Y_{11} Y_{111}
\end{aligned}
$$

- Let $\epsilon=\epsilon_{1} \cdots \epsilon_{m}$ be an arbitrary binary number of dimension m
- Split $B_{\epsilon} \rightarrow\left\{B_{\epsilon 0}, B_{\epsilon 1}\right\} \quad \forall \epsilon$.
- Then

$$
\left.\begin{array}{c}
Y_{\epsilon 0}=P\left(X \in B_{\epsilon 0} \mid X \in B_{\epsilon}\right) \\
Y_{\epsilon 1}=P\left(X \in B_{\epsilon 1} \mid X \in B_{\epsilon}\right)
\end{array}\right\} \Rightarrow
$$

- Random PM for G :

$$
\left(Y_{\epsilon 0}, Y_{\epsilon 1}\right) \sim \operatorname{Beta}\left(\alpha_{\epsilon 0}, \alpha_{\epsilon 1}\right)
$$

- Center on G_{0} by selecting the partition sets to be appropriate quantiles of G_{0}
- Let $\alpha_{\epsilon}=c m^{2}$ at level $m, \forall m(\Rightarrow$ abs cont G w/ prob 1)
- We say $G \mid G_{0}, c \sim P T\left(c, G_{0}\right), \quad E(G(\cdot))=G_{0}(\cdot)$
- Finite Polya Tree is truncated at say level M
- Large c results in a parametric analysis, and small c results in a more non-parametric analysis
- Partitions defining the Polya tree are induced by single fixed centering distribution.
- Sensible choice of M : $\quad 2^{M} \doteq n$
- Will be difficult in practice to specify a single centering distribution.
- Random densities $g(x)=G^{\prime}(x)$ are discontinuous at every partition point. Infinite number of discontinuities!

Figure: Finite Polya tree partition sets determined by G_{θ} :
$\pi_{1}=\left\{B_{0}, B_{1}\right\}, \pi_{2}=\left\{B_{00}, B_{01}, B_{10}, B_{11}\right\}$,
$\pi_{3}=\left\{B_{000}, B_{001}, B_{010}, B_{011}, B_{100}, B_{101}, B_{110}, B_{111}\right\} . G_{0}=N(0,1)$

Mixture of Finite PTs

- Center on parametric family $\left\{G_{\theta}, \theta \in \Theta\right\}$ eg. want

$$
E[G(\cdot) \mid \theta)]=G_{\theta}(\cdot) \quad \forall \theta
$$

- Mixtures of Polya trees (Lavine, 1992; Hanson and Johnson, 2002) smooth out partitioning effects and allow robustness against misspecification of (only one) centering distribution
- Prior on $\theta, p(\theta)$
- We say $G \mid G_{\theta}, c \sim P T\left(c, G_{\theta}\right)$

$$
G \sim \int P T\left(c, G_{\theta}\right) p(d \theta)
$$

- Predictive density $g\left(y_{n+1} \mid Y_{1}, \ldots, Y_{n}\right)$ can be differentiable in infinite tree; random densities $g\left(y \mid Y_{1}, \ldots, Y_{n}\right)$ continuous.
- Truncated at level M results in an MFPT
- Large c results in analysis based on the parametric family

Figure: All pairs $\left(Y_{\epsilon 0}, Y_{\epsilon 1}\right)$ are 0.5.

Figure: Pair of level $j=1$ probabilities $\left(Y_{0}, Y_{1}\right)$.

Figure: Pair of level $j=2$ probabilities $\left(Y_{00}, Y_{01}\right)$.

Figure: Pair of level $M=2$ probabilities $\left(Y_{10}, Y_{11}\right)$.

Figure: Pair of level $M=3$ probabilities $\left(Y_{000}, Y_{001}\right)$.

Figure: Pair of level $M=3$ probabilities $\left(Y_{010}, Y_{011}\right)$.

Figure: Pair of level $M=3$ probabilities $\left(Y_{100}, Y_{101}\right)$.

Figure: Pair of level $M=3$ probabilities $\left(Y_{110}, Y_{111}\right)$.

Figure: Mixture of Finite Polya trees.

Mixture of Finite PTs

- Even with $M=3$ can get interesting density shapes.
- Allowing θ to be random smooths density
- Notation: $G \sim P T_{M}\left(c, G_{\theta}\right)$. G is random probability measure centered at G_{θ}, parametric on \mathbb{R}.
- Further taking $\theta \sim p(\theta)$ induces MFPT.
- \boldsymbol{c} is overall weight attached to $\left\{\boldsymbol{G}_{\theta}: \theta \in \boldsymbol{\Theta}\right\}$.

Smoothness properties

Proposition

(Hanson and Johnson, 2002). Let $G \sim P T_{\infty}\left(c, j^{2}, \Phi_{\mu, \sigma}\right)$ and $w_{1}, \ldots, w_{n} \mid G \stackrel{\text { iid }}{\sim}$ G. Let $\left(\mu, \sigma^{-2}\right) \sim N\left(m, s^{2}\right) \times \Gamma(a, b)$. Then the density of $g\left(w_{n+1} \mid \mathbf{w}_{1: n}\right)$ is differentiable on $\mathbb{R} \backslash\left\{w_{1}, \ldots, w_{n}\right\}$ but continuous everywhere.

This also holds for finite MPTs.

Proposition

(Hanson, 2006). Let $G \sim P T_{J}\left(c, j^{2}, \Phi_{\mu, \sigma}\right)$ and
$w_{1}, \ldots, w_{n} \mid G \stackrel{i i d}{\sim}$ G. Let $\left(\mu, \sigma^{-2}\right) \sim N\left(m, s^{2}\right) \times \Gamma(a, b)$. Then the density $g\left(w \mid \mathbf{w}_{1: n}, y\right)=\int_{\Theta} g\left(w \mid \mathbf{w}_{1: n}, y, \boldsymbol{\theta}\right) d b \theta$ is differentiable on \mathbb{R}.

Holds for multivariate Polya trees as well.

- Simple Polya tree prior $G \sim P T_{5}(1, \exp (1))$.
- MPT prior $G \sim \int P T_{5}(1, \exp (\theta)) P(d \theta)$ where $\theta \sim \Gamma(10,10)$ so $E(\theta)=1$.
- For both $\rho(j)=j^{2}, m=5$, and $c=1$.
- Look at densities from 10 random G's.

Figure: $G_{1}, \ldots, G_{10} \stackrel{i i d}{\sim} P T_{5}(1, \exp (1))$.

Figure: $G_{1}, \ldots, G_{10} \stackrel{\text { iid }}{\sim} \int P T_{5}(1, \exp (\theta)) P(d \theta)$.

Blood Pressure Data

- A randomized study was conducted to assess the assoc between amount of calcium intake and reduction of syst blood pressure (SBP) in black males
- Of 21 healthy black men, 10 were randomly assigned to receive a calcium supplement (group 1) over a 12 week period. The other men received a placebo (group 2)
- The response variable was amount of decrease in systolic blood pressure Negative responses correspond to increases in SBP.
- The data were fitted to the DP, MDP, DPM, PT, and MPT models.

Fig. 2. Blood pressure data: posterior CDF estimates for both groups using the MDP (jagged), DPM (dashed), and MPT (solid) models. The longer tick marks along the x-axis correspond to the observed data for the placebo group and the shorter tick marks to the observed data for the calcium group.

Table 1
Blood pressure data: summary statistics for the decrease in systolic blood pressure data for the calcium and placebo groups

	n	Mean	Median	Std. Dev.	Min	Max
Calcium	10	5.0	4	8.7	-5	18
Placebo	11	-0.27	-1	5.9	-11	12

Table 2
Blood pressure data: prior and posterior medians and 95% probability intervals for functionals $T(F)$ for the two-sample problem. The mean and median functionals are denoted by $\mu(\cdot)$ and $\eta(\cdot)$, respectively

$T(F)$	DP		MDP		DPM	
	Prior	Posterior	Prior	Posterior	Prior	Posterior
$\mu\left(F_{1}\right)$	$\begin{gathered} \hline 5.08 \\ (-10.4,20.3) \end{gathered}$	$\begin{aligned} & \hline 4.96 \\ & (0.5,9.9) \end{aligned}$	$\begin{gathered} 4.90 \\ (-14.7,25.9) \end{gathered}$	$\begin{aligned} & \hline 4.97 \\ & (0.6,10.0) \end{aligned}$	$\begin{gathered} 5.05 \\ (-5.2,16.5) \end{gathered}$	$\begin{aligned} & \hline 5.08 \\ & (0.3,9.9) \end{aligned}$
$\mu\left(F_{2}\right)$	$\begin{aligned} & -0.08 \\ & (-9.5,9.3) \end{aligned}$	$\begin{aligned} & -0.31 \\ & (-3.3,3.0) \end{aligned}$	$\begin{gathered} 0.02 \\ (-16.2,15.3) \end{gathered}$	$\begin{aligned} & -0.25 \\ & (-3.2,3.1) \end{aligned}$	$\begin{gathered} 0.13 \\ (-8.8,9.6) \end{gathered}$	$\begin{aligned} & -0.30 \\ & (-3.3,2.8) \end{aligned}$
$\eta\left(F_{1}\right)$	$\begin{gathered} 5.01 \\ (-10.3,20.3) \end{gathered}$	$\begin{gathered} 5.17 \\ (-3.0,11.0) \end{gathered}$	$\begin{gathered} 4.93 \\ (-16.4,27.6) \end{gathered}$	$\begin{gathered} 5.27 \\ (-3.0,11.0) \end{gathered}$	$\begin{gathered} 5.14 \\ (-4.6,15.9) \end{gathered}$	$\begin{aligned} & 4.89 \\ & (0.2,9.9) \end{aligned}$
$\eta\left(F_{2}\right)$	$\begin{gathered} -0.10 \\ (-12.4,11.9) \end{gathered}$	$\begin{aligned} & -1.1 \\ & (-3.1,2.9) \end{aligned}$	$\begin{gathered} -0.10 \\ (-17.8,17.1) \end{gathered}$	$\begin{aligned} & -1.1 \\ & (-3.1,2.9) \end{aligned}$	$\begin{gathered} 0.25 \\ (-8.1,8.7) \end{gathered}$	$\begin{aligned} & -0.35 \\ & (-3.3,2.6) \end{aligned}$
$\mu\left(F_{1}\right)-\mu\left(F_{2}\right)$	$\begin{gathered} 5.12 \\ (-9.8,20.5) \end{gathered}$	$\begin{gathered} 5.23 \\ (-0.3,11.1) \end{gathered}$	$\begin{gathered} 4.86 \\ (-19.4,31.5) \end{gathered}$	$\begin{gathered} 5.23 \\ (-0.3,10.8) \end{gathered}$	$\begin{gathered} 5.08 \\ (-8.94,20.4) \end{gathered}$	$\begin{aligned} & 5.24 \\ & (0.0,10.6) \end{aligned}$
$\eta\left(F_{1}\right)-\eta\left(F_{2}\right)$	$\begin{gathered} 5.19 \\ (-14.0,24.7) \end{gathered}$	$\begin{gathered} 4.91 \\ (-3.9,14.1) \end{gathered}$	$\begin{gathered} 4.86 \\ (-22.3,34.2) \end{gathered}$	$\begin{gathered} 5.01 \\ (-3.9,14.1) \end{gathered}$	$\begin{gathered} 5.22 \\ (-8.4,18.9) \end{gathered}$	$\begin{gathered} 4.99 \\ (-0.3,10.8) \end{gathered}$

The DPM model used was, for $k=1,2$, and $i=1, \ldots, n_{k}$ with $n_{1}=10, n_{2}=11$,

$$
\begin{aligned}
x_{k i} \mid\left(\mu_{k i}, \sigma_{k i}^{2}\right) & \stackrel{\text { ind }}{\sim} N\left(\mu_{k i}, \tau \sigma_{k i}^{2}\right) \\
\left(\mu_{k i}, \sigma_{k i}^{2}\right) \mid G_{k} & \stackrel{\text { ind }}{\sim} G_{k} \\
G_{k} \mid \alpha, G_{k 0} & \stackrel{\text { ind }}{\sim} \operatorname{DP}\left(\alpha G_{k 0}\right)
\end{aligned}
$$

Illustration: Environmental Data

- Bivariate Density Estimation.
- $n=111$ bivariate observations $w_{i}=\left(w_{i 1}, w_{i 2}\right)^{\prime}$ on cube root of ozone concentration ($w_{i 2}$) and radiation ($w_{i 1}$) modeled.
- Previously modeled using DPM of bivariate Gaussian densities.
- Here look at $G \sim \int P T_{4}\left(1, \Phi_{\theta}\right) d P(\theta)$, where $p(\theta)$ Jeffreys' prior for MVN.
- $B F \approx 45$ in favor of MPT model over Gaussian model.
- MPT model can adapt locally and capture interesting aspects of the data without resorting to finite mixtures...

Median Regression (Hanson and Johnson, 2002)

- $y_{i}=x_{i} \beta+\varepsilon_{i} \quad \varepsilon_{i} \mid G \sim G$

$$
G \sim \int F P T_{K}\left(c, G_{\theta}\right) p(\theta) d \theta
$$

- Errors forced to have median 0, so it's a median regression model, eg.

$$
\operatorname{med}(y \mid x)=x \beta
$$

Cow Abortion Data

- Joint modeling of cow-abortion yes/no and time to abortion given that the pregnancy ends in abortion.
- Multiple cycles so need random effects for abortion indicator and time to abortion
- Covariates are NPA (number of prev abortions), Age, Timing of Previous Abortion (early, late, none), Days Open (DO) and Gravidity (Gr)
- Two known causes of abortion:
- Abortions due to uterine damage (early term abortions)
- Abortions due to infection (late abortions)

Fig 2. Estimated Parametric and Semi-Parametric Baseline Density of FLD
a. Time in Days: The Parametric Estimate is Smoother

b. Log of Time in Days, with Histogram of Residuals

Table II. Posterior summaries for baseline distribution and variance components.

	Effect	Mean	Standard deviation
Baseline	γ_{1}	0.534	0.034
	γ_{2}	0.285	0.026
	γ_{3}	0.181	0.016
	μ_{1}	4.453	0.068
	μ_{2}	4.924	0.055
	μ_{3}	5.374	0.058
Variance components	σ_{1}^{-2}	8.809	1.077
	σ_{2}^{-2}	182.6	32.94
	σ_{3}^{-2}	47.96	7.503
	λ_{11}	78.04	36.81
	λ_{12}	-0.801	12.88
	λ_{22}	18.29	9.845

Table III. Predictive probability of abortion - Logistic model estimates for herds.

DO	GR	AGE	AB	Herd 3	Herd 6
40	2	3	0	0.143	0.077
40	2	3	1	0.293	0.173
40	3	3	0	0.107	0.056
40	3	3	1	0.228	0.129
150	2	3	0	0.140	0.075
150	2	3	1	0.287	0.168
150	3	3	0	0.096	0.050
150	3	3	1	0.207	0.116
40	2	4.5	0	0.240	0.137
40	2	4.5	1	0.395	0.249
40	3	4.5	0	0.183	0.101
40	3	4.5	1	0.318	0.190
150	2	4.5	0	0.234	0.133
150	2	4.5	1	0.388	0.243
150	3	4.5	0	0.165	0.090
150	3	4.5	1	0.292	0.172

Linear Dependent DPM (LDDP)

- MacEachern (1999, 2000), Delorio et al. 2004, Delorio et al. 2009
-

$$
\begin{aligned}
f\left(y_{i} \mid x_{i}\right) & =\int N\left(y_{i} \mid x_{i} \beta, 1 / \tau\right) d G(\beta, \tau) \\
& =\sum_{h} p_{h} N\left(y_{i} \mid x_{i} \beta_{h}, 1 / \tau_{h}\right)
\end{aligned}
$$

where $G \sim D P\left(c, G_{\delta}\right)$ and $\delta \sim p(\delta)$

- In the linear case, it's just a DPM of Normal regressions

Weighted Dependent DPM (WDDP)

- Müller, Erkanli and West (1996), MacEachern (1999), Griffin and Steel (2006), Dunson, Pillai and Park (2007), Dunson and Park (2008)
-

$$
\begin{aligned}
f\left(y_{i} \mid x_{i}\right) & =\int N\left(y_{i} \mid x_{i} \beta, 1 / \tau\right) d G_{x_{i}}(\beta, \tau) \\
& =\sum_{h} p_{h}\left(x_{i}\right) N\left(y_{i} \mid x_{i} \beta_{h}, 1 / \tau_{h}\right)
\end{aligned}
$$

where $p_{h}\left(x_{i}\right)$ are selected in various clever ways

Motivating Example
Early Developments
Recent Developments Illustrations

Bayesian density regression
Dependent random effects distributions

DDP results - $x=0.10$

Motivating Example
Early Developments
Recent Developments Illustrations

Bayesian density regression
Dependent random effects distributions

DDP results $-x=0.25$

Motivating Example
Early Developments
Recent Developments Illustrations

Bayesian density regression
Dependent random effects distributions

DDP results $-x=0.48$

