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Why Bayesian Nonparametrics?

Because parametric models are often overly restricted
and/or lack robustness!

So that we can find biological bumps that we might not
otherwise find!

So that we can see if parametric models might actually fit
by embedding them in NP families!

Because Bayesian NP modeling is feasible due to modern
MCMC methods eg. because we can?
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Bayesian Parametric Models

Given data x = (x1, ..., xn) we model them with a joint pdf

Pr(X ∈ A | θ) =

∫
A

f (x | θ)µ(dx) θ ∈ Θ ⊂ Rk

We treat the data as fixed and known and use the
likelihood function to inform us about θ

L(θ) ∝ f (x | θ)

We model our uncertainty about unknown θ through the
use of a prior pdf, p(θ), which must be based on
information that is independent of x (failing in this results in
Empirical Bayes methods)
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Parametric Inference

Bayesian inference is facilitated through calculation of
posterior pdf

p(θ | x) =
L(θ) p(θ)∫

Θ L(θ) p(θ)dθ

Due to intractability of integration, we use Markov chain
Monte Carlo methods to sample from the joint posterior

Gibbs Sampling
Metropolis Sampling
Slice Sampling
Adaptive Rejection Sampling
Hybridizations of the above
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Parametric Inference

We approximate integrals by∫
g(θ)p(θ | x)dθ

.
=

MC∑
i=1

g(θi)/MC

θi iid∼ p(θ | x)

So the posterior mean (vector) is numerically approximated
as the arithmetic average of samples from the joint
posterior.
We obtain approximate 95% Probability Intervals for
γ ≡ g(θ) by ordering {γ i = g(θi) : i = 1, ..., MC} from
smallest to largest and finding the 0.025 and 0.975 sample
percentiles.
The post med of γ is more sensible than the post mean
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Wonderful Aspects

Appropriateness of methods doesn’t depend on having
large sample sizes

General ability to handle complex models without having to
fall on mathematical swords

Availability of statistical software is no longer an issue eg.
WinBUGS, Open Bugs, JAGS, SAS, DP-Package etc.

Inferences for complicated functions of θ, eg.γ = g(θ), are
available for the asking

Direct probability interpretations
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The Sword We Do Have to Fall On

The prior needs to be specified
The more complex the model, the greater the potential
difficulty in specifying a prior that will lead to a proper
posterior (Hobert and Casella, JASA, 1996)
Convergence of MCs can be challenging
Some users of Bayesian statistics search for priors that will
result in convergence of Markov chains
With smaller sample sizes, the priors can matter a lot
Even with large sample sizes, the priors can matter
Sensitivity analysis and appropriate selection of prior is
important
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Types of BNP Modeling

A standard semi-parametric regression model is the simple
linear model, only without the assumption of a parametric
family for the errors

yi = xiβ + εi εi
iid∼ P P ∈ P

where P is a large family of (preferably median 0)
distributions, possibly including the Normal. The problem
becomes Bayesian when we place a prior on P
Standard non-parametric models might simply assert

(i) xi | P iid∼ P P ∈ P

(ii) xi | Px
iid∼ Px yj | Py

iid∼ Py Px ⊥ Py

xi ⊥ yj (Px , Py ) ∈ Px × Py
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BNP Modeling

A NP regression model might specify

yi | xi , Pxi

ind∼ Pxi {Pxi : i = 1, ..., n} ∈ PX

where the prior on PX allows the Pxi s to be correlated.
So this model requires a distribution on multiple large
families of distributions.
This generality in principle allows one to estimate the
regression functions eg. E(y | x), Var(y | x), as well as the
density functions f (y | x).
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Mean Regression Modeling

An entirely separate area involves the model

yi = m(xi) + εi εi
iid∼ N(0, σ2)

but where m(·) is arbitrary.
Usually, m(·) is modeled as

m(x) = β0 +
∞∑

k=1

βkφk (x)

where the φk (·) s form a basis for the space spanned by
functions like m(·).
Typical basis functions are Wavelets, B-splines, splines
etc. They are of course truncated and much effort is given
to the topic of “thresholding” in the literature.
A typical Bayesian model places priors on the regression
coefficients that allows for point masses at 0, which
handles the thresholding
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Mean Regression Modeling

A typical Bayesian model places priors on the regression
coefficients that allows for point masses at 0, which
handles the thresholding
Ethanol Data: Response y is the amount of nitric oxide and
dioxide from a single engine in micrograms per joule, and
the predictor, x , is a measure of he air to fuel ratio.
We give estimates of the mean regression function using
Cosine, Haar and B-spline basis functions truncated at K .

12 / 73



640 NONPARAMETRIC MODELS
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Figure 15.7 Top: Cosine basis functions cos(xπ) (solid) and cos(x4π)
(dashed). Bottom: Three Haar basis functions with supports [0, 1/21],
[5/23, 6/23], [13/24, 14/24], i.e., φ2,1, φ4,6 and φ5,14.
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Figure 15.10 Ethanol Data: Estimates of regression mean functions us-
ing Harr Wavelets.

so that the overall curve connecting all the data points has con-
tinuous first and second derivatives. These conditions determine
what each individual cubic polynomial must be. Note that all of
the action here has to do with what the function looks like between
the data points. All of the data points are fitted perfectly.

Exercise 15.8. Find a cubic spline function for connecting the
points (0, 0), (1, 1/3), (2, 4/3), (3, 1/3), and (4, 0). Hint: The first
function is (x3/3)I[0,1](x). The value, first, and second derivatives
of the second function must agree with those of the first function
at x = 1 and the second function is maximized at x = 2 providing
four equations for the four unknown parameters of the second cubic
polynomial.

Of course, subtleties are often added. Instead of connecting
the dots at the data points, the polynomials can be connected
at other points called knots. Many spline bases are built from
truncated polynomials. For example {(x − aj)3+}J

j=1 is a subset
of a cubic spline basis where {aj}J

j=1 are the knots and (x)+ is
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FLEXIBLE REGRESSION FUNCTIONS 651
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Figure 15.12 K = 21 quadratic B-spline basis functions
{φ1(·), . . . , φ21(·)} (from left to right) equispaced over [0.535, 1.232].

The idea is best illustrated with an example. Suppose we want
to use K = 5 quadratic basis functions to cover the unit inter-
val, i.e., [0, 1] = [xl, xu]. Divide the unit interval into K − 2 = 3
subintervals: [0, 1/3], [1/3, 2/3], [2/3, 1]. Determining these subin-
tervals is the only place that K enters the process. Add two more
comparable intervals onto each end of these so we have

[−2/3,−1/3], [−1/3, 0], [0, 1/3], [1/3, 2/3], [2/3, 1], [1, 4/3], [4/3, 5/3].

Just as the ψ function is defined over three subintervals of [0, 3],
rescale and translate ψ to give a first basis function φ1 that covers
the three intervals [−2/3,−1/3], [−1/3, 0], [0, 1/3]. Similarly, φ2

covers the three subintervals contained in [−1/3, 2/3], φ3 covers
[0, 1], φ4 covers [1/3, 4/3], and φ5 covers [2/3, 5/3]. For any K, each
of the subintervals of our target interval [0, 1] has three nonzero φk

functions defined over it. For K quadratic basis functions on an
arbitrary interval [xl, xu] this procedure becomes

φk(x) = ψ

{
x− xl

∆
+ 3− k

}
, (1)
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Figure 15.13 Estimated trend using quadratic B-splines with K = 21
knots.

when using the basis functions in (1) there also exist different sets
of αks that for all x ∈ [xl, xu] make

∑K
i=1 αkφk(x) = x and make∑K

i=1 αkφk(x) = x2. This implies that the quadratic B-spline basis
can fit second degree polynomials. Using a B-spline ψ function of
degree d, d is also the degree of the polynomial that can be fitted.

Example 15.2.6. Ethanol data. The model

yi = β0 +
21∑

k=1

βkφk(xi) + εi,

was fitted to the ethanol data with a random walk prior determined
by

β0 ∼ N(0, 100000) |= λ, τ
iid∼ Gamma(0.0001, 0.0001).

The posterior mean regression function is given in Figure 15.13
along with a 95% interval. Here [xl, xu] = [0.535, 1.232].

Multivariate predictors xi = (xi1, . . . , xir)′ can be accommo-
dated into series expansions by considering products of univariate
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Popular Non-Parametric Priors

Dirichlet Process (Ferguson, 1973)

Dirichlet Process Mixtures (Lo, AOS 1994; Escobar, JASA
2004; Escobar and West, JASA 2005)

Mixtures of Dirichlet Processes (Antoniak, AOS 1974,
Berry and Christensen, AOS 1979; Hanson and Johnson,
JCGS 2002)

Mixtures of Polya Trees (Lavine, AOS 1992, 1994; Berger
and Guglielmi, JASA 2001; Hanson and Johnson, JASA
2002; Hanson, JASA 2006)
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Dirichlet Process (DP)

Sethuraman (1994)

P | F0, c ∼ DP(c, G0)

⇔

P =
∞∑

h=1

phGθh(·)

ph = uh

h−1∏
j=1

(1− uj) uh
iid∼ Beta(1, c)

θh
iid∼ G0
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Dirichlet Process as a Model for Data

Bad, since discrete with probability one

In the iid data case, the posterior mean behaves like the
Empirical CDF (Susarla and VanRyzin, circa 1977) or like
Kaplan-Meier in censored data case

E(G) = G0 ⇒ prior is centered on the specific prior guess
G0. Not so good.

Bruce Hill was often quoted in the 1980’s that “there should
have been only one paper written on the DP” (eg.
Ferguson 1973)

If X ∼ G ⇒ then Pr(X ∈ A) = G0(A) eg. marginal for X is
G0

Conjugacy: G | X = x ∼ DP(c + 1, c
c+1G0(·) + 1

c+1δx(·))
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Mixture of Dirichlet Processes (MDP)

Let G0 = Gθ, a parametric model, and specify p(θ)

Then write
X ∼

∫
DP(c, Gθ)p(θ)dθ

eg. Mixture of DPs
When c is large, the model tends to the parametric model
Gθ with a standard prior on θ eg. p(θ)

When c is small, we have a large family of possible
distributions that includes the parametric family.

Since E[G(·) | θ] = Gθ(·) for all θ, we have centered the NP
prior on the specified parametric family

20 / 73



Dirichlet Process Mixture

We say X is drawn from a DPM if:

X | θ ∼ Gθ

θ | G ∼ G
G | G0, c ∼ DP(c, G0)

f (x | G) =

∫
f (x | θ)dG(θ) =

∞∑
h=1

phf (x | θh)

θh
iid∼ G0

Replace G0 with Gγ and incorporate prior p(γ) eg. Mixture
of DPMs

21 / 73



Dirichlet Process Mixture

E[F (x) | G0] =
∫

F (x | θ)dG0(θ)

For large c,

f (x | G)
.
=

∫
f (x | θ)dG0(θ)

So G0 behaves like a prior for θ in the large c (parametric)
case
But it’s not the same as centering the NP model on a
parametric family
Expected number of terms in the mixture is approx
c`n(c+n

c ); can be small eg. 5 when c = 1, n = 150
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Dirichlet Process Mixture

The DPM is by far the most popular NP model for data

The Bayesian part involves choice of G0 (or Gγ) and c

Prior is often placed on c (Escobar and West, 1995)

Standard G0 in the case of normal Gθ family is the usual
conjugate prior eg Normal-Gamma

Often, rather than selecting parameter values for
Normal-Gamma, further priors placed on these

Subjective priors not used in my limited experience

“Non-informative” priors and/or resort to Empirical Bayes
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Marginalized DPM

Early and perhaps most inferences through marginalization
eg

f (xi) =

∫ ∫
f (xi | θi)dG(θi)dP(G)

The xi s are (jointly) exchangeable
Gibbs sampling entails sampling θi | θ(i), x using the
(updated) Polya Urn scheme

pθi (θ | θ(i), x) =
cf (xi | θi)dG0(θ) +

∑
j 6=i f (xi | θ)δθj (θ)

c
∫

f (xi | θ)dG0(θ) +
∑

j 6=i f (xi | θj)

≡ q0pθi (θ | xi) +
∑
j 6=i

qjδθj (θ)

From this, the seed is planted for the development of
random partition models
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Marginalized DPM: Predictive Density

Let θ = {θi : i = 1, ..., n}. Then

f (xn+1 | x) =

∫
f (xn+1 | θ, θn+1, x)p(θn+1, θ | x)dθθn+1

=

∫
f (xn+1 | θn+1)

∫
[p(θn+1|θ)p(θ|x)dθ]dθn+1

The above can be numerically approximated by taking the
Gibbs Sample of θj : j = 1, ..., MC; then sample θj

n+1 from
the Polya Urn scheme

θn+1 | θ ∼
c

c + n
G0(·) +

1
c + n

n∑
i=1

δθi (·)

so f (xn+1 | x)
.
=

∑MC
j=1 f (xn+1 | θj

n+1)/MC
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Truncated DP

Recalling the Sethuraman representation, sample from

K∑
h=1

phδθh(·)

for sufficiently large K (let pK = 1).
It’s a random finite distribution (Gelfand and Kottas, JCGS
2002)
Obtain θj : j = 1, ..., MC as before
By conjugacy of DP

G | θ = θj ∼ DP(c + n,
c

c + n
G0(·) +

1
c + n

n∑
i=1

δ
θ

j
i
(·)
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Truncated DP

GK approximate as a truncated DP where the Beta’s used
to construct ph s are Beta(1, c + n) and the θh s are iid from
the updated base

So obtain {Gj : j = 1, ..., MC}. Inferences about
functionals T (G) are based on

∑MC
j=1 T (Gj)/MC

For example, T (G) =
∫

F (x | θ)dG(θ), the CDF for a new
observation
Many contributions including: Doss (1994), Ishwaran and
Zarepour (2000), Ishwaran and James (2002),
Papaspiliopolus and Roberts (2005), Walker (2007) and
Kalli, Griffin and Walker (2009)
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Another Finite Approximation

Mulliere and Sacci (1995), Ishwaran and Zarepour (2002).
Let

GK =
K∑

h=1

phδθh(·)

with
(p1, ..., pK ) ∼ Dirch(c/K , . . . , c/K )

θh
iid∼ G0

Then for large K , GK
·∼ DP(c, G0)

28 / 73



Finite Approximation

EXAMPLE: GALAXY DATA. n = 82 galaxy velocities
obtained from Roeder (1990)
Approximate a DPM of N(µ, 1/τ) variates based on a finite
mixture; K = 50, c = 1
Take G0 in two dimensions to be the reference prior
N(0, 1000) independent of Gam(0.001, 0.001)

Let (p1, . . . , pK ) ∼ Dir(1/50, . . . , 1/50)
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10 20 30 40

0.05

0.1

0.15

0.2

Figure 15.3: Galaxy data: fits from finite mixture models, K = 3, 4, 6.

but not grossly more, achieves parsimony and can improve the pre-
dictive ability of the model.

When the densities φk are the same, it is often reasonable to
think of the vectors θk as exchangeable in that their ordering should
not matter. Depending on the situation, the wks may also be
exchangable. A general, yet convenient, prior for a mixture of
normals is

µ1, µ2, . . . , µK
iid∼ N(m̃, 1/τ̃) |= τ1, τ2, . . . , τK

iid∼ Gamma(a, b),

with independent weights

(w1, w2, w3, . . . , wK) ∼ Dir(α/K, . . . , α/K).

To be useful, this prior needs some additional restrictions as dis-
cussed later. If desired, hyperpriors can be placed on m̃, τ̃ , a, b, and
α.

Without further qualification or restriction, mixture models of-
ten lack identifiability. This means that there exists more than one
set of parameter values that will generate the same distribution for
the data, cf. Section 4.14 and the Hui-Walter model of Chapter 14.
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FLEXIBLE DENSITY SHAPES 627
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Figure 15.4 Galaxy data: Dirichlet process mixture (dashed) and mixture
of Polya trees (solid) fits.

mixture of normals with α = 1 and G0 taken as a bivariate dis-
tribution with independent components. The first variable corre-
sponds to the mean and the second to the precision of the normal
distributions. We used a reference prior with N(0, 1000) for the
mean and a Gamma(0.001, 0.001) for the precision. The IZ Dirich-
let process approximation with K = 50 takes independent samples
µk ∼ N(0, 1000), τk ∼ Gamma(0.001, 0.001), and (w1, . . . , wK) ∼
Dir(1/50, . . . , 1/50). Note the similarity to Example 15.1.2. For
fitting this model, LPML is −158.4 which is considerably better
than the LPML values for the low dimensional mixtures. The fit
is illustrated in Figure 15.4 along with the mixture of Polya trees
fitted model developed in the next subsection.

Exercise 15.4. WinBUGS code for fitting Example 15.1.4 is
available in DPMdensity.odc on the book website. The code in-
cludes lines for computing the CPO statistics as well as the pre-
dictive density over a grid of points. Use the code to duplicate
the Dirichlet process mixture of normals fit in Figure 15.4. Rerun
the code with α = 0.1, α = 1, and α = 10, being sure to monitor
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Polya Trees

Split sample space Ω into two disjoint sets B0 and B1;
further split B0 into B00 etc:

B0 B1
B00 B01 B10 B11

Y0 = P(X ∈ B0), Y1 = P(X ∈ B1),

Y00 = P(X ∈ B00|X ∈ B0),

Y01 = P(X ∈ B01|X ∈ B0),

Y10 = P(X ∈ B10|X ∈ B1),

Y11 = P(X ∈ B11|X ∈ B1).

Then P(X ∈ Bij) = YiYij
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Sets and corresponding conditional probabilities

R
B0 B1

(Y0, Y1) ∼ Dir(α0, α1)
B00 B01 B10 B11
(Y00, Y01) ∼ Dir(α00, α01) (Y10, Y11) ∼ Dir(α10, α11)

B000 B001 B010 B011 B100 B101 B110 B111
(Y000, Y001) ∼
Dir(α000, α001)

(Y010, Y011) ∼
Dir(α010, α011)

(Y100, Y101) ∼
Dir(α100, α101)

(Y110, Y111) ∼
Dir(α110, α111)
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Probability of partition sets

Ω = [0, 1]
B0 B1

B00 B01 B10 B11

B000 B001 B010 B011 B100 B101 B110 B111

Instead of R, let’s look at Ω = [0, 1] ⊂ R.
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Probability of partition sets

Ω = [0, 1]
B0 B1

B00 B01 B10 B11

B000 B001 B010 B011 B100 B101 B110 B111

Say we want G(B101).
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Probability of partition sets

Ω = [0, 1]
B0 B1

B00 B01 B10 B11

B000 B001 B010 B011 B100 B101 B110 B111

B101 ⊂ B10.
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Probability of partition sets

Ω = [0, 1]
B0 B1

B00 B01 B10 B11

B000 B001 B010 B011 B100 B101 B110 B111

B101 ⊂ B10 ⊂ B1.
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Probability of partition sets

Ω = [0, 1]
B0 B1

B00 B01 B10 B11

B000 B001 B010 B011 B100 B101 B110 B111

G(B101) = G(B101 ∩ B10 ∩ B1)

= G(B101|B10, B1)G(B10|B1)G(B1)

= Y101Y10Y1.
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G-measure of first few sets in Π

G(B0) = Y0

G(B1) = Y1

G(B00) = Y0Y00

G(B01) = Y0Y01

G(B10) = Y1Y10

G(B11) = Y1Y11

G(B000) = Y0Y00Y000

G(B001) = Y0Y00Y001

G(B010) = Y0Y01Y010

G(B011) = Y0Y01Y011

G(B100) = Y1Y10Y100

G(B101) = Y1Y10Y101

G(B110) = Y1Y11Y110

G(B111) = Y1Y11Y111
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Let ε = ε1 · · · εm be an arbitrary binary number of
dimension m

Split Bε → {Bε0, Bε1} ∀ε.

Then
Yε0 = P(X ∈ Bε0|X ∈ Bε)
Yε1 = P(X ∈ Bε1|X ∈ Bε)

}
⇒

P(X ∈ Bε1···εm) =
m∏

j=1

Yε1···εj
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PT

Random PM for G:

(Yε0, Yε1) ∼ Beta(αε0, αε1)

Center on G0 by selecting the partition sets to be
appropriate quantiles of G0

Let αε = cm2 at level m,∀m (⇒ abs cont G w/ prob 1)

We say G|G0, c ∼ PT (c, G0), E(G(·)) = G0(·)

Finite Polya Tree is truncated at say level M

Large c results in a parametric analysis, and small c
results in a more non-parametric analysis
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PT

Partitions defining the Polya tree are induced by single
fixed centering distribution.

Sensible choice of M : 2M .
= n

Will be difficult in practice to specify a single centering
distribution.

Random densities g(x) = G′(x) are discontinuous at every
partition point. Infinite number of discontinuities!
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-2 2000 111001 110010 001011 100

00 1101 10

0 1

Figure: Finite Polya tree partition sets determined by Gθ:
π1 = {B0, B1}, π2 = {B00, B01, B10, B11},
π3 = {B000, B001, B010, B011, B100, B101, B110, B111}. G0 = N(0, 1)
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Mixture of Finite PTs

Center on parametric family {Gθ, θ ∈ Θ} eg. want

E [G(·) | θ)] = Gθ(·) ∀θ

Mixtures of Polya trees (Lavine, 1992; Hanson and
Johnson, 2002) smooth out partitioning effects and allow
robustness against misspecification of (only one) centering
distribution
Prior on θ, p(θ)
We say G|Gθ, c ∼ PT (c, Gθ)

G ∼
∫

PT (c, Gθ)p(dθ)

Predictive density g(yn+1|Y1, . . . , Yn) can be differentiable
in infinite tree; random densities g(y |Y1, . . . , Yn)
continuous.
Truncated at level M results in an MFPT
Large c results in analysis based on the parametric family
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-2 20.5 0.50.5 0.50.5 0.50.5 0.5
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Figure: All pairs (Yε0, Yε1) are 0.5.
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-2 20.5 0.50.5 0.50.5 0.50.5 0.5

0.5 0.50.5 0.5

0.45 0.55

Figure: Pair of level j = 1 probabilities (Y0, Y1).
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-2 20.5 0.50.5 0.50.5 0.50.5 0.5

0.7 0.50.3 0.5

0.45 0.55

Figure: Pair of level j = 2 probabilities (Y00, Y01).
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-2 20.5 0.50.5 0.50.5 0.50.5 0.5

0.7 0.40.3 0.6

0.45 0.55

Figure: Pair of level M = 2 probabilities (Y10, Y11).
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-2 20.8 0.50.2 0.50.5 0.50.5 0.5

0.7 0.40.3 0.6

0.45 0.55

Figure: Pair of level M = 3 probabilities (Y000, Y001).
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-2 20.8 0.50.2 0.50.7 0.50.3 0.5

0.7 0.40.3 0.6

0.45 0.55

Figure: Pair of level M = 3 probabilities (Y010, Y011).
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-2 20.8 0.50.2 0.50.7 0.60.3 0.4

0.7 0.40.3 0.6

0.45 0.55

Figure: Pair of level M = 3 probabilities (Y100, Y101).
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-2 20.8 0.450.2 0.550.7 0.60.3 0.4

0.7 0.40.3 0.6

0.45 0.55

Figure: Pair of level M = 3 probabilities (Y110, Y111).
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-2 20.8 0.450.2 0.550.7 0.60.3 0.4

0.7 0.40.3 0.6

0.45 0.55

Figure: Mixture of Finite Polya trees.
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Mixture of Finite PTs

Even with M = 3 can get interesting density shapes.

Allowing θ to be random smooths density

Notation: G ∼ PTM(c, Gθ). G is random probability
measure centered at Gθ, parametric on R.

Further taking θ ∼ p(θ) induces MFPT.

c is overall weight attached to {Gθ : θ ∈ Θ}.
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Smoothness properties

Proposition

(Hanson and Johnson, 2002). Let G ∼ PT∞(c, j2,Φµ,σ) and

w1, . . . , wn|G
iid∼ G. Let (µ, σ−2) ∼ N(m, s2)× Γ(a, b). Then the

density of g(wn+1|w1:n) is differentiable on R\{w1, . . . , wn} but
continuous everywhere.

This also holds for finite MPTs.

Proposition

(Hanson, 2006). Let G ∼ PTJ(c, j2,Φµ,σ) and

w1, . . . , wn|G
iid∼ G. Let (µ, σ−2) ∼ N(m, s2)× Γ(a, b). Then the

density g(w |w1:n,Y) =
∫
Θ g(w |w1:n,Y,θ)dbθ is differentiable on

R.

Holds for multivariate Polya trees as well.
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Random draws PT and MPT

Simple Polya tree prior G ∼ PT5(1, exp(1)).

MPT prior G ∼
∫

PT5(1, exp(θ))P(dθ)
where θ ∼ Γ(10, 10) so E(θ) = 1.

For both ρ(j) = j2, m = 5, and c = 1.

Look at densities from 10 random G’s.

56 / 73



1 2 3 4 5

1

2

3

4

Figure: G1, . . . , G10
iid∼ PT5(1, exp(1)).
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Figure: G1, . . . , G10
iid∼

∫
PT5(1, exp(θ))P(dθ).
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Blood Pressure Data

A randomized study was conducted to assess the assoc
between amount of calcium intake and reduction of syst
blood pressure (SBP) in black males
Of 21 healthy black men, 10 were randomly assigned to
receive a calcium supplement (group 1) over a 12 week
period. The other men received a placebo (group 2)
The response variable was amount of decrease in systolic
blood pressure Negative responses correspond to
increases in SBP.
The data were fitted to the DP, MDP, DPM, PT, and MPT
models.
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Fig. 2. Blood pressure data: posterior CDF estimates for both groups using the MDP (jagged), DPM (dashed),
and MPT (solid) models. The longer tick marks along the x-axis correspond to the observed data for the

placebo group and the shorter tick marks to the observed data for the calcium group.

the prior information was quite accurate. One final note is that the sample sizes are so
small for this problem that the DPM model density estimates look parametric. If there
were bumps in the true densities and with larger sample sizes, the DPM model would
reflect this fact. Since the truth is unknown here, we are not in a position to say that any
of the models are preferable.

3.2. Regression examples

Here, we mainly discuss two types of regression models. Both types can be expressed in
the usual form y = f (x)+ε. In one instance, we consider f (x) = xβ, and with ε ∼ F ,
F ∈ F where F consists of continuous distributions with median zero, which results
in xβ as the median of y|x, β or what has been called median regression. In a second
instance, we consider f ∈ F∗ and where the distribution of the error is assumed to have
been generated according to a parametric family. When the primary goal is estimation of
the regression function, f , parametric error models may suffice, but when considering
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Table 1
Blood pressure data: summary statistics for the decrease in systolic blood pres-
sure data for the calcium and placebo groups

n Mean Median Std. Dev. Min Max

Calcium 10 5.0 4 8.7 −5 18
Placebo 11 −0.27 −1 5.9 −11 12

Table 2
Blood pressure data: prior and posterior medians and 95% probability intervals for functionals T (F ) for the
two-sample problem. The mean and median functionals are denoted by µ(·) and η(·), respectively

DP MDP DPM

T (F ) Prior Posterior Prior Posterior Prior Posterior

µ(F1)
5.08 4.96 4.90 4.97 5.05 5.08

(−10.4, 20.3) (0.5, 9.9) (−14.7, 25.9) (0.6, 10.0) (−5.2, 16.5) (0.3, 9.9)

µ(F2)
−0.08 −0.31 0.02 −0.25 0.13 −0.30

(−9.5, 9.3) (−3.3, 3.0) (−16.2, 15.3) (−3.2, 3.1) (−8.8, 9.6) (−3.3, 2.8)

η(F1)
5.01 5.17 4.93 5.27 5.14 4.89

(−10.3, 20.3) (−3.0, 11.0) (−16.4, 27.6) (−3.0, 11.0) (−4.6, 15.9) (0.2, 9.9)

η(F2)
−0.10 −1.1 −0.10 −1.1 0.25 −0.35

(−12.4, 11.9) (−3.1, 2.9) (−17.8, 17.1) (−3.1, 2.9) (−8.1, 8.7) (−3.3, 2.6)

µ(F1) − µ(F2)
5.12 5.23 4.86 5.23 5.08 5.24

(−9.8, 20.5) (−0.3, 11.1) (−19.4, 31.5) (−0.3, 10.8) (−8.94, 20.4) (0.0, 10.6)

η(F1) − η(F2)
5.19 4.91 4.86 5.01 5.22 4.99

(−14.0, 24.7) (−3.9, 14.1) (−22.3, 34.2) (−3.9, 14.1) (−8.4, 18.9) (−0.3, 10.8)

The DPM model used was, for k = 1, 2, and i = 1, . . . , nk with n1 = 10, n2 = 11,

xki |
(
µki, σ

2
ki

) ind∼ N
(
µki, τσ 2

ki

)
(
µki, σ

2
ki

)|Gk
ind∼ Gk

Gk|α,Gk0
ind∼ DP(αGk0).

Escobar and West (1995) discuss the parameter τ , which for density estimation
can be interpreted as a smoothing parameter. For the current problem, we se-
lected G10(dµ1, dσ 2

1 ) = N(dµ1|5, τ dσ 2
1 )IG(dσ 2

1 |2, 70), and G20(dµ2, dσ 2
2 ) =

N(dµ2|5, τ dσ 2
2 )IG(dσ 2

2 |2, 70), where τ was selected to be either 1 or 10 in the current
analysis.

For the MPT model, we centered on the family F10(dµ1, dσ1) = N(dµ1|5, 5)

Γ (dσ1|0.64, 0.08) for the calcium group and F20(dµ2, dσ2) = N(dµ2|0, 5)Γ (dσ2|0.45,

0.067) for the placebo group. In all models with DP components, we set α = 1 and we
set γ = 0.1 for models involving Polya trees.

Table 2 contains prior and posterior medians and 95% probability intervals for func-
tionals of F1 and F2 using the DP, MDP, and DPM models. The posterior estimates
are similar for all 3 models, especially for the DP and MDP models. Estimates of
these functionals using PT and MPT models are also readily available. For example,
based on the MPT models, the population median change in SBP for the calcium group,
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Illustration: Environmental Data

Bivariate Density Estimation.

n = 111 bivariate observations wi = (wi1, wi2)
′ on cube

root of ozone concentration (wi2) and radiation (wi1)
modeled.

Previously modeled using DPM of bivariate Gaussian
densities.

Here look at G ∼
∫

PT4(1,Φθ)dP(θ), where p(θ) Jeffreys’
prior for MVN.

BF ≈ 45 in favor of MPT model over Gaussian model.

MPT model can adapt locally and capture interesting
aspects of the data without resorting to finite mixtures...
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Median Regression (Hanson and Johnson, 2002)

yi = xiβ + εi εi | G ∼ G

G ∼
∫

FPTK (c, Gθ)p(θ)dθ

Errors forced to have median 0, so it’s a median regression
model, eg.

med(y | x) = xβ
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Cow Abortion Data

Joint modeling of cow-abortion yes/no and time to abortion
given that the pregnancy ends in abortion.

Multiple cycles so need random effects for abortion
indicator and time to abortion

Covariates are NPA (number of prev abortions), Age,
Timing of Previous Abortion (early, late, none), Days Open
(DO) and Gravidity (Gr)

Two known causes of abortion:

Abortions due to uterine damage (early term abortions)
Abortions due to infection (late abortions)
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1732 T. HANSON ET AL.

Table II. Posterior summaries for baseline distribution and variance components.

E�ect Mean Standard deviation

Baseline �1 0.534 0.034
�2 0.285 0.026
�3 0.181 0.016
�1 4.453 0.068
�2 4.924 0.055
�3 5.374 0.058
�−21 8.809 1.077
�−22 182.6 32.94
�−23 47.96 7.503

Variance components 	11 78.04 36.81
	12 −0:801 12.88
	22 18.29 9.845

Table III. Predictive probability of abortion – Logistic model estimates for herds.

DO GR AGE AB Herd 3 Herd 6

40 2 3 0 0.143 0.077
40 2 3 1 0.293 0.173
40 3 3 0 0.107 0.056
40 3 3 1 0.228 0.129
150 2 3 0 0.140 0.075
150 2 3 1 0.287 0.168
150 3 3 0 0.096 0.050
150 3 3 1 0.207 0.116

40 2 4.5 0 0.240 0.137
40 2 4.5 1 0.395 0.249
40 3 4.5 0 0.183 0.101
40 3 4.5 1 0.318 0.190
150 2 4.5 0 0.234 0.133
150 2 4.5 1 0.388 0.243
150 3 4.5 0 0.165 0.090
150 3 4.5 1 0.292 0.172

for this ratio is (1.10, 1.29). This estimated e�ect re�ects a clear di�erence in the herd
health.
For the logistic model, the posterior mean of the exponentiated di�erence in two herd e�ects

is an estimate of the (adjusted) odds ratio of abortion. The maximum odds ratio involves a
comparison of herds 3 and 6, with herd 3 having an estimated odds of abortion 2.02 times
that for herd 6, for any �xed combination of the other predictors. A 90 per cent probability
interval for this odds ratio is (1.54, 2.60).
The impact of the other predictors on the probability of abortion is perhaps best understood

through a comparison of predictive probabilities for various covariate combinations. Table III
gives predictive probabilities for the two extreme herds, 3 and 6, for 16 combinations of the

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1725–1739

Figure: Cow Abortion Statistics
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Linear Dependent DPM (LDDP)

MacEachern (1999, 2000), DeIorio et al. 2004, DeIorio et
al. 2009

f (yi | xi) =

∫
N(yi | xiβ, 1/τ)dG(β, τ)

=
∑

h

phN(yi | xiβh, 1/τh)

where G ∼ DP(c, Gδ) and δ ∼ p(δ)

In the linear case, it’s just a DPM of Normal regressions
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Weighted Dependent DPM (WDDP)

Müller, Erkanli and West (1996), MacEachern (1999),
Griffin and Steel (2006), Dunson, Pillai and Park (2007),
Dunson and Park (2008)

f (yi | xi) =

∫
N(yi | xiβ, 1/τ)dGxi (β, τ)

=
∑

h

ph(xi)N(yi | xiβh, 1/τh)

where ph(xi) are selected in various clever ways

70 / 73



Motivating Example
Early Developments

Recent Developments
Illustrations

Bayesian density regression
Dependent random effects distributions

DDP results - x = 0.10
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Figure: LDDP and WDDP
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Motivating Example
Early Developments

Recent Developments
Illustrations

Bayesian density regression
Dependent random effects distributions

DDP results - x = 0.25
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Figure: LDDP and WDDP
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Motivating Example
Early Developments

Recent Developments
Illustrations

Bayesian density regression
Dependent random effects distributions

DDP results - x = 0.48
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Figure: LDDP and WDDP
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