

Nonintrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design

Michael S. Eldred Optimization and Uncertainty Quantification Dept. Sandia National Laboratories, Albuquerque, NM

> SAMSI Summer School on UQ June 20, 2011

Automated refinement: uniform and dimension-adaptive p- and h-refinement Gradient enhancement: PCE regression, piecewise Hermite interpolation Building on UQ foundations: mixed UQ, optimization under uncertainty

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Polynomial Chaos Expansions (PCE)

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

i.e.
$$R = \sum_{j=0}^{P} \alpha_j \Psi_j(\boldsymbol{\xi})$$

• Nonintrusive: estimate α_i using sampling, regression, tensor-product quadrature, sparse grids, or cubature

$$\alpha_{j} = \frac{\langle R, \Psi_{j} \rangle}{\langle \Psi_{j}^{2} \rangle} = \frac{1}{\langle \Psi_{j}^{2} \rangle} \int_{\Omega} R \Psi_{j} \varrho(\boldsymbol{\xi}) d\boldsymbol{\xi}$$
$$\langle \Psi_{j}^{2} \rangle = \prod_{i=1}^{n} \langle \psi_{m_{i}^{j}}^{2} \rangle$$

10

10

10

 10^{1}

 10^{2}

10[°]

Simulations

10⁴

10⁵

Generalized PCE (Wiener-Askey + numerically-generated)

• Tailor basis: selection of basis orthogonal to input PDF avoids additional nonlinearity

Distribution	Density function	Polynomial	Weight function	Support range	- 10	
Normal	$\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$	Hermite $He_n(x)$	$e^{\frac{-x^2}{2}}$	$[-\infty,\infty]$	-	
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	[-1, 1]	- 10 ⁰	
Beta	$\frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)}$	Jacobi $P_n^{(\alpha,\beta)}(x)$	$(1-x)^{\alpha}(1+x)^{\beta}$	[-1, 1]	-	
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0,\infty]$	- 10 ⁻	
Gamma	$\frac{x^{\alpha}e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^{lpha}e^{-x}$	$[0,\infty]$	Resid	
Additional bases generated numerically (discretized Stielties + Golub-Welsch)						

Additional bases generated numerically (discretized Stielties + Golub-Welsch)

- Tailor expansion form:
 - Dimension p-refinement: anisotropic TPQ/SSG, generalized SSG
 - Dimension & region h-refinement: local bases with global & local refinement

Polynomial Chaos Expansions (PCE)

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

i.e.
$$R = \sum_{j=0}^{P} \alpha_j \Psi_j(\boldsymbol{\xi})$$

$$\begin{array}{rcl} \Psi_0(\boldsymbol{\xi}) &=& \psi_0(\xi_1) \ \psi_0(\xi_2) &=& 1 \\ \Psi_1(\boldsymbol{\xi}) &=& \psi_1(\xi_1) \ \psi_0(\xi_2) &=& \xi_1 \\ \Psi_2(\boldsymbol{\xi}) &=& \psi_0(\xi_1) \ \psi_1(\xi_2) &=& \xi_2 \\ \Psi_3(\boldsymbol{\xi}) &=& \psi_2(\xi_1) \ \psi_0(\xi_2) &=& \xi_1^2 - 1 \\ \Psi_4(\boldsymbol{\xi}) &=& \psi_1(\xi_1) \ \psi_1(\xi_2) &=& \xi_1\xi_2 \\ \Psi_5(\boldsymbol{\xi}) &=& \psi_0(\xi_1) \ \psi_2(\xi_2) &=& \xi_2^2 - 1 \end{array}$$

• Nonintrusive: estimate α_j using sampling, regression, tensor-product quadrature, sparse grids, or cubature

using

$$\begin{array}{lll} \alpha_{j} & = & \displaystyle \frac{\langle R, \Psi_{j} \rangle}{\langle \Psi_{j}^{2} \rangle} & = & \displaystyle \frac{1}{\langle \Psi_{j}^{2} \rangle} \int_{\Omega} R \, \Psi_{j} \, \varrho(\boldsymbol{\xi}) \, d\boldsymbol{\xi} \\ \\ \\ & \\ \hline \langle \Psi_{j}^{2} \rangle \, = & \displaystyle \prod_{i=1}^{n} \langle \psi_{m_{i}^{j}}^{2} \rangle \end{array}$$

Generalized PCE (Wiener-Askey + numerically-generated)

• Tailor basis: selection of basis orthogonal to input PDF avoids additional nonlinearity

Distribution Density function		Polynomial	Weight function	Support range	10
Normal	$\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$	Hermite $He_n(x)$	$e^{\frac{-x^2}{2}}$	$[-\infty,\infty]$	
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	[-1, 1]	10
Beta	$\frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)}$	Jacobi $P_n^{(\alpha,\beta)}(x)$	$(1-x)^{\alpha}(1+x)^{\beta}$	[-1,1]	
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0,\infty]$	01 ng
Gamma	$\frac{x^{\alpha}e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^{lpha}e^{-x}$	$[0,\infty]$	Resid

Additional bases generated numerically (discretized Stieltjes + Golub-Welsch)

- Tailor expansion form:
 - Dimension p-refinement: anisotropic TPQ/SSG, generalized SSG
 - Dimension & region h-refinement: local bases with global & local refinement

Stochastic Collocation (based on interpolation polynomials)

Instead of estimating coefficients for known basis functions, form <u>interpolants</u> for known coefficients

- Global: Lagrange (values) or Hermite (values+derivatives)
- Local: linear (values) or cubic (values+gradients) splines

$$R(\boldsymbol{\xi}) \cong \sum_{j_1=1}^{m_{i_1}} \cdots \sum_{j_n=1}^{m_{i_n}} r\left(\xi_{j_1}^{i_1}, \dots, \xi_{j_n}^{i_n}\right) \left(L_{j_1}^{i_1} \otimes \cdots \otimes L_{j_n}^{i_n}\right)$$

Sparse interpolants formed using $\boldsymbol{\Sigma}$ of tensor interpolants

Advantages relative to PCE:

- Somewhat simpler (no expansion order to manage separately)
- Often less expensive (no integration for coefficients)
- Expansion only formed for sampling → probabilities (estimating moments of any order is straightforward)
- · Adaptive h-refinement with hierarchical surpluses; explicit gradient-enhancement

Disadvantages relative to PCE:

- Less flexible/fault tolerant → structured data sets (tensor/sparse grids)
- Expansion variance not guaranteed positive (important in opt./interval est.)
- · No direct inference of spectral decay rates

With sufficient care on PCE form, PCE/SC performance is essentially identical for many cases of interest (tensor/sparse grids with standard Gauss rules)

Approaches for forming PCE/SC Expansions

Random sampling: PCE

Expectation (sampling):

- Sample w/i distribution of \mathcal{E}
- Compute expected value of product of **R** and each Ψ_i

Linear regression ("point collocation"):

- Sample w/i distribution of ξ
- Solves least squares data fit for all coefficients at once:

Tensor-product quadrature: PCE/SC $\mathscr{U}^{i}(f)(\xi) = \sum_{j=1}^{m_{i}} f(\xi_{j}^{i}) w_{j}^{i}$ $\mathcal{Q}_{\mathbf{i}}^{n}f(\xi) = \left(\mathscr{U}^{i_{1}} \otimes \cdots \otimes \mathscr{U}^{i_{n}}\right)(f)(\boldsymbol{\xi}) = \sum^{i_{1}} \cdots \sum^{i_{n}} f\left(\xi_{j_{1}}^{i_{1}}, \dots, \xi_{j_{n}}^{i_{n}}\right) \left(w_{j_{1}}^{i_{1}} \otimes \cdots \otimes w_{j_{n}}^{i_{n}}\right)$ - Every combination of 1-D rules - Scales as mⁿ - 1-D Gaussian rule of order *m* \rightarrow integrands to order 2m - 1

- Assuming $R \Psi_i$ of order 2p, select m = p + 1

Smolyak Sparse Grid: PCE/SC

$$\mathscr{A}(\mathbf{w},n) = \sum_{\mathbf{w}+1 \le |\mathbf{i}| \le \mathbf{w}+n} (-1)^{\mathbf{w}+n-|\mathbf{i}|} \binom{n-1}{\mathbf{w}+n-|\mathbf{i}|} \cdot \left(\mathscr{U}^{i_1} \otimes \cdots \otimes \mathscr{U}^{i_n} \right)$$

Pascal's triangle (2D):

Cubature: PCE

Stroud and extensions (Xiu, Cools)

- \rightarrow Low order PCE
- \rightarrow global SA, anisotropy detection

PCE/SC Expansions: Smolyak Sparse Grids

Numerical Integration (Smolyak sparse grids):

2D Clenshaw-Curtis sparse grid (less optimal, more nesting) 2D Gauss-Legendre sparse grid (more optimal, less nesting) **3D Clenshaw-Curtis sparse grid**

PCE/SC Expansions: Smolyak Sparse Grids (cont.)

Key difference between quadrature & sparse grids: polynomial order coverage

- Uniform: *isotropic* tensor/sparse grids
 - Increment grid: increase order/level, ensure change (restricted growth in nested rules)
 - Assess convergence: L² change in response covariance

- Uniform: *isotropic* tensor/sparse grids
 - Increment grid: increase order/level, ensure change (restricted growth)
 - Assess convergence: L² change in response covariance
- Dimension-adaptive: <u>anisotropic</u> tensor/sparse grids
 - **PCE/SC:** variance-based decomp. \rightarrow total Sobol' indices \rightarrow anisotropy (dimension preference)

$$\begin{split} f_{PC}(\boldsymbol{x}) &= f_0 + \sum_{i=1}^n \sum_{\boldsymbol{\alpha} \in \mathcal{I}_i} f_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(x_i) \\ &+ \sum_{1 \leq i_1 < \cdots < i_s \leq n} \sum_{\boldsymbol{\alpha} \in \mathcal{I}_{i_1, i_2}} f_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(x_{i_1}, x_{i_2}) + \cdots \\ &+ \sum_{1 \leq i_1 < \cdots < i_s \leq n} \sum_{\boldsymbol{\alpha} \in \mathcal{I}_{i_1, \dots, i_s}} f_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(x_{i_1}, \dots, x_{i_s}) \\ &+ \cdots + \sum_{\boldsymbol{\alpha} \in \mathcal{I}_{i_1, \dots, i_s}} f_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(x_1, \dots, x_n) \end{split} \\ \\ \\ \frac{W_{i_1 \dots i_s} = \sum_{\boldsymbol{\alpha} \in \mathcal{I}_{i_1, \dots, i_s}} f_{\boldsymbol{\alpha}}^2 \mathbb{E}\left[\Psi_{\boldsymbol{\alpha}}^2\right] / D_{PC}}{\mathbf{Main, interaction indices}} \sum_{\substack{SU_{j_1, \dots, j_t} = \sum_{(i_1, \dots, i_s) \in \mathcal{J}_{j_1, \dots, j_t} \\ \mathbf{U}(\mathbf{1}, \dots, \mathbf{1}, \mathbf{1}) \in \mathcal{J}(\mathbf{1}) \\ \mathbf{Main, interaction indices}} \underbrace{SU_{j_1, \dots, j_t}^T = \sum_{(i_1, \dots, i_s) \in \mathcal{J}_{j_1, \dots, j_t} \\ \mathbf{N} \\ \mathbf{Main, interaction indices}} \underbrace{SU_{j_1, \dots, j_t} = \sum_{(i_1, \dots, i_s) \in \mathcal{J}_{j_1, \dots, j_t} \\ \mathbf{N} \\ \mathbf{N}$$

- Uniform: <u>isotropic</u> tensor/sparse grids
 - Increment grid: increase order/level, ensure change (restricted growth in nested rules)
 - Assess convergence: L² change in response covariance
- Dimension-adaptive: <u>anisotropic</u> tensor/sparse grids
 - **PCE/SC:** variance-based decomp. \rightarrow total Sobol' indices \rightarrow anisotropy (dimension preference)
 - PCE: spectral coefficient decay rates → anisotropy (index set weights)

- Uniform: *isotropic* tensor/sparse grids
 - Increment grid: increase order/level, ensure change (restricted growth in nested rules)
 - Assess convergence: L² change in response covariance
- **Dimension-adaptive:** <u>anisotropic</u> tensor/sparse grids
 - **PCE/SC:** variance-based decomp. \rightarrow total Sobol' indices \rightarrow anisotropy (dimension preference)
 - PCE: spectral coefficient decay rates → anisotropy (index set weights)

Drivers: Efficiency, robustness, <u>scalability</u> → adaptive methods, adjoint enhancement Polynomial order (p-) refinement approaches:

- **Uniform:** *isotropic* tensor/sparse grids
 - *Increment grid:* increase order/level, ensure change (restricted growth in nested rules)
 - Assess convergence: L² change in response covariance
- Dimension-adaptive: <u>anisotropic</u> tensor/sparse grids $|w\gamma < \mathbf{i} \cdot \gamma \leq w\gamma + |\gamma|$
 - **PCE/SC:** variance-based decomp. \rightarrow total Sobol' indices \rightarrow anisotropy
 - **PCE:** spectral coefficient decay rates \rightarrow anisotropy
- **Goal-oriented dimension-adaptive:** generalized sparse grids
 - PCE/SC: change in QOI induced by trial index sets on active front

1. Initialization: Starting from reference grid (often w = 0 grid), define active index sets using admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set. evaluate tensor grid, form tensor expansion, update combinatorial coefficients, and combine with reference expansion. Perform necessary bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that induces largest change in statistical QOI.

4. Update sets: If largest change > tolerance, then promote selected trial set from active to old and compute new admissible active sets; return to 2. If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets to old set, update combinatorial coefficients, and perform final combination of tensor expansions to arrive at final result for statistical QOI.

Initial Observations

- Sobol' anisotropic grids: target largest contributors to response variance
 - Strengths
 - Most broadly applicable technique: PCE or SC, TPQ or SSG
 - Global variance metrics are <u>robust</u> (i.e., reduces non-monotonicity/drop out issues)
 - Weaknesses
 - <u>Dimensions contributing most to variance may be low order</u> (and vice versa \rightarrow spectral decay)
 - Refinement logic is not entirely self-consistent, since variance increases with resolution (i.e., reduced refinement pressure for under-resolved dimensions; increased for over-resolved)
- Spectral decay anisotropic grids: target dimensions where convergence is slow
 - Strengths
 - Refinement logic is more self-consistent: when under-resolved, rate is low \rightarrow preference is high and when fully resolved (e.g., a polynomial relationship), rate is higher \rightarrow preference is reduced
 - Weaknesses
 - PCE only (TPQ or SSG)
 - Vice versa: dimensions with higher order relationships not necessarily dominant QOI contributors
 - Non-monotone drop-outs in univariate coefficients may block refinement
- Generalized sparse grids: target index sets that are largest contributors to QOI
 - Strengths
 - <u>Unstructured</u>, fine-grained: resolution of interactions not pre-determined by univariate weights
 - Goal-oriented refinement: index set selection governed by general statistical QOI
 - Start from w = 0 (don't need to estimate anisotropy; unimportant interactions not explored → scalability)
 - Weaknesses
 - SSG only (PCE or SC), although a greedy TPQ variant could be constructed
 - Non-monotone drop outs at index set level block refinement
 - Increments are smaller than other methods \rightarrow precision can be an issue \rightarrow hierarchical basis

Numerical Experiments Short Column Test Problem (n=5)

$$g(\mathbf{x}) = 1 - \frac{4M}{bh^2Y} - \frac{P^2}{b^2h^2Y^2}$$

Kuschel & Rackwitz, 1997

b = U[5,15], h = U[15,25], P = N(500, 100), $M = N(2000, 400), \rho_{P,M} = 0.5,$ Y = logN(5, 0.5)

Numerical Experiments Cantilever Beam Test Problem (n=6)

Numerical Experiments Ishigami Test Problem (n=3)

$$f(\mathbf{x}) = \sin(2\pi x_1 - \pi) + 7\sin^2(2\pi x_2 - \pi) + 0.1(2\pi x_3 - \pi)^4 \sin(2\pi x_1 - \pi)$$

*x*₁, *x*₂, *x*₃: *iid U*[0, 1]

- Specifically designed to be challenging for global SA: term cancellations at mid-point and bounds
- Premature convergence in adaptive methods
 → start from higher-order grid

Adaptive Collocation Methods Scalable Gerstner Test Problems (n=10)

Remarks on p-refinement

Adaptive p-refinement in nonintrusive stochastic expansions

- PCE and SC with TPQ and SSG
 - Dimension-adaptive p-refinement
 - Uniform p-refinement with *isotropic* tensor/sparse grids
 - Adaptive p-refinement with *anisotropic* tensor/sparse grids
 - VBD → total Sobol' indices → dimension preference
 - PCE spectral coefficient decay rate estimation \rightarrow index weights
 - Goal-oriented adaptive p-refinement with generalized sparse grids
 - Generalized > anisotropic > isotropic

Areas for further study

- Tuning
 - Effect of combining anisotropy/refinement metrics over a response set
 - Scaling of anisotropic preference (VBD/decay rates often too severe)
- Capability extensions
 - Point-wise refinement (finer grain within active index sets)
 - Progression in interpolants: local and global Hermite interpolants (gradient-enhanced)

Extend Scalability through Adjoint Derivative-Enhancement

<u> PCE:</u>

- Linear regression with derivatives
 - Gradients/Hessians → addtnl. eqns.

<u>SC:</u>

- Gradient-enhanced interpolants
 - Local: cubic Hermite splines
 - Global: Hermite interpolation polynomials

EGRA:

- Gradient-enhanced kriging/cokriging
 - Interpolates function values and gradients
 - Scaling: $n^2 \rightarrow n$

Gradient-Enhanced PCE

Straightforward regression approach implemented in DAKOTA v5.1:

- unweighted LLS by SVD (LAPACK GELSS)
- equality constrained LLS by QR (LAPACK GGLSE) when underdetermined by values alone

Vandermonde-like systems known to suffer from ill-conditioning

Gradient-Enhanced PCE: "Point Collocation" LHS with & without gradients, oversample ratio = 1 or 2

h-refinement with Gradient-Enhanced Interpolants

Dimension-adaptive h-refinement: local interpolant bases within global sparse grids:

- Values only: linear spline
- Values only: Quadratic hierarchical spline
- Values+gradients: cubic Hermite spline

Shape functions – type 1 (value) and type 2 (gradient)

- Rearrange cubic Hermite spline into "hat" functions
- Value (type 1): h01 left half, h00 right half
- Gradient (type 2): h11 left half, h10 right half

Hermite interpolation

• 1D to first-order:

$$W_n(x) = \sum_{\nu=1}^n f_{\nu} h_{\nu}^{(1)}(x) + \sum_{\nu=1}^n f_{\nu}' h_{\nu}^{(2)}(x)$$

• Multivariate tensor product to arbitrary order (Lalescu):

$$s^{(n)}(x_1, x_2, \dots, x_D) = \sum_{l_1, \dots, l_D=0}^m \sum_{i_1, \dots, i_D=0, 1} f^{(l_1, \dots, l_D)}(i_1, \dots, i_D) \prod_{k=1}^D \alpha_{i_k}^{(n, l_k)}(x_k)$$

Global Hermite interpolants also of interest → gradient-enhanced p-refinement

 $p(t) = h_{00}(t)p_0 + h_{10}(t)m_0 + h_{01}(t)p_1 + h_{11}(t)m_1$

Gradient-Enhanced Interpolation: Explicit formulation eliminates regression error

$$s^{(n)}(x_1, x_2, \dots, x_D) = \sum_{l_1, \dots, l_D=0}^m \sum_{i_1, \dots, i_D=0, 1} f^{(l_1, \dots, l_D)}(i_1, \dots, i_D) \prod_{k=1}^D \alpha_{i_k}^{(n, l_k)}(x_k)$$

Example: n=3, N pts, 1st-order Hermite

$$f = \sum_{i=1}^{N} f_i H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^{N} \frac{df_i}{dx_1} H_i^{(2)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^{N} \frac{df_i}{dx_2} H_i^{(1)}(x_1) H_i^{(2)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^{N} \frac{df_i}{dx_3} H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(2)}(x_3)$$

$$\mu = \sum_{i=1}^{N} f_i w_i^{(1)} w_i^{(1)} w_i^{(1)} + \sum_{i=1}^{N} \frac{df_i}{dx_1} w_i^{(2)} w_i^{(1)} w_i^{(1)} + \sum_{i=1}^{N} \frac{df_i}{dx_2} w_i^{(1)} w_i^{(2)} w_i^{(1)} + \sum_{i=1}^{N} \frac{df_i}{dx_3} w_i^{(1)} w_i^{(1)} w_i^{(2)}$$

and similar for higher-order moments

Investigated several variants:

- PW linear vs. PW cubic vs. global
- Newton-Cotes vs. Clenshaw-Curtis
- Restricted growth/delayed sequences vs. unrestricted

Sparse grid gradient-enhanced interpolation of Rosenbrock (w=3, uniform over [-2,2])

Colloc pt	1:	truth	value	-	3.6090000000e+03	interpolant	=	3.609000000e+03 error =	0.000000000e+00
		truth	grad_1	= -	9.6120000000e+03	interpolant	=	-9.6120000000e+03 error =	0.00000000000e+00
		truth	grad_2	= -;	2.4000000000e+03	interpolant	=	-2.400000000e+03 error =	0.0000000000e+00
Colloc pt	2:	truth	value	=	2.5090000000e+03	interpolant	=	2.5090000000e+03 error =	0.000000000e+00
		truth	grad_1	= -	8.0120000000e+03	interpolant	=	-8.012000000e+03 error =	0.000000000e+00
		truth	grad_2	= -	2.0000000000e+03	interpolant	=	-2.000000000e+03 error =	0.000000000e+00
Colloc pt	3:	truth	value	=	1.6090000000e+03	interpolant	=	1.609000000e+03 error =	0.000000000e+00
		truth	grad_1	= -	6.4120000000e+03	interpolant	=	-6.4120000000e+03 error =	0.000000000e+00
		truth	grad_2	= -	1.600000000e+03	interpolant	=	-1.600000000e+03 error =	0.000000000e+00
Colloc pt	4:	truth	value	=	9.0900000000e+02	interpolant	=	9.090000000e+02 error =	0.000000000e+00
		truth	grad 1	= -	4.8120000000e+03	interpolant	=	-4.812000000e+03 error =	0.000000000e+00
		truth	grad 2	= -	1.2000000000e+03	interpolant	=	-1.200000000e+03 error =	0.0000000000e+00
Colloc pt	5:	truth	value	=	4.0900000000e+02	interpolant	=	4.090000000e+02 error =	0.0000000000e+00
		truth	grad 1	= -	3.2120000000e+03	interpolant	=	-3.2120000000e+03 error =	0.000000000e+00
		truth	grad 2	= -	B.0000000000e+02	interpolant	=	-8.000000000e+02 error =	0.0000000000e+00
Colloc pt	6:	truth	value	=	5.1250000000e+02	interpolant	=	5.1250000000e+02 error =	0.0000000000e+00
-		truth	grad 1	= -	2.7100000000e+03	interpolant	=	-2.710000000e+03 error =	0.0000000000e+00
		truth	grad 2	= -	9.0000000000e+02	interpolant	=	-9.0000000000e+02 error =	0.0000000000e+00
Colloc pt	7:	truth	value	=	9.0400000000e+02	interpolant	=	9.0400000000e+02 error =	0.0000000000e+00
F-		truth	grad 1	= -	2 4080000000e+03	interpolant	=	-2 4080000000e+03 error =	0 0000000000e+00
		truth	grad_1	= -	1 2000000000000+03	interpolant	=	-1 2000000000e+03 error =	0 000000000000000000000000000000000000
Colloc nt	8.	truth	value	_	1 0400000000000000000000000000000000000	interpolant	=	1.0400000000000000000000000000000000000	0 0000000000000000000000000000000000000
corroe pe	0.	truth	arad 1	= -	R 0800000000000000000000000000000000000	interpolant	_	-8 08000000000+02 error =	0 000000000000000000000000000000000000
		truth	grad_1	= -	4 0000000000000000000000000000000000000	interpolant	_	-4 000000000000000000000000000000000000	0 000000000000000000000000000000000000
Colleg pt	۵.	truth	waluo	_	1 040000000000000000	interpolant	_	1.0400000000000000000000000000000000000	0.0000000000000000000000000000000000000
corroc pc	5.	truth	orad 1	_	7 92000000000000000	interpolant	_	7 92000000000000000000000000000000000000	0.0000000000000000000000000000000000000
		truth	grau_r	_	1.92000000000000000000000000000000000000	interpolant	_	1.9200000000e+02 error =	0.0000000000000000000000000000000000000
Colleg pt	10.	truth	grau_z	_	9.000000000000000000000000000000000000	interpolant	_	4.000000000000000000000000000000000000	0.0000000000000000000000000000000000000
corroc pt	10:	truth	value	_	1 0600000000000000000000000000000000000	interpolant	_	1.0600000000000000000000000000000000000	0.0000000000000000000000000000000000000
		t utili	grau_r		1.0000000000000000000000000000000000000	interpolant	_	-1.000000000000000000000000000000000000	0.0000000000000000000000000000000000000
a 11 .	1 1	Lruch	grad_z	= -	1.0000000000000000000000000000000000000	interpolant	=	-1.00000000000+02 error =	0.0000000000000000000000000000000000000
Colloc pt	11:	truth	value	=	4.01000000000000000	interpolant	=	4.0100000000e+02 error =	0.000000000e+00
		truth	grad_1	= -	4.00000000000e+00	interpolant	=	-4.0000000000e+00 error =	0.000000000000000000000000000000000000
		truth	grad_2	= -	B.00000000000e+02	interpolant	=	-8.000000000e+02 error =	0.0000000000e+00
Colloc pt	12:	truth	value	=	2.2600000000e+02	interpolant	=	2.260000000e+02 error =	0.0000000000e+00
		truth	grad_1	= -	4.00000000000e+00	interpolant	=	-4.0000000000e+00 error =	0.0000000000e+00
		truth	grad_2	= -	6.0000000000e+02	interpolant	=	-6.0000000000e+02 error =	0.0000000000e+00
Colloc pt	13:	truth	value	=	1.0100000000e+02	interpolant	=	1.0100000000e+02 error =	0.0000000000e+00
		truth	grad_1	= -	4.0000000000e+00	interpolant	=	-4.0000000000e+00 error =	0.0000000000e+00
		truth	grad_2	= -	4.0000000000e+02	interpolant	=	-4.0000000000e+02 error =	0.0000000000e+00
Colloc pt	14:	truth	value	=	2.6000000000e+01	interpolant	=	2.600000000e+01 error =	0.000000000e+00
		truth	grad_1	= -	4.0000000000e+00	interpolant	=	-4.000000000e+00 error =	0.0000000000e+00
		truth	grad_2	= -	2.0000000000e+02	interpolant	=	-2.000000000e+02 error =	0.000000000e+00
Colloc pt	15:	truth	value	=	1.0000000000e+00	interpolant	=	1.000000000e+00 error =	0.000000000e+00
		truth	grad_1	= -	4.0000000000e+00	interpolant	=	-4.000000000e+00 error =	0.000000000e+00
		truth	grad_2	=	0.000000000e+00	interpolant	=	0.000000000e+00 error =	0.000000000e+00
Colloc pt	16:	truth	value	=	2.600000000e+01	interpolant	=	2.600000000e+01 error =	0.000000000e+00
		truth	grad 1	= -	4.0000000000e+00	interpolant	=	-4.000000000e+00 error =	0.000000000e+00
		truth	grad 2	=	2.0000000000e+02	interpolant	=	2.000000000e+02 error =	0.000000000e+00
Colloc pt	17:	truth	value	=	1.0100000000e+02	interpolant	=	1.010000000e+02 error =	0.0000000000e+00
-		truth	grad 1	= -	4.0000000000e+00	interpolant	=	-4.000000000e+00 error =	0.0000000000e+00
		truth	grad 2	=	4.0000000000e+02	interpolant	=	4.0000000000e+02 error =	0.0000000000e+00
Colloc pt	18:	truth	value	=	2.2600000000e+02	interpolant	=	2.260000000e+02 error =	0.0000000000e+00
··· F*		truth	grad 1	= -	4.0000000000e+00	interpolant	=	-4.000000000e+00 error =	0.0000000000e+00
		truth	grad 2	-	6.0000000000e+02	interpolant	=	6.0000000000e+02 error =	0.0000000000e+00

Smooth Test Problems PWL/PWC bases on Gerstner tests (n=2)

Gonvergence for Gerstner aniso3 using SC SSG under uniform refinement

Nonsmooth Test Problem PWL/PWC bases on Sobol's g fn (n=5)

$$f(\mathbf{x}) = 2\prod_{j=1}^{5} \frac{|4x_j - 2| + a_j}{1 + a_j}; \quad a = [0, 1, 2, 4, 8]$$

Gradient-Enhanced Interpolation: Next Steps

 Add hierarchical basis for use alongside nodal basis → local refinement (element splitting, point-wise GSG), improved precision in incremental effects, hybrid metric estimation

Hierarchical linear splines; from Xiang Ma, Ph.D. dissertation, Cornell Univ., 2010

- Extend support for infinite and semi-infinite domains
- Global Hermite interpolation polynomials: stable 1D generators + integration weights

Build on efficient/robust/scalable UQ core

Drivers

- Efficient/robust/scalable core \rightarrow adaptive methods, adjoint enhancement
- Complex random env. → mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic sensitivity analysis

Aleatory or combined expansions including nonprobabilistic dimensions s
 → sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty

Mixed Aleatory-Epistemic UQ

• SOP, IVP, and DSTE approaches that are more accurate and efficient than traditional nested sampling

Bayesian Inference:

• Collaborations w/ LANL (GPM), UT (Queso), Purdue/MIT (gPC)

Model form:

• Multifidelity UQ (hierarchy), Bayesian model averaging (ensemble)

Multiphysics (multiscale) UQ:

Invert UQ & multiphysics loops → transfer UQ stats among codes

Random Fields / Stochastic Processes (Encore, PECOS)

Stochastic Sensitivity Analysis

PCE/SC have convenient analytic features

- Expansions readily differentiated w.r.t. ξ
- Analytic moment expressions

Sandia

ational aboratories

- Augment w/ nonprobabilistic dimensions s
 - Design, epistemic uncertain
- Approach 1: PCE/SC over prob. vars for each set of nonprob. vars

$$R = \sum_{j=0}^{P} \alpha_j \Psi_j(\boldsymbol{\xi}) \quad R = \sum_{j=1}^{N_p} r_j \boldsymbol{L}_j(\boldsymbol{\xi})$$

$$\left\{\begin{array}{rcl}
\mu_R &=& \alpha_0 \\
\sigma_R^2 &=& \sum_{j=1}^P \alpha_j^2 \langle \Psi_j^2 \rangle \\
\end{array}\right\}
\left\{\begin{array}{rcl}
\mu_R &=& \sum_{j=1}^{N_p} r_j w_j \\
\sigma_R^2 &=& \sum_{j=1}^{N_p} r_j^2 w_j - \mu_R^2
\end{array}\right.$$

 $R(\boldsymbol{\xi}, \boldsymbol{s}) = \sum_{j=0}^{r} \alpha_j(\boldsymbol{s}) \Psi_j(\boldsymbol{\xi})$ $R(\boldsymbol{\xi}, \boldsymbol{s}) = \sum_{j=1}^{N_p} r_j(\boldsymbol{s}) \boldsymbol{L}_j(\boldsymbol{\xi})$

Moment sensitivity = expectation of response sensitivity

 \rightarrow Additional data requirements (*dR/ds*), but no additional dimensions

Approach 2: PCE/SC over all vars

$$R(\boldsymbol{\xi}, \boldsymbol{s}) = \sum_{j=0}^{P} \alpha_{j} \Psi_{j}(\boldsymbol{\xi}, \boldsymbol{s}) \left[R(\boldsymbol{\xi}, \boldsymbol{s}) = \sum_{j=1}^{N_{p}} r_{j} \boldsymbol{L}_{j}(\boldsymbol{\xi}, \boldsymbol{s}) \right]$$

Moment sensitivity = expectations over ξ + differentiation of remaining polynomial in *s*

 \rightarrow Additional dimensions, but no additional data requirements

 $_k(oldsymbol{\xi},oldsymbol{s})
angle_{oldsymbol{\xi}}~-~\mu_R^2(oldsymbol{s})$

Optimization Under Uncertainty

optimize, accounting for uncertainty metrics

(using any UQ method)

Add resp stats $s_u (\mu, \sigma, \mathbf{Z}/\beta/p)$ min $f(d) + Ws_u(d)$ s.t. $g_l \leq g(d) \leq g_u$ $h(d) = h_t$ $d_l \leq d \leq d_u$ $a_l \leq A_i s_u(d) \leq a_u$ $A_e s_u(d) = a_t$

Input design parameterization

- Design vars may augment uncertain vars in simulation
- Inserted design vars: an optimization design var may be a parameter of an uncertain dist, e.g., the mean of a normal

Control response statistics to design for...

...robustness: min/constrain moments μ , σ^2 , or $z(\beta)$ range ...reliability:

min/max/constrain p/β (tail stats, failure)

...combined/other:

Pareto, inversion/model calibration under uncertainty

Optimization Under Uncertainty

optimize, accounting for uncertainty metrics

(using any UQ method)

Add resp stats $s_u(\mu, \sigma, \mathbf{z}/\beta/p)$ min $f(d) + Ws_u(d)$ s.t. $g_l \leq g(d) \leq g_u$ $h(d) = h_t$ $d_l \leq d \leq d_u$ $a_l \leq A_i s_u(d) \leq a_u$ $A_e s_u(d) = a_t$

Input design parameterization

- Design vars may augment uncertain vars in simulation
- Inserted design vars: an optimization design var may be a parameter of an uncertain dist, e.g., the mean of a normal

Control response statistics to design for...

...robustness: min/constrain moments μ , σ^2 , or $z(\beta)$ range

Epistemic/Mixed

...**reliability:** min/max/constrain *p*/β (tail stats, failure)

...combined/other:

Pareto, inversion/model calibration under uncertainty

PCE-based and SC-based OUU

Mixed Aleatory-Epistemic UQ: IVP, DSTE, and SOP

1 00

0.75

Qum Prob Oum Prob

0.25

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge uncertainty): insufficient info to specify objective probability distributions

Traditional approach: nested sampling

- Expensive sims → under-resolved sampling (especially @ outer loop)
- Under-prediction of credible outcomes

Algorithmic approaches

- Interval-valued probability (IVP), aka PBA
- Dempster-Shafer theory of evidence (DSTE)
- Second-order probability (SOP), aka PoF

Address accuracy and efficiency

- Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)
- Outer loop:
 - IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP)
 - SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)

Increasing epistemic structure (stronger assumptions)

minimize	M(s)
subject to	$s_L \le s \le s_U$
maximize	M(s)
subject to	$s_L \le s \le s_U$

Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE based on Stochastic Expansions

Concluding Remarks

R&D in Adaptive UQ Methods → scalability

- Stochastic expansions: PCE, SC
 - Dimension-adaptive refinement (p- and h-)
 - Uniform p-refinement with isotropic grids
 - Adaptive p-refinement with anisotropic grids (VBD/Sobol', Spectral decay → anisotropy)
 - Goal-oriented adaptive p-refinement with generalized sparse grids (statistical QOI: μ , σ^2 , β , β^* , p_{fail})
 - Adjoint enhancement
 - Hierarchical basis formulations \rightarrow region-adaptive h-refinement

R&D in UQ Complexity → mixed uncertainties, multiphysics/multiscale

- Stochastic sensitivity analysis → enables OUU/MCUU and mixed UQ
- Design under uncertainty: bilevel, sequential, multifidelity approaches
- Mixed UQ with IVP/SOP/DSTE → greater accuracy/efficiency than nested sampling
 - Inner loop: stochastic expansions (aleatory or combined)
 - Outer loop: opt-based interval est.; global with data reuse (robust) or local with SSA (scalable)
- Multi-* → Multi-physics/Multi-scale/Multifidelity UQ
- Random fields and stochastic processes
- Nondeterministic calibration (MLE, ME, Bayesian inference) → Model Form UQ

DAKOTA Software

flexible and extensible problem-solving environment for design and performance analysis of

Download

License Release Notes Registration

computational models on high performance computers

Applications

Privacy and Security - Site Contac

FAQ

ocumentation

Packages

Community support: dakota-users, dakota-help