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Two problems

Our concern could be

1 the largest value, i.e. estimating the marginal tail ; or

2 the aggregate effect of extreme observations occurring
one after the other, i.e. estimating the structure of
clusters of extreme values.
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Examples

Analyzing daily temperature :

1 one very hot day may cause much discomfort (marginal
tail) ;

2 a heat wave is unforgiving for societies and
infrastructures unable to cope or adapt (cluster of
extreme values).

Analyzing daily rainfall :

1 river flooding may be caused by one extreme rainfall
event (marginal tail) ;

2 river flooding may be caused by the ground already
being saturated with water due to high precipitation
during several days (cluster of extreme values).
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Marginal Analysis

Essentially three different approaches :

(1) identify independent clusters of exceedances and
construct a new data set by taking the maximum from each
cluster. One obtains an iid sample whose tail behavior can be
analyzed using standard techniques from classical EVT for
iid data.
(2) apply classical tail estimators (for iid samples) directly to
all exceedances observed in the time series. However, to
construct CIs, one needs results on their asymptotic behavior
that hold true under mild assumptions on the serial
dependence structure.
(3) fit a parametric model of the serial dependence to the
data and infer the tail behavior of the time series from a
suitable analysis of the residuals.
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Modeling of Clusters of Extreme Values

(1) Markov chain modeling of clusters of extreme values
[e.g., Smith, Coles and Tawn (1997), Bortot and
Tawn (1998), Sisson and Coles (2003)]

(2) Some results on empirical processes of cluster functionals
[Drees and Rootzén (2010)]
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Marginal Analysis - Some Difficulties

(1) (identify independent clusters of exceedances, take cluster

maximum, and use classical EVT on iid sample) :

(i) cluster maximum is not the quantity of interest. Eg.
Laurini and Tawn (2009) and estimation of
Value-at-Risk ;

(ii) clusters may be hard to identify

(2) (apply classical tail estimators directly to all exceedances) :
need asymptotic behavior under the assumed serial
dependence structure, there are very few results, eg.
Drees (2000, 2002, 2003)

(3) (fit parametric model of serial dependence to data and analyze

iid residuals) : can give completely misleading estimates even
if the deviation from the assumed linear time series model is
moderate, eg. Drees (2008)
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Definition

A sequence of rv X1,X2, . . . is strictly stationary if its
finite-dimensional distributions are invariant under shifts of
time, i.e.

(Xt1 , . . . ,Xtm)
d
= (Xt1+h, . . . ,Xtm+h)

for any choice of indices t1 < . . . < tm and integers h. { but
Xt1 need not be independent of Xt1+1 or Xt1+h, . . .}
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⇒ It is impossible to build a general extreme value theory for
the class of all stationary sequences. E.g.

1 Assume Xn = X ∀n. This relation defines a stationary
sequence and

P(Mn ≤ x) = P(X ≤ x) = F (x) x ∈ R

⇒ the distribution of the sample maxima can be any

distribution F . (not reasonable basis for a general theory)

2 Xn an iid sequence

P
(

Mn − bn

an
≤ z

)
≈ G (z)

where G is GEV if non-degenerate.

We need some condition in between, must be reasonable for
applications yet mathematically tractable so as to get the
form of the limiting distribution.
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Condition D(un)

[Leadbetter, Lindgren and Rootzén (1983), Leadbetter and
Rootzén (1988)]

For any integers p, q, and n

1 ≤ i1 < . . . ip < j1 < . . . < jq ≤ n

such that j1 − ip ≥ l we have˛̨̨̨
P

„
max

i∈A1∪A2

Xi ≤ un

«
− P

„
max
i∈A1

Xi ≤ un

«
P

„
max
i∈A2

Xi ≤ un

«˛̨̨̨
≤ α(n, l)

where A1 = {i1, . . . , ip}, A2 = {j1, . . . , jq} and α(n, l)→ 0 as

n→∞ for some l = ln = o(n).
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NOTE :

For sequences of independent rv, the difference
P()− P()P() is exactly 0 for any sequence un.

Condition D(un) is a distributional mixing condition,
weaker than most of the classical forms of dependence
restrictions.

For Gaussian sequences with autocorrelation ρn at lag
n, the D(un) is satisfied as soon as ρn log n→ 0 as
n→∞. This is much weaker than the geometric decay
assumed by autoregressive models.

Condition D(un) ensures that, for sets of rv
far enough apart, P()− P()P() is sufficiently close to
zero to have no effect on the limit laws for extremes.



SAMSI:
Uncertainty

Quantification
10 Sept. 2011

Two Different
Problems

Practical Issues

EVT for Stationary
Sequences

Data Analysis

Concluding
Remarks

Theorem 1

[Leadbetter (1974)]
Let X1,X2, . . . be a stationary process and Mn = max{X1, . . . ,Xn}.
Then, if {an > 0} and {bn} are sequences of constants such that

lim
n→∞

P
(

Mn − bn

an
≤ z

)
= G (z)

where G is a non-degenerate df, and the D(un) condition is
satisfied with un = anz + bn ∀z ∈ R, then G is GEV.

⇒ Provided a series has limited long-range dependence at extreme
levels (in the sense that the D(un) condition makes sense),
maxima of stationary series follow the same distributional limit
laws as those of independent series.

[Note that we are not saying that the parameters of the GEV are

the same as those of the corresponding independent sequence.]
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Theorem 2

[Leadbetter (1983)]
Let X1,X2, . . . be a stationary process and X ∗1 ,X

∗
2 , . . . be an

associated sequence. If

P
(

M∗n − bn

an
≤ z

)
→ G1(z)

as n→∞ for normalizing sequences {an > 0} and {bn}, where G1

is a non-degenerate df, if D(un) holds with un = anx + bn for each

x such that G (x) > 0 and if P
(

Mn−bn

an
≤ x

)
converges for some x ,

then

P
(

Mn − bn

an
≤ z

)
→ G2(z)

where G2(z) = G θ
1 (z) for a constant θ such that 0 < θ ≤ 1.
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BASIC IDEA :

1 If maxima of a stationary series converge, then the limit
distribution is related to the limiting distribution of an
independent series according to G2(z) = G θ

1 (z).

2 Recall that maxima of a stationary series will converge
provided an appropriate D(un) condition is satisfied.

3 Recall that G1(z) has to be GEV, so G θ
1 (z) is also GEV.

In fact,

G θ
1 (z) = exp

{
−
[
1 + ξ

(
z−µ
σ

)]−1/ξ
}θ

= exp
{
−
[
θ−ξ + θ−ξξ

(
z−µ
σ

)]−1/ξ
}

= exp

{
−
[
1 + ξ

(
z−µ∗
σ∗

)]−1/ξ
}

where µ∗ = µ− σ
ξ (1− θξ), σ∗ = σθξ. Note that the shape

parameter ξ remains the same.

The quantity θ as defined by G2(z) = G θ
1 (z) is the

extremal index.
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Alternatively, without making use of the associated series,
we have the following.

Definition

Let X1,X2, . . . be a strictly stationary process with marginal
df F and θ a non-negative number. Assume that for every
τ > 0 there exists a sequence {un} such that

limn→∞ n(1− F (un)) = τ,
limn→∞ P(Mn ≤ un) = exp (−θτ).

Then θ is called the extremal index of the sequence {Xn}.



SAMSI:
Uncertainty

Quantification
10 Sept. 2011

Two Different
Problems

Practical Issues

EVT for Stationary
Sequences

Data Analysis

Concluding
Remarks

NOTE :

We essentially have
P(max (X1,X2, . . . ,Xn) ≤ x) ≈ F θn(x)

θ is the limiting reciprocal mean cluster size :
θ = (limiting mean cluster size)−1 (limiting in the sense
of clusters of exceedances of increasingly high
thresholds).

Independent series ⇒ θ = 1
Stationary series with θ = 1⇒/ independent
A series for which θ = 1 means that dependence is
negligible at asymptotically high levels, but not
necessarily so at “extreme” levels that are relevant for
any particular application.
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Relevance of θ

Consider a simple example from Weissman (1994) :

Assume a dyke has to be built at the seashore to protect
against floods with 95% certainty for the next 100 years.

Suppose that it has been established that the 99.9% and
99.95% quantiles of the annual wave-height are

z0.001 = 10 m and z0.0005 = 11 m.

If the annual maxima are iid, then the dyke should be 11 m
high since 0.9995100 ≈ 0.95

If the annual maxima are stationary with extremal index
θ = 0.5, then a height of 10 m is sufficient since
0.99950 ≈ 0.95.
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Block Maxima

How are these asymptotic results used to draw inferences on

stationary series ? Easy.

If data ≈ a realization of a process satisfying D(un)
condition, it is still appropriate to model block maxima using
the GEV family (as in iid case).

The parameters themselves are different than those that
would have been obtained had the series been iid, but since
they are estimated from the data, it doesn’t matter.

There is a price to pay however.

The accuracy of the GEV family as an approximation to
the distribution of block maxima is likely to diminish
with increased level of dependence.

Effective number of observations is reduced from n to
nθ.
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Threshold Models

Modifications are required

For stationary series, asymptotic arguments imply that the
marginal distribution of excesses of a high threshold is GP.

But extremes have a tendency to cluster and we do not have
a result for the joint distribution of neighboring excesses.

The most widely-adopted approach is declustering.
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Consider the maximum daily temperature in New York City.

Data are from January 1, 1956 to December 31, 2005.

Consider only July and August, hoping for a stationary series.

The following plots show the impact of the threshold
selection and the cluster definition.
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Fig.: Summer data maximum temperatures (in degrees Fahrenheit)
for New York for 1956-2005.
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Fig.: Maximum temperatures for New York for summer 1980 ;
run length = 3/4/3 ; threshold = 95%/95%/98%.
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Fig.: Maximum temperatures for New York for summer 1995 ;
run length = 3/4/3 ; threshold = 95%/95%/98%.
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Fig.: Maximum temperatures for New York for summer 1999 ;
run length = 3/4/3 ; threshold = 95%/95%/98%.
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Fig.: Maximum temperatures for New York for summer 2005 ;
run length = 3/4/3 ; threshold = 95%/95%/98%.
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Estimating θ

1 Blocks Method

2 Extremal Index as Reciprocal of the Mean Cluster Size

3 Runs Method

4 Two-thresholds Method

5 Intervals Estimator

We can find estimates of θ based on the blocks method, the
reciprocal of mean cluster size interpretation, the runs
method and the intervals estimator using the fExtremes
package in R.
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Title :
Extremal Index from Block Method

Call :
blockTheta(x = as.timeSeries(x), block = 3, quantiles = qthres)

Extremal Index :
quantiles thresholds N K theta

1 0.870 90 388 287 0.812
2 0.883 91 294 226 0.826
3 0.897 91 294 226 0.826
4 0.911 92 218 174 0.843
5 0.925 92 218 174 0.843
6 0.939 93 164 136 0.866
7 0.953 94 117 102 0.900
8 0.967 95 91 74 0.831
9 0.981 97 39 39 1.013

10 0.995 99 11 15 1.371
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Title :
Extremal Index from Reciprocal Cluster Method

Call :
clusterTheta(x = as.timeSeries(x), block = 3, quantiles = qthres)

Extremal Index :
quantiles thresholds N K theta

1 0.870 90 388 287 0.739
2 0.883 91 294 226 0.768
3 0.897 91 294 226 0.768
4 0.911 92 218 174 0.798
5 0.925 92 218 174 0.798
6 0.939 93 164 136 0.829
7 0.953 94 117 102 0.871
8 0.967 95 91 74 0.813
9 0.981 97 39 39 1.000

10 0.995 99 11 15 1.363
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Title :
Extremal Index from Run Method

Call :
runTheta(x = as.timeSeries(x), block = 3, quantiles = qthres)

Extremal Index :
quantiles thresholds N theta

1 0.870 90 388 0.569
2 0.883 91 294 0.619
3 0.897 91 294 0.619
4 0.911 92 218 0.674
5 0.925 92 218 0.674
6 0.939 93 164 0.719
7 0.953 94 117 0.752
8 0.967 95 91 0.758
9 0.981 97 39 0.820

10 0.995 99 11 0.909



SAMSI:
Uncertainty

Quantification
10 Sept. 2011

Two Different
Problems

Practical Issues

EVT for Stationary
Sequences

Data Analysis

Concluding
Remarks

Title :
Extremal Index from Ferro-Segers Method

Call :
ferrosegersTheta(x = as.timeSeries(x), quantiles = qthres)

Extremal Index :
Threshold Quantiles RunLength Clusters theta

1 0.870 90 17 53 0.484
2 0.883 91 17 54 0.465
3 0.897 91 17 54 0.465
4 0.911 92 16 52 0.460
5 0.925 92 16 52 0.460
6 0.939 93 15 49 0.429
7 0.953 94 9 46 0.386
8 0.967 95 10 36 0.397
9 0.981 97 12 18 0.454

10 0.995 99 17 7 0.609
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and choosing an estimate of θ is not easy...

thres Blocks Recip Runs’ Int’s
1 90 0.812 0.739 0.569 0.484
2 91 0.826 0.768 0.619 0.465
3 91 0.826 0.768 0.619 0.465
4 92 0.843 0.798 0.674 0.460
5 92 0.843 0.798 0.674 0.460
6 93 0.866 0.829 0.719 0.429
7 94 0.900 0.871 0.752 0.386
8 95 0.831 0.813 0.758 0.397
9 97 1.013 1.000 0.820 0.454

10 99 1.371 1.363 0.909 0.609

(Can get bootstrap CIs for intervals estimator of θ using the
extRemes package in R.)
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Extremal Dependence or Non-stationarity ?

What is the impact of non-stationarity on the estimated
extremal index ?
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Fig.: Minimum, 5% quantile, median, 95% quantile and maximum
observed daily maximum temperatures (in degrees Fahrenheit) for
New York for 1956-2005.
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Fig.: Volatility of daily maximum temperatures (in degrees
Fahrenheit) for New York for 1956-2005.
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Tab.: Estimated GPD parameters. ξ1 (ξ2) is the estimated shape
parameter for the period before (after) the change-year η.
Estimated extremal index θ (using intervals estimator) at threshold
uz is in last column.

Season uz β ξ1 ξ2 θ
1 2.03 0.60 (0.10) -0.38 (0.17) -0.65 (0.13) 0.80
2 2.35 0.49 (0.08) -0.49 (0.14) 0.05 (0.17) 0.92
3 1.99 0.37 (0.03) -0.11 (0.07) -0.04 (0.10) 0.98

Season 1 : Day 1 to Day 52 (change-year 1975)
Season 2 : Day 53 to Day 125 (change-year 1975)
Season 3 : Day 126 to Day 365 (change-year 1991)
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Concluding Remarks

can relax assumption of iid to stationary sequences

extremal properties of special classes of stationary
sequences have been studied :

Markov chains - O’Brien (1987), Smith (1992),
Perfekt (1994)
moving average processes - Rootzén (1986)
ARCH process - de Haan et al (1989)

marginal analysis vs cluster analysis

stationary vs non-stationary

meteorological data typically have a strong seasonal
component
macro-economic data often show an upward or
downward trend
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