

The Statistical Analysis of Satellite Retrievals

Noel Cressie

(ncressie@stat.osu.edu)

Program in Spatial Statistics

and Environmental Statistics

(www.stat.ohio-state.edu/~sses)

The Ohio State University

Acknowledgment: Rui Wang, Amy Braverman, Emily Kang, Tao Shi, and the ACOS team

Sample of Size One?

Where is the probability space to enable Uncertainty Quantification (UQ)?

Satellite Launch

Putting small, delicate instruments in nose cones of large, powerful rockets and launching them, is a risky business Physical properties (e.g., atmospheric AOD) are detected indirectly through spectral radiances

Multi-angle Imaging SpectoRadiometer (MISR) Path and Coverage

MISR repeats the same path (360km wide) every 16 days

MISR Level 2 Aerosol Optical Depth (AOD) Coverage on 4/1/02

Even accounting for the orbit geometry, retrievals everywhere are not possible

Aerosol Optical Depth, APR 1, 2001

Missing data are due to orbit geometry, cloud cover, non-convergent retrieval algorithms

Aerosol Optical Depth, APR 1 to 16, 2001

 720×360 pixels on a $0.5^\circ\times 0.5^\circ$ global map

Linear forward model: Consider solving for the state vector x in the statistical model,

$$\mathbf{y} = \mathbf{K}\mathbf{x} + \boldsymbol{\varepsilon},$$

where y and $\boldsymbol{\varepsilon}$ are $n_{\boldsymbol{\varepsilon}}$ -dimensional, $E(\boldsymbol{\varepsilon}) = \mathbf{0}$, and $\operatorname{var}(\boldsymbol{\varepsilon}) = \mathbf{S}_{\boldsymbol{\varepsilon}}$

State equation: Assume

$$\mathbf{x} = \mathbf{x}_{\alpha} + \boldsymbol{\alpha},$$

where $\mathbf{x}, \mathbf{x}_{\alpha}$, and $\boldsymbol{\alpha}$ are n_{α} -dimensional, $E(\boldsymbol{\alpha}) = 0$ and $var(\boldsymbol{\alpha}) = \mathbf{S}_{\alpha}$

- If the optimal estimator $\widehat{\mathbf{x}}$, maximizes the posterior distribution, $P(\mathbf{x}|\mathbf{y})$
- For the linear forward model, $\widehat{\mathbf{x}}$ has a closed-form solution:

$$\widehat{\mathbf{x}} = \mathbf{x}_{\alpha} + \{\mathbf{K}'\mathbf{S}_{\varepsilon}^{-1}\mathbf{K} + \mathbf{S}_{\alpha}^{-1}\}^{-1}\mathbf{K}'\mathbf{S}_{\varepsilon}^{-1}(\mathbf{y} - \mathbf{K}\mathbf{x}_{\alpha})\}$$

Solution For the linear forward model, $\mathbf{y} = \mathbf{K}\mathbf{x} + \boldsymbol{\varepsilon}$. Consequently,

$$E(\widehat{\mathbf{x}} - \mathbf{x}) = \mathbf{0} \,,$$

and the MSPE is:

$$E((\widehat{\mathbf{x}} - \mathbf{x})(\widehat{\mathbf{x}} - \mathbf{x})') = \operatorname{var}(\mathbf{x}|\mathbf{y}) \equiv \widehat{\mathbf{S}}$$

= $\{\mathbf{S}_{\alpha}^{-1} + \mathbf{K}'\mathbf{S}_{\varepsilon}^{-1}\mathbf{K}\}^{-1}$
= $\mathbf{A}\{\mathbf{K}'\mathbf{S}_{\varepsilon}^{-1}\mathbf{K}\}^{-1}$
= $(\mathbf{A} - \mathbf{I})\mathbf{S}_{\alpha}(\mathbf{A} - \mathbf{I})' + \mathbf{GS}_{\varepsilon}\mathbf{G}',$

where

 $\mathbf{G} \equiv {\{\mathbf{S}_{\alpha}^{-1} + \mathbf{K}'\mathbf{S}_{\varepsilon}^{-1}\mathbf{K}\}^{-1}\mathbf{K}'\mathbf{S}_{\varepsilon}^{-1}}, \text{ is the gain matrix}$ $\mathbf{A} \equiv \mathbf{G}\mathbf{K}, \text{ is the averaging-kernel matrix;}$ the vector $\mathbf{A}(1, \dots, 1)'$, plotted as a function of row number, is known as the averaging kernel

✓ For the non-linear case, Rodgers (2000) recommends the Levenberg-Marquardt iteration scheme: Put $\mathbf{K}_{\ell} = \mathbf{K}(\mathbf{x}_{\ell})$; then $\widehat{\mathbf{x}} = \mathbf{x}_{\infty}$ in

$$\mathbf{x}_{\ell+1} = \mathbf{x}_{\ell} + \{(1+\gamma_{\ell})\mathbf{S}_{\alpha}^{-1} + \mathbf{K}_{\ell}'\mathbf{S}_{\varepsilon}^{-1}\mathbf{K}_{\ell}\}^{-1}[\mathbf{K}_{\ell}'\mathbf{S}_{\varepsilon}^{-1}(\mathbf{y} - \mathbf{F}(\mathbf{x}_{\ell})) - \mathbf{S}_{\alpha}^{-1}(\mathbf{x}_{\ell} - \mathbf{x}_{\alpha})]$$

- This approach is sometimes called optimal estimation in the remote-sensing literature
- The bias vector and mean squared prediction error matrix of the state vector $\hat{\mathbf{x}}$ are approximated using the "delta method"
- Define

$$\begin{split} \mathbf{K}(\mathbf{x}) &\equiv \frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}} \\ \mathbf{G}(\mathbf{x}) &\equiv \{\mathbf{S}_{\alpha}^{-1} + \mathbf{K}(\mathbf{x})'\mathbf{S}_{\varepsilon}^{-1}\mathbf{K}(\mathbf{x})\}^{-1}\mathbf{K}(\mathbf{x})'\mathbf{S}_{\varepsilon}^{-1} \\ \mathbf{A}(\mathbf{x}) &\equiv \mathbf{G}(\mathbf{x})\mathbf{K}(\mathbf{x}) \end{split}$$

Bias and MSPE of Retrieval: Nonlinear Forward Model

Calculating the matrix of approximate mean squared prediction errors is more straightforward than calculating the vector of approximate biases:

$$E\{(\widehat{\mathbf{x}} - \mathbf{x})(\widehat{\mathbf{x}} - \mathbf{x})'\} \simeq \widetilde{\mathbf{M}} \mathbf{SPE}(\mathbf{x}_{\alpha})$$

$$\equiv (\mathbf{A}(\mathbf{x}_{\alpha}) - \mathbf{I})\mathbf{S}_{\alpha}(\mathbf{A}(\mathbf{x}_{\alpha}) - \mathbf{I})' + \mathbf{G}(\mathbf{x}_{\alpha})\mathbf{S}_{\varepsilon}\mathbf{G}(\mathbf{x}_{\alpha})'$$

On the next slide, we obtain $E(\widehat{\mathbf{x}} - \mathbf{x}) \simeq \widetilde{\mathbf{bias}}(\mathbf{x}_{\alpha})$

In deriving the vector of approximate biases, we need the following expressions, obtained using the delta method:

 $\begin{aligned} & \operatorname{var}(\widehat{\mathbf{x}}) &\simeq \quad \widetilde{\operatorname{var}}(\widehat{\mathbf{x}}) \equiv \mathbf{A}(\mathbf{x}_{\alpha}) \mathbf{S}_{\alpha} \mathbf{A}(\mathbf{x}_{\alpha})' + \mathbf{G}(\mathbf{x}_{\alpha}) \mathbf{S}_{\varepsilon} \mathbf{G}(\mathbf{x}_{\alpha})' \\ & \operatorname{cov}(\widehat{\mathbf{x}}, \mathbf{x}) &\simeq \quad \widetilde{\operatorname{cov}}(\widehat{\mathbf{x}}, \mathbf{x}) \equiv \mathbf{A}(\mathbf{x}_{\alpha}) \mathbf{S}_{\alpha} \\ & \operatorname{cov}(\widehat{\mathbf{x}}, \boldsymbol{\varepsilon}) &\simeq \quad \widetilde{\operatorname{cov}}(\widehat{\mathbf{x}}, \boldsymbol{\varepsilon}) \equiv \mathbf{G}(\mathbf{x}_{\alpha}) \mathbf{S}_{\varepsilon} \end{aligned}$

Bias and MSPE of Retrieval: Nonlinear Forward Model, ctd

$$\begin{split} E(\widehat{\mathbf{x}} - \mathbf{x}) &= E(\widehat{\mathbf{x}}) - \mathbf{x}_{\alpha} \simeq \widetilde{\mathbf{b}} \operatorname{ias}(\mathbf{x}_{\alpha}) \\ & = \left(1/2\right) \begin{pmatrix} \left(\operatorname{vec}\left(\frac{\partial \mathbf{A}(\mathbf{x}_{\alpha})_{1\text{st-row}}}{\partial \mathbf{x}_{\alpha}}\right)\right)' \\ \left(\operatorname{vec}\left(\frac{\partial \mathbf{A}(\mathbf{x}_{\alpha})_{2\text{nd-row}}}{\partial \mathbf{x}_{\alpha}}\right)\right)' \\ \vdots \\ \left(\operatorname{vec}\left(\frac{\partial \mathbf{A}(\mathbf{x}_{\alpha})_{n\alpha}\operatorname{th-row}}{\partial \mathbf{x}_{\alpha}}\right)\right)' \end{pmatrix} \\ & - \left(1/2\right) \begin{pmatrix} \left(\operatorname{vec}\left(\frac{\partial \mathbf{G}(\mathbf{x}_{\alpha})_{1\text{st-row}}}{\partial \mathbf{x}_{\alpha}}\right)\right)' \\ \left(\operatorname{vec}\left(\frac{\partial \mathbf{G}(\mathbf{x}_{\alpha})_{2\text{nd-row}}}{\partial \mathbf{x}_{\alpha}}\right)\right)' \\ \vdots \\ \left(\operatorname{vec}\left(\frac{\partial \mathbf{G}(\mathbf{x}_{\alpha})_{n\alpha}\operatorname{th-row}}{\partial \mathbf{x}_{\alpha}}\right)\right)' \end{pmatrix} \\ & \cdot \operatorname{vec}\left(\mathbf{K}(\mathbf{x}_{\alpha}) \cdot \widetilde{\mathbf{M}} \operatorname{SPE}(\mathbf{x}_{\alpha}) - 2\mathbf{S}_{\varepsilon}\mathbf{G}(\mathbf{x}_{\alpha})'\right) \end{pmatrix} \end{split}$$

Study Region: 128×256 grid $(0.5^{\circ} \times 0.5^{\circ}$ pixels)

AOD July 1-8, 2001 (globe)

AOD Histograms (July 1-8, 2001)

Conclusion: Analyze *log*(AOD)

Spatial data arrive sequentially: July 1-8, 2001 (t = 1), ..., August 2-9, 2001 (t = 6). At each time point, we have a spatial "snapshot." Large AOD means that the aerosol fraction is high; **spatio-temporal data** on log(AOD) is shown

Spatio-Temporal Statistical Model: Data Model

Data model:

$$Z(\mathbf{s};t) = Y(\mathbf{s};t) + \varepsilon(\mathbf{s};t)$$
$$= \mu(\mathbf{s};t) + \nu(\mathbf{s};t) + \varepsilon(\mathbf{s};t)$$

• Measurement-error process $\{\varepsilon(\mathbf{s};t)\}$ is independent of $\{Y(\mathbf{s};t)\}$. Assume $\{\varepsilon(\mathbf{s};t)\}$ is Gaussian, with mean zero and $\operatorname{var}(\varepsilon(\mathbf{s};t)) = \sigma_{\varepsilon}^2 v(\mathbf{s};t) > 0;$ $E(\varepsilon(\mathbf{s};t)\varepsilon(\mathbf{q};u)) = 0$, unless $\mathbf{s} = \mathbf{q}$ and t = u

Noisy and incomplete data at time u, for $u = 1, \ldots, t$:

$$\mathbf{Z}(u) \equiv \left(Z(\mathbf{s}_{1,u}; u), \dots, Z(\mathbf{s}_{n_u, u}; u) \right)',$$

$$\operatorname{var}(\mathbf{Z}(u)) \equiv \Sigma_u = S_u K_u S'_u + D_u ,$$

where $D_u \equiv \sigma_{\xi}^2 I_{n_u} + \sigma_{\varepsilon}^2 V_u$ and $V_u \equiv diag(v(\mathbf{s}_{1,u}; u), \dots, v(\mathbf{s}_{n_u,u}; u))$

Define $n_{+t} \equiv \sum_{u=1}^{t} n_u$; then var $(\mathbf{Z}(1)', \dots, \mathbf{Z}(t)')$ is $n_{+t} \times n_{+t}$. Statistical gap-filling and smoothing uses dimension reduction

S
$$(\cdot) \equiv (S_1(\cdot), \dots, S_r(\cdot))'$$
 are spatial basis functions (known)

- **9** $\eta \equiv (\eta_1, \ldots, \eta_r)'$ are coefficients (random)
- $\xi(\cdot)$ is a fine-scale spatial process (random; e.g., white noise)

Then

$$u(\mathbf{s}) \equiv \mathbf{S}(\mathbf{s})' \boldsymbol{\eta} + \xi(\mathbf{s}); \quad \mathbf{s} \in D$$

is an SRE model (Cressie and Johannesson, 2006, 2008)

Aside: Spatio-Temporal Random Effects (STRE) Model

- One approach is to fit each spatial "snapshot" with an SRE model; this does not take the temporal dependence into account
- Alternatively, let the SRE model evolve dynamically. Recall the random coefficients η . Subscript them with time t and write:

$$\eta_{t+1} = H_{t+1}\eta_t + \zeta_{t+1}; \quad t = 1, 2, \dots.$$

See Wikle and Cressie (1999) and Cressie, Shi, and Kang (2010) for more details. This results in the **Spatio-Temporal Random Effects (STRE)** model,

$$\nu(\mathbf{s};t) \equiv \mathbf{S}_t(\mathbf{s})' \boldsymbol{\eta}_t + \xi(\mathbf{s};t); \quad \mathbf{s} \in D_t, \ t = 1, 2, \dots$$

AOD over the land is different from AOD over the sea

Trend

$\mathbf{Z}(1), \mathbf{Z}(2), \dots, \mathbf{Z}(6)$, after OLS detrending; each is an approx. 20,000-dimensional vector

Think of $\mathbf{Z}(t)$ as a noisy, incomplete version of a mean-zero hidden process, $\{Y(\mathbf{s};t):\mathbf{s}\in D\}$

Spatio-Temporal Statistical Model: Data Model

Data model:

$$Z(\mathbf{s};t) = Y(\mathbf{s};t) + \varepsilon(\mathbf{s};t)$$
$$= \mu(\mathbf{s};t) + \nu(\mathbf{s};t) + \varepsilon(\mathbf{s};t)$$

• Measurement-error process $\{\varepsilon(\mathbf{s};t)\}$ is independent of $\{Y(\mathbf{s};t)\}$. Assume $\{\varepsilon(\mathbf{s};t)\}$ is Gaussian, with mean zero and $\operatorname{var}(\varepsilon(\mathbf{s};t)) = \sigma_{\varepsilon}^2 v(\mathbf{s};t) > 0;$ $E(\varepsilon(\mathbf{s};t)\varepsilon(\mathbf{q};u)) = 0$, unless $\mathbf{s} = \mathbf{q}$ and t = u

Noisy and incomplete data at time u, for $u = 1, \ldots, t$:

$$\mathbf{Z}(u) \equiv \left(Z(\mathbf{s}_{1,u}; u), \dots, Z(\mathbf{s}_{n_u,u}; u) \right)',$$

$$\operatorname{var}(\mathbf{Z}(u)) \equiv \Sigma_u = S_u K_u S'_u + D_u ,$$

where $D_u \equiv \sigma_{\xi}^2 I_{n_u} + \sigma_{\varepsilon}^2 V_u$ and $V_u \equiv diag(v(\mathbf{s}_{1,u}; u), \dots, v(\mathbf{s}_{n_u,u}; u))$

Define $n_{+t} \equiv \sum_{u=1}^{t} n_u$; then $var(\mathbf{Z}(1)', \dots, \mathbf{Z}(t)')$ is $n_{+t} \times n_{+t}$. Statistical gap-filling and smoothing uses dimension reduction

- Spatio-temporal process $\{\nu(\mathbf{s};t): \mathbf{s} \in D \subset \mathbb{R}^d; t = 1, 2, ...\}$, mean zero
 - Spatio-temporal random effects (STRE) model: At any fixed time t,

$$\nu(\mathbf{s};t) = \mathbf{S}_t(\mathbf{s})'\boldsymbol{\eta}_t + \xi(\mathbf{s};t);$$

- cf. Wikle and Cressie (1999) and Cressie, Shi, and Kang (2010)
- **Fix** $r \ll n_u$, the number of multi-resolution basis functions
- Consider a set of spatial basis functions (not necessarily orthogonal),

$$\mathbf{S}_t(\cdot) \equiv (S_{1,t}(\cdot), \dots, S_{r,t}(\cdot))'$$

- $\eta_t \equiv (\eta_{1,t}, \dots, \eta_{r,t})'$ is a zero-mean random vector; $var(\eta_t) = K_t$
- $\boldsymbol{\mathcal{I}}$ is fine-scale variability modeled as white noise

Introduce **temporal dynamics** through a vector autoregressive (VAR) process of order 1 for $\{\eta_t\}$:

$$\eta_{t+1} = H_{t+1} \, \eta_t + \zeta_{t+1}; \quad t = 1, 2, \dots$$

- \blacksquare H_{t+1} : first-order **autoregressive** (or propagator) matrix
- $\boldsymbol{\varsigma}_{t+1}$: r-dimensional innovation vector independent of $\boldsymbol{\eta}_t$
- $\left\{ \boldsymbol{\zeta}_{t+1} \right\}$: Gaussian process, temporally **independent**, with

$$E(\boldsymbol{\zeta}_{t+1}) = \mathbf{0} \,,$$

and

 $\operatorname{var}(\boldsymbol{\zeta}_{t+1}) = U_{t+1}$

Goal: Predict $Y(\mathbf{s}_0; t)$ given noisy and incomplete data up to and including time t, that is, given $\mathbf{Z}(1), \ldots, \mathbf{Z}(t)$.

Solution States States and State

$$\widehat{\boldsymbol{\eta}}_{t|t} \equiv E(\boldsymbol{\eta}_t \mid \mathbf{Z}(1), \dots, \mathbf{Z}(t))$$

$$= \widehat{\boldsymbol{\eta}}_{t|t-1} + \boldsymbol{G_t} \left\{ \mathbf{Z}(t) - \boldsymbol{\mu}_t - S_t \widehat{\boldsymbol{\eta}}_{t|t-1} \right\} ,$$

with $r \times r$ mean-squared-prediction-error (MSPE) matrix,

$$P_{t|t} \equiv E\left[(\widehat{\boldsymbol{\eta}}_{t|t} - \boldsymbol{\eta}_t)(\widehat{\boldsymbol{\eta}}_{t|t} - \boldsymbol{\eta}_t)'\right] = P_{t|t-1} - \boldsymbol{G_t} S_t P_{t|t-1},$$

\$\hftarrow n_{t|t-1}\$ and \$P_{t|t-1}\$: one-step-ahead-forecast and its \$r \times r\$ MSPE matrix, resp.
 \$G_t: r \times r\$ Kalman gain matrix\$

$$G_{t} = P_{t|t-1} S_{t}' \{ D_{t} + S_{t} P_{t|t-1} S_{t}' \}^{-1}$$

$$= P_{t|t-1} S_{t}' \{ D_{t}^{-1} - D_{t}^{-1} S_{t} \}$$

$$\times \left[P_{t|t-1}^{-1} + S_{t}' D_{t}^{-1} S_{t} \right]^{-1} S_{t}' D_{t}^{-1} \},$$

where the following Sherman-Morrison-Woodbury identity is applied:

$$(I + PKP')^{-1} = I - P(K^{-1} + P'P)^{-1}P',$$

for any $n \times r$ matrix P.

- Only involves inversion of fixed rank $r \times r$ matrices and of $n_t \times n_t$ diagonal matrices
- Computing is really fast and the required storage space is small

Filtering of $Y(\cdot; t)$ (Cressie, Shi, and Kang, 2010)

Optimal prediction of $\nu(\mathbf{s}_0; t)$ given the data $\mathbf{Z}(1), \ldots, \mathbf{Z}(t)$ yields:

$$\mathbf{S}_t(\mathbf{s}_0)'\widehat{\boldsymbol{\eta}}_{t|t} + \widehat{\xi}_{t|t}(\mathbf{s}_0)\,,$$

where

$$\widehat{\xi}_{t|t}(\mathbf{s}_{0}) = E(\xi(\mathbf{s}_{0};t)|\mathbf{Z}(1),\ldots,\mathbf{Z}(t)) = \mathbf{c}_{t}(\mathbf{s}_{0})'(D_{t}+S_{t}P_{t|t-1}S_{t}')^{-1}(\mathbf{Z}(t)-\boldsymbol{\mu}(t)-S_{t}\widehat{\boldsymbol{\eta}}_{t|t-1}) = \sigma_{\xi}^{2}(I(\mathbf{s}_{0}=\mathbf{s}_{1,t}),\ldots,I(\mathbf{s}_{0}=\mathbf{s}_{n_{t},t}))'.$$

Then the Fixed Rank Filtering (FRF) equations are:

$$\widehat{Y}(\mathbf{s}_0;t)^{FRF} = \mu(\mathbf{s}_0;t) + \mathbf{S}_t(\mathbf{s}_0)'\widehat{\boldsymbol{\eta}}_{t|t} + \widehat{\xi}_{t|t}(\mathbf{s}_0)$$

$$\sigma(\mathbf{s}_0;t)^{FRF} = \{E(Y(\mathbf{s}_0;t) - \widehat{Y}(\mathbf{s}_0;t)^{FRF})^2\}^{1/2}$$

FRF: Discussion

- Efficient Computation
 - **Solution** Computational complexity is reduced from $O(n_{+t}^3)$ to $O(n_{+t})$
 - Small storage space is required due to the fixed rank r: store an $r \times r$ matrix $P_{t|t}$ and an r-dimensional vector $\eta_{t|t}$
- Given data $\mathbf{Z}(1), \ldots, \mathbf{Z}(t)$, fixed rank smoothing and fixed rank forecasting can be similarly obtained
 - **Smoothing**: prediction of $Y(\mathbf{s}_0; u)$, where $u \in \{1, \ldots, t-1\}$
 - **•** Forecasting: prediction of $Y(\mathbf{s}_0; u)$, where $u \in \{t + 1, t + 2, ...\}$
- This has been applied to AOD (see below) and the CO₂ product from the Atmospheric InfraRed Sounder (AIRS) instrument (http://www.stat.osu.edu/~sses/collab_co2.html)

Spatio-Temporal Statistical Mapping of Satellite Data

- Data $\mathbf{Z}(1), \ldots, \mathbf{Z}(6)$ are large, noisy, and spatially incomplete
- Sample sizes:

 $n_1 = 20970, n_2 = 19398, n_3 = 20819,$

 $n_4 = 20167, \ n_5 = 21759, \ n_6 = 20625.$

- Use W-wavelet functions for basis functions
- Fix r = 94
- See Kang et al. (2010) and Wikle and Cressie (2011), Sec. 9.2, for a more complete analysis, including methodology for estimating the model's parameters

Final Result (t = 2)

Final Result (t = 3)

Final Result (t = 4)

Final Result (t = 5)

Final Result (t = 6)

- Computations are carried out in Matlab on a Windows laptop with a dual core 2.0 GHz processor and 3GB memory
- Timing:
 - **64.4 seconds** to fit the **parameters** (including binning)
 - 77.3 seconds to compute the predictions and standard errors from time t = 2through t = 5
 - Only 19.7 seconds to update the filter at, for example, time t = 5, given the filtering results at t = 4 and the data at t = 5
- **Storage**: 94×94 matrix $P_{t|t}$ and a 94-dimensional vector $\boldsymbol{\eta}_{t|t}$

- Cressie, N. and Johannesson, G. (2006). In *Proceedings of the Australian Academy of Science Elizabeth and Frederick White Conference*, pp. 1-11. Australian Academy of Science, Canberra.
- Cressie, N. and Johannesson, G. (2008). *Journal of the Royal Statistical Society, Series B*, **70**, 209-226.
- Cressie, N., Shi, T., and Kang, E.L. (2010) *Journal of Computational and Graphical Statistics*, **19**, 724-745.
- Cressie, N. and Wikle, C.K. (2011). *Statistics for Spatio-Temporal Data*. Wiley, Hoboken, NJ.
- Kalman, R.E. (1960). *Transactions of the ASME Journal of Basic Engineering Statistics*, **14**, 5-25.
- Kang, E.L., Cressie, N., and Shi, T. (2010). Canadian Journal of Statistics, 38, 271-289.
- Rodgers, C.D. (2000). *Inverse Methods for Atmospheric Sounding: Theory and Practice*. World Scientific, Singapore.
- Shumway, R.H. and Stoffer, D.S. (2006). *Time Series Analysis and Its Applications, with R Examples*, 2nd edn. Springer, New York, NY.
- Wikle, C.K. and Cressie, N. (1999). *Biometrika*, 86, 815-829.