
E¢ cient Monte Carlo for Risk Analysis

Jose Blanchet

Columbia Department of IEOR

Blanchet (Columbia) 1 / 40



What is this talk about?

General theme of this line of research

Design: Light Tails
Design: Heavy Tails

Blanchet (Columbia) 2 / 40



What is this talk about?

General theme of this line of research
Design: Light Tails

Design: Heavy Tails

Blanchet (Columbia) 2 / 40



What is this talk about?

General theme of this line of research
Design: Light Tails
Design: Heavy Tails

Blanchet (Columbia) 2 / 40



Optimal design of rare event simulation algorithms

Prof. Varadhan�s Abel
prize citation on large
deviations theory: �...It
has greatly expanded
our ability to use
computers to analyze
rare events."

Goal of this line of
research: To investigate
exactly HOW?
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Before I Answer How: Why Would Anybody Care?

A fast computational engine
enhances our ability to quantify uncertainty
via sensitivity analysis & stress tests...
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Example: A Simple Stochastic Network
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Example: A Simple Stochastic Network

Questions of interest:

How would the system perform IF TOTAL POPULATION reaches n
inside a busy period?

How likely is this event under di¤erent parameters / designs?
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Naive Benchmark: Crude Monte Carlo

Say λ = .1, µ1 = .5, µ2 = .4, p = .1

Total population over�ow = n = 10

Over�ow probability � 10�5

Each replication in crude Monte Carlo � 10�3 secs

Time to estimate with 10% precision � 107/1000 = 104 secs � 2.7
hours

What if you want to do sensitivity analysis for a wide range of
parameters?

What about di¤erent network designs?

Next demo based on Blanchet �10: Optimal Sampling of Over�ow
Paths in Jackson Networks.
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Rare Events in Networks

Question: How does the TOTAL CONTENT OF THE SYSTEM is
most likely to reach a give level in an operation cycle?

Say λ = .2, µ1 = .3, µ2 = .5... How can total content reach 50?
Naive Monte Carlo takes � 115 days
Each picture below took � .01 seconds (generated with Blanchet
(2010) algorithm).
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Rare Events in Networks

λ = .1, µ1 = .3, µ2 = .5
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Rare Events in Networks

λ = .1, µ1 = .4, µ2 = .4

X
1
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Large Deviations and Monte Carlo: A Conceptual Diagram
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Performance analysis of rare event simulation algorithms

P (An) = exp (�nI + o (n)) as n% ∞ for I > 0.

Asymptotic weak optimality: Zn satis�es EZn = P (An) and

EZ 2n
P (An)

2 = Com (n) = exp (o (n)) .

Asymptotic strong optimality: Zn satis�es EZn = P (An) and

EZ 2n
P (An)

2 = Com (n) = O (1) .

Su¢ cient number of replications of Zn to get ε relative error with
1� δ con�dence:

ε�2δ�1Com (n)

Total cost TC(n) = Com(n)� Cost per replication
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Insurance Reserves (Random Walk): Light Tails (e.g. Car
Insurance)

ORIGINAL increments are Gaussian drift +1 and variance +1

Picture represents the reserve CONDITIONAL ON RUIN!
Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.
Generated with Siegmund�s 76 algorithm
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Stylized Example: Two Dimensional Ruin Problem

Two dimensional random walk
A = fs : vT2 s � 1g and B = fs : vT1 s � 1g

S1(k)

S2(k)

μ

v2

v1

ES(k) = μk

E¢ ciently estimate as n% ∞

un (0) = P0[Sk/n hits A OR B Eventually]
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Stylized Example

Sbntc = Y1 + ...+ Ybntc, Yk�s are i.i.d. with density f (�)

Wn (t) = Sbntc/n+ x

Z (1)k = vT1 Yk and Z
(2)
k = vT2 Yk

Note EZ (1)k = vT1 µ < 0 and EZ (2)k = vT2 µ < 0

Assume there are θ�1, θ
�
2 > 0 such that

E exp(θ�1Z
(1)
k ) = 1, E exp(θ�2Z

(2)
k ) = 1

E [exp(θ�1Z
(1)
k )Z (1)k ] < ∞, E [exp(θ�2Z

(2)
k )Z (2)k ] < ∞
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Large Deviations for the Stylized Example

Then

un (x) = Px [Wn (t) hits A OR B ]
� c1 exp(�nθ�1(1� vT1 x)) + c2 exp(�nθ�2(1� vT2 x))
= exp(�nh (x) + o (n))

as n% ∞, where

h (x) = min[θ�1(1� vT1 x), θ�2(1� vT2 x)].
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Control-theoretic Approach by Dupuis-Wang

Let ψ (λ) = log E exp
�

λTYk
�

Put I (x) = maxλ[λ
T x � ψ (λ)]

fλ (y) = exp
�

λT y � ψ (λ)
�
f (y) <� - Controls

HJB eqn. to minimize 2nd moment...

Cn (w) = min
λ
E [e�λTY+ψ(λ)Cn (w + Y /n)]

Cn (w) � exp (�ng (w))

0 � min
λ
log E [e�λTX+ψ(λ)�n[g (w+Y /n)�g (w )]]

� min
λ
log E [e�λTX+ψ(λ)�∂g (w )] = min

λ
[ψ (λ) + ψ (�λ� ∂g (w))]

GET so-called Isaacs equation:

ψ (�∂g (w) /2) = 0, λ� (w) = �∂g (w) /2
Subject to g (w) = 0 on A[ B.
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Harmonic Functions & Doob�s h-transform

un (x) = 1 on A[ B and

un (x) = Px (TA[B < ∞) = E [un (x + Y1/n)]

Zero-variance sampler is:

P (Yk+1 2 dy jk < TA[B < ∞,Sk = nx)

= P� (Yk+1 2 dy j Sk = nx) = f (y)
un (x + y/n)
un (x)

dy
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Isaacs Equation & Harmonic Functions

Zero-variance sampler

P� (Yk+1 2 dy j Sk = nx) = f (y)
un (x + y/n)
un (x)

dy

Recall: un (x) = exp (�nh (x) + o (n))

P� (Yk+1 2 dy j Sk = nx)
= f (y) exp (�n[h (x + y/n)� h (x)] + o (1)) dy
= f (y) exp (�∂h (x) � y + o (1)) dy

But

1 =
Z
P� (Yk+1 2 dy j Sk = nx) =) ψ (�∂h (x)) = 0

Equivalent to Isaacs equation with g (x) = 2h (x)
CONCLUSION (Dupuis-Wang 04): Sampler (molli�ed) is (weakly)
asymptotically optimal... BUT
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The Second Moment of a State-dependent Estimator

Consider any sampler

PQ (Yk+1 2 dy j Sk = nx) = r�1 (x , x + y/n) f (y)

Likelihood ratio

r (Wn(0),Wn (1/n)) ...r(Wn(TA[B � 1),Wn(TA[B ))

Second moment of estimator

s(x) = Ex [r(x , x + Y /n)s(x + Y /n)]

subject to s(x) = 1 for x 2 A[ B.
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The Lyapunov Inequality

Lemma
Blanchet & Glynn �08: Lyapunov inequality

v(x) � Ex [r(x , x + Y /n)v(x + Y /n)]

subject to v(x) � 1 for x 2 A[ B. Then, v (x) � s (x).

How to use the result?

1) Identify a change-of-measure,

2) Use Large Deviations to force v(x) � un (x)2.
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The Lyapunov Inequalities and Subsolutions

Lyapunov function v (x) = exp(�nγ (x)) & λ = �∂γ (x) /2

1 � E [exp(�λTY + ψ (λ)) exp(�n[γ (x + Y /n)� γ(x)])]

subject to γ(x) � 0 for x 2 A[ B. Then, v (x) � s (x).

Expanding as n% ∞ we get

1+O (1/n) � exp[2ψ(�∂γ (x) /2)]

Yields subsolution to Isaacs equation (Dupuis-Wang �07)

ψ (�∂γ (x) /2) � 0 s.t. γ (x) � 0, x 2 A[ B
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A Lyapunov Inequality

Select

v (x) = (w1 (x) + w2 (x))
2 <�square of LD approx

w1 (x) = exp(�nθ�1(1� vT1 x))
w2 (x) = exp(�nθ�2(1� vT2 x))

Mixture sampler from density ef (y)
ef (y)
f (y)

=
w1 (x)

w1 (x) + w2 (x)
exp

�
θ�1v

T
1 y
�
+

w2 (x)
w1 (x) + w2 (x)

exp
�

θ�2v
T
2 y
�

Boundary condition on A[ B

v (x) = (w1 (x) + w2(x))2 � 1

for vT1 x � 1 OR vT2 x � 1... OK!
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A Lyapunov Inequality

w1 (x) = exp(�nθ�1(1� vT1 x))
w2 (x) = exp(�nθ�2(1� vT2 x))

v (x) = (w1 (x) + w2 (x))2

w1 (x + Y /n) = w1 (x) eθ�vT1 Y

w2 (x + Y /n) = w2 (x) eθ�vT2 Y

E
v(x + Y /n)

v (x)
1

w1(x )
w1(x )+w2(x )

eθ�1v
T
1 Y + w2(x )

w1(x )+w2(x )
eθ�2v

T
2 Y

= E
w1 (x) exp

�
θ�1v

T
1 Y

�
+ w2 (x) exp

�
θ�2v

T
2 Y

�
w1 (x) + w2 (x)

= 1.
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Conclusion of the Example

By Lyapunov inequality

2nd Moment of estimator � v (0) = (w1(0) + w2(0))2 � O(un (0)2)

So, sampler is STRONGLY OPTIMAL.
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Notes and Summary: Light Tails

Smoothness of solution to Isaacs equation plays an important
role in the performance

Dupuis-Wang 04, 07 introduced subsolutions approach for
LIGHT-TAILED problems
Blanchet, Glynn and Leder 10 study sharper complexity via
Lyapunov inequalities
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Heavy-tailed Case

Rich large deviations theory for random walks with subexponential
increments:

P (X1 + X2 > b) � P (max (X1,X2) > b)

as b �! ∞.
Focus on an important class of a subexponential distributions:
regularly varying distributions (basically power-law type)

P (X1 > t) = t�αL (t)

for α > 1 and L (tβ) /L (t) �! 1 as t % ∞ for each β > 0.
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How Does Ruin Occur with Heavy-tails (e.g. Catastrophic
Insurance)?

Ruin with Pareto Claims
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Generated with Blanchet and Glynn (2008)�s algorithm
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Problem Formulation

Let X1, X2,... are i.i.d. regularly varying

EXi = η < 0

Sn = X1 + ...+ Xn, (S0 = 0).

Tb = inffn � 0 : Sn > bg.
Object of interest:

ub (s) = Ps (Tb < ∞) .
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Interpretation of the Picture

Interpretation: Prior to ruin, the random walk has drift η < 0 and a
large jump of size b occurs suddenly...

So, at time k, Sk � ηk and chance of reaching b in the next step
given (Tb < ∞) is

P (X > b� ηk)
∑∞
k=1 P (X > b� ηk)

� P (X > b� ηk)R ∞
0 P (X > b� ηu) du

� �ηP (X > b� ηk)R ∞
b P (X > s) du

= O
�
1
b

�
.

The analysis also gives

P0 (Tb < ∞) � � 1
η

Z ∞

b
P (X > s) ds

as b ! ∞. (Pakes-Veraberbeke Thm.)
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The One Dimensional Case

Family of changes-of-measure: Given s current position of the
walk (NOTE p (s) and a 2 (0, 1))

fX js (x j s) = p (s)
fX (x) I (x > a (b� s))
P (X > a (b� s))

+ (1� p (s)) fX (x) I (x � a (b� s))
P (X > a (b� s))

In other words, s0 = s and s1 = s0 + x

fX js (x js)
f (x)

: = r (s0, s1)
�1 = p (s0)

I (s1 � s0 > a (b� s0))
P (X > a (b� s0))

+ (1� p (s1))
I (s1 � s0 � a (b� s0))
P (X � a (b� s0))
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Recall Lyapunov Inequality

Lyapunov Inequalities for Variance Control:

Lemma (Blanchet & Glynn �08)

Suppose that there is a positive function g (�) such that

Es

�
g (S1) r (s,S1)

g (s)

�
� 1

for all s � b and g (s) � 1 for s > b. Then, g (s) bounds second moment
of importance sampling estimator, that is

Es

 
Tb�1
∏
j=1

r (Sj ,Sj+1) I (Tb < ∞)

!
� g (s) .
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Choosing the Candidate Lyapunov Function

Want strong e¢ ciency, so pick (by Pakes-Veraberbeke Thm)

g (s) = min

 
κ

�Z ∞

b�s
P (X > u) du

�2
, 1

!
.

Pick

p (s) = θ
P (X > b� s)R ∞
b�s P (X > s) du

Just select θ, κ > 0 to force Lyapunov inequality!
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Testing the Lyapunov Inequality

Testing the Inequality on g (s) < 1 (note that g � 1):

Es

�
g (S1) r (s,S1)

g (s)

�
=

E (g (s + X ) ;X > a (b� s))P (X > a (b� s))
p (s) g (s)

+
E (g (s + X ) ;X � a (b� s))P (X � a (b� s))

(1� p (s)) g (s)
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Choosing the Parameters and Testing the Inequality

Testing the Inequality on g (s) < 1 (note that g � 1):

Es

�
g (S1) r (s,S1)

g (s)

�
=

E (g (s + X ) ;X > a (b� s))P (X > a (b� s))
p (s) g (s)

+
E (g (s + X ) ;X � a (b� s))P (X � a (b� s))

(1� p (s)) g (s)

� P (X > a (b� s))2

p (s) g (s)
+
E (g (s + X ) ;X � a (b� s))

(1� p (s)) g (s)

� a�αP (X > a (b� s))
θκ
R ∞
b�s P (X > u) du

+ 1+ 2 (η + θ)
P (X > (b� s))�R ∞
b�s P (X > u) du

� � 1
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The One Dimensional Case

Corresponding Algorithm:
Select a 2 (0, 1), then choose θ and κ based on Lyapunov inequality

AT EACH TIME STEP TEST

IF g (s) < 1 apply Imp. Sampling according p (s) - mixture
ELSE do NOT apply I.S. and continue until hitting.

OUTPUT PRODUCT OF LOCAL LIKELIHOOD RATIOS Z

Conclusion of Example: Blanchet and Glynn �08

2nd moment � g (0) � κ

�Z ∞

b
P (X > s) ds

�2
= O

�
P (Tb < ∞)2

�
so strong optimality holds.
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Notes and Summary: Heavy Tails

Change-of-measure should be chosen depending on tail
environment

Use large deviations to select your Lyapunov inequality, similar
to light-tailed case
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