Efficient Monte Carlo for Risk Analysis

Jose Blanchet

Columbia Department of IEOR

What is this talk about?

- General theme of this line of research

What is this talk about?

- General theme of this line of research
- Design: Light Tails

What is this talk about?

- General theme of this line of research
- Design: Light Tails
- Design: Heavy Tails

Optimal design of rare event simulation algorithms

- Prof. Varadhan's Abel prize citation on large deviations theory: "...lt has greatly expanded our ability to use computers to analyze rare events."

Optimal design of rare event simulation algorithms

- Prof. Varadhan's Abel prize citation on large deviations theory: "...lt has greatly expanded our ability to use computers to analyze rare events."
- Goal of this line of research: To investigate exactly HOW?

Before I Answer How: Why Would Anybody Care?

A fast computational engine enhances our ability to quantify uncertainty via sensitivity analysis \& stress tests...

Example: A Simple Stochastic Network

Queueing Network Diagram

Example: A Simple Stochastic Network

Questions of interest:

How would the system perform IF TOTAL POPULATION reaches n inside a busy period?

How likely is this event under different parameters / designs?

Naive Benchmark: Crude Monte Carlo

- Say $\lambda=.1, \mu_{1}=.5, \mu_{2}=.4, p=.1$

Naive Benchmark: Crude Monte Carlo

- Say $\lambda=.1, \mu_{1}=.5, \mu_{2}=.4, p=.1$
- Total population overflow $=n=10$

Naive Benchmark: Crude Monte Carlo

- Say $\lambda=.1, \mu_{1}=.5, \mu_{2}=.4, p=.1$
- Total population overflow $=n=10$
- Overflow probability $\approx 10^{-5}$

Naive Benchmark: Crude Monte Carlo

- Say $\lambda=.1, \mu_{1}=.5, \mu_{2}=.4, p=.1$
- Total population overflow $=n=10$
- Overflow probability $\approx 10^{-5}$
- Each replication in crude Monte Carlo $\approx 10^{-3}$ secs

Naive Benchmark: Crude Monte Carlo

- Say $\lambda=.1, \mu_{1}=.5, \mu_{2}=.4, p=.1$
- Total population overflow $=n=10$
- Overflow probability $\approx 10^{-5}$
- Each replication in crude Monte Carlo $\approx 10^{-3}$ secs
- Time to estimate with 10% precision $\approx 10^{7} / 1000=10^{4}$ secs ≈ 2.7 hours

Naive Benchmark: Crude Monte Carlo

- Say $\lambda=.1, \mu_{1}=.5, \mu_{2}=.4, p=.1$
- Total population overflow $=n=10$
- Overflow probability $\approx 10^{-5}$
- Each replication in crude Monte Carlo $\approx 10^{-3}$ secs
- Time to estimate with 10% precision $\approx 10^{7} / 1000=10^{4}$ secs ≈ 2.7 hours
- What if you want to do sensitivity analysis for a wide range of parameters?

Naive Benchmark: Crude Monte Carlo

- Say $\lambda=.1, \mu_{1}=.5, \mu_{2}=.4, p=.1$
- Total population overflow $=n=10$
- Overflow probability $\approx 10^{-5}$
- Each replication in crude Monte Carlo $\approx 10^{-3}$ secs
- Time to estimate with 10% precision $\approx 10^{7} / 1000=10^{4}$ secs ≈ 2.7 hours
- What if you want to do sensitivity analysis for a wide range of parameters?
- What about different network designs?

Naive Benchmark: Crude Monte Carlo

- Say $\lambda=.1, \mu_{1}=.5, \mu_{2}=.4, p=.1$
- Total population overflow $=n=10$
- Overflow probability $\approx 10^{-5}$
- Each replication in crude Monte Carlo $\approx 10^{-3}$ secs
- Time to estimate with 10% precision $\approx 10^{7} / 1000=10^{4}$ secs ≈ 2.7 hours
- What if you want to do sensitivity analysis for a wide range of parameters?
- What about different network designs?
- Next demo based on Blanchet '10: Optimal Sampling of Overflow Paths in Jackson Networks.

Rare Events in Networks

- Question: How does the TOTAL CONTENT OF THE SYSTEM is most likely to reach a give level in an operation cycle?

Rare Events in Networks

- Question: How does the TOTAL CONTENT OF THE SYSTEM is most likely to reach a give level in an operation cycle?
- Say $\lambda=.2, \mu_{1}=.3, \mu_{2}=.5 \ldots$ How can total content reach 50?

Rare Events in Networks

- Question: How does the TOTAL CONTENT OF THE SYSTEM is most likely to reach a give level in an operation cycle?
- Say $\lambda=.2, \mu_{1}=.3, \mu_{2}=.5 \ldots$ How can total content reach 50?
- Naive Monte Carlo takes ≈ 115 days

Rare Events in Networks

- Question: How does the TOTAL CONTENT OF THE SYSTEM is most likely to reach a give level in an operation cycle?
- Say $\lambda=.2, \mu_{1}=.3, \mu_{2}=.5 \ldots$ How can total content reach 50?
- Naive Monte Carlo takes ≈ 115 days
- Each picture below took $\approx .01$ seconds (generated with Blanchet (2010) algorithm).

Rare Events in Networks

$\lambda=.1, \mu_{1}=.3, \mu_{2}=.5$

Plot of Conditional Path

Rare Events in Networks

$$
\lambda=.1, \mu_{1}=.5, \mu_{2}=.2
$$

Plot of Conditional Path

Rare Events in Networks

$$
\lambda=.1, \mu_{1}=.4, \mu_{2}=.4
$$

Plot of Conditional Path

Large Deviations and Monte Carlo: A Conceptual Diagram

Large Deviations

Enhanced estimates, optimal algorithms

Optimal path, change-ofmeasure, intuition...

Efficient Monte Carlo

Performance analysis of rare event simulation algorithms

- $P\left(A_{n}\right)=\exp (-n I+o(n))$ as $n \nearrow \infty$ for $I>0$.

Performance analysis of rare event simulation algorithms

- $P\left(A_{n}\right)=\exp (-n I+o(n))$ as $n \nearrow \infty$ for $I>0$.
- Asymptotic weak optimality: Z_{n} satisfies $E Z_{n}=P\left(A_{n}\right)$ and

$$
\frac{E Z_{n}^{2}}{P\left(A_{n}\right)^{2}}=\operatorname{Com}(n)=\exp (o(n)) .
$$

Performance analysis of rare event simulation algorithms

- $P\left(A_{n}\right)=\exp (-n I+o(n))$ as $n \nearrow \infty$ for $I>0$.
- Asymptotic weak optimality: Z_{n} satisfies $E Z_{n}=P\left(A_{n}\right)$ and

$$
\frac{E Z_{n}^{2}}{P\left(A_{n}\right)^{2}}=\operatorname{Com}(n)=\exp (o(n))
$$

- Asymptotic strong optimality: Z_{n} satisfies $E Z_{n}=P\left(A_{n}\right)$ and

$$
\frac{E Z_{n}^{2}}{P\left(A_{n}\right)^{2}}=\operatorname{Com}(n)=O(1)
$$

Performance analysis of rare event simulation algorithms

- $P\left(A_{n}\right)=\exp (-n I+o(n))$ as $n \nearrow \infty$ for $I>0$.
- Asymptotic weak optimality: Z_{n} satisfies $E Z_{n}=P\left(A_{n}\right)$ and

$$
\frac{E Z_{n}^{2}}{P\left(A_{n}\right)^{2}}=\operatorname{Com}(n)=\exp (o(n))
$$

- Asymptotic strong optimality: Z_{n} satisfies $E Z_{n}=P\left(A_{n}\right)$ and

$$
\frac{E Z_{n}^{2}}{P\left(A_{n}\right)^{2}}=\operatorname{Com}(n)=O(1)
$$

- Sufficient number of replications of Z_{n} to get ε relative error with $1-\delta$ confidence:

$$
\varepsilon^{-2} \delta^{-1} \operatorname{Com}(n)
$$

Performance analysis of rare event simulation algorithms

- $P\left(A_{n}\right)=\exp (-n I+o(n))$ as $n \nearrow \infty$ for $I>0$.
- Asymptotic weak optimality: Z_{n} satisfies $E Z_{n}=P\left(A_{n}\right)$ and

$$
\frac{E Z_{n}^{2}}{P\left(A_{n}\right)^{2}}=\operatorname{Com}(n)=\exp (o(n))
$$

- Asymptotic strong optimality: Z_{n} satisfies $E Z_{n}=P\left(A_{n}\right)$ and

$$
\frac{E Z_{n}^{2}}{P\left(A_{n}\right)^{2}}=\operatorname{Com}(n)=O(1)
$$

- Sufficient number of replications of Z_{n} to get ε relative error with $1-\delta$ confidence:

$$
\varepsilon^{-2} \delta^{-1} \operatorname{Com}(n)
$$

- Total cost TC $(n)=\mathbf{C o m}(n) \times$ Cost per replication

Insurance Reserves (Random Walk): Light Tails (e.g. Car Insurance)

Ruin with Gaussian Increments

- ORIGINAL increments are Gaussian drift +1 and variance +1

Insurance Reserves (Random Walk): Light Tails (e.g. Car Insurance)

Ruin with Gaussian Increments

- ORIGINAL increments are Gaussian drift +1 and variance +1
- Picture represents the reserve CONDITIONAL ON RUIN!

Insurance Reserves (Random Walk): Light Tails (e.g. Car Insurance)

Ruin with Gaussian Increments

- ORIGINAL increments are Gaussian drift +1 and variance +1
- Picture represents the reserve CONDITIONAL ON RUIN!
- Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.

Insurance Reserves (Random Walk): Light Tails (e.g. Car Insurance)

Ruin with Gaussian Increments

- ORIGINAL increments are Gaussian drift +1 and variance +1
- Picture represents the reserve CONDITIONAL ON RUIN!
- Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.
- Generated with Siegmund's 76 algorithm

Stylized Example: Two Dimensional Ruin Problem

- Two dimensional random walk
- $A=\left\{s: v_{2}^{\top} s \geq 1\right\}$ and $B=\left\{s: v_{1}^{\top} s \geq 1\right\}$

- Efficiently estimate as $n \nearrow \infty$

$$
u_{n}(0)=P_{0}\left[S_{k} / n \text { hits } A \text { OR } B \text { Eventually }\right]
$$

Stylized Example

- $S_{\lfloor n t\rfloor}=Y_{1}+\ldots+Y_{\lfloor n t\rfloor}, \quad Y_{k}$'s are i.i.d. with density $f(\cdot)$

Stylized Example

- $S_{\lfloor n t\rfloor}=Y_{1}+\ldots+Y_{\lfloor n t\rfloor}, \quad Y_{k}$'s are i.i.d. with density $f(\cdot)$
- $W_{n}(t)=S_{\lfloor n t\rfloor} / n+x$

Stylized Example

- $S_{\lfloor n t\rfloor}=Y_{1}+\ldots+Y_{\lfloor n t\rfloor}, \quad Y_{k}$'s are i.i.d. with density $f(\cdot)$
- $W_{n}(t)=S_{\lfloor n t\rfloor} / n+x$
- $Z_{k}^{(1)}=v_{1}^{T} Y_{k}$ and $Z_{k}^{(2)}=v_{2}^{T} Y_{k}$

Stylized Example

- $S_{\lfloor n t\rfloor}=Y_{1}+\ldots+Y_{\lfloor n t\rfloor}, \quad Y_{k}$'s are i.i.d. with density $f(\cdot)$
- $W_{n}(t)=S_{\lfloor n t\rfloor} / n+x$
- $Z_{k}^{(1)}=v_{1}^{T} Y_{k}$ and $Z_{k}^{(2)}=v_{2}^{T} Y_{k}$
- Note $E Z_{k}^{(1)}=v_{1}^{\top} \mu<0$ and $E Z_{k}^{(2)}=v_{2}^{\top} \mu<0$

Stylized Example

- $S_{\lfloor n t\rfloor}=Y_{1}+\ldots+Y_{\lfloor n t\rfloor}, \quad Y_{k}$'s are i.i.d. with density $f(\cdot)$
- $W_{n}(t)=S_{\lfloor n t\rfloor} / n+x$
- $Z_{k}^{(1)}=v_{1}^{T} Y_{k}$ and $Z_{k}^{(2)}=v_{2}^{T} Y_{k}$
- Note $E Z_{k}^{(1)}=v_{1}^{\top} \mu<0$ and $E Z_{k}^{(2)}=v_{2}^{T} \mu<0$
- Assume there are $\theta_{1}^{*}, \theta_{2}^{*}>0$ such that

$$
\begin{aligned}
E \exp \left(\theta_{1}^{*} Z_{k}^{(1)}\right) & =1, E \exp \left(\theta_{2}^{*} Z_{k}^{(2)}\right)=1 \\
E\left[\exp \left(\theta_{1}^{*} Z_{k}^{(1)}\right) Z_{k}^{(1)}\right] & <\infty, E\left[\exp \left(\theta_{2}^{*} Z_{k}^{(2)}\right) Z_{k}^{(2)}\right]<\infty
\end{aligned}
$$

Large Deviations for the Stylized Example

- Then

$$
\begin{aligned}
u_{n}(x) & =P_{x}\left[W_{n}(t) \text { hits } A \text { OR } B\right] \\
& \sim c_{1} \exp \left(-n \theta_{1}^{*}\left(1-v_{1}^{\top} x\right)\right)+c_{2} \exp \left(-n \theta_{2}^{*}\left(1-v_{2}^{\top} x\right)\right) \\
& =\exp (-n h(x)+o(n))
\end{aligned}
$$

as $n \nearrow \infty$, where

$$
h(x)=\min \left[\theta_{1}^{*}\left(1-v_{1}^{\top} x\right), \theta_{2}^{*}\left(1-v_{2}^{\top} x\right)\right] .
$$

Control-theoretic Approach by Dupuis-Wang

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{T} Y_{k}\right)$

Control-theoretic Approach by Dupuis-Wang

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{T} Y_{k}\right)$
- Put $I(x)=\max _{\lambda}\left[\lambda^{T} x-\psi(\lambda)\right]$

Control-theoretic Approach by Dupuis-Wang

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{T} Y_{k}\right)$
- Put $I(x)=\max _{\lambda}\left[\lambda^{T} x-\psi(\lambda)\right]$
- $f_{\lambda}(y)=\exp \left(\lambda^{T} y-\psi(\lambda)\right) f(y) \quad<$ Controls

Control-theoretic Approach by Dupuis-Wang

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{T} Y_{k}\right)$
- Put $I(x)=\max _{\lambda}\left[\lambda^{T} x-\psi(\lambda)\right]$
- $f_{\lambda}(y)=\exp \left(\lambda^{T} y-\psi(\lambda)\right) f(y)<$ Controls
- HJB eqn. to minimize 2nd moment...

$$
C_{n}(w)=\min _{\lambda} E\left[e^{-\lambda^{T} Y+\psi(\lambda)} C_{n}(w+Y / n)\right]
$$

Control-theoretic Approach by Dupuis-Wang

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{T} Y_{k}\right)$
- Put $I(x)=\max _{\lambda}\left[\lambda^{T} x-\psi(\lambda)\right]$
- $f_{\lambda}(y)=\exp \left(\lambda^{T} y-\psi(\lambda)\right) f(y)<$ Controls
- HJB eqn. to minimize 2nd moment...

$$
C_{n}(w)=\min _{\lambda} E\left[e^{-\lambda^{T} Y+\psi(\lambda)} C_{n}(w+Y / n)\right]
$$

- $C_{n}(w) \approx \exp (-n g(w))$
$0 \approx \min _{\lambda} \log E\left[e^{-\lambda^{\top} X+\psi(\lambda)-n[g(w+Y / n)-g(w)]}\right]$

$$
\approx \min _{\lambda} \log E\left[e^{-\lambda^{\top} X+\psi(\lambda)-\partial g(w)}\right]=\min _{\lambda}[\psi(\lambda)+\psi(-\lambda-\partial g(w))]
$$

Control-theoretic Approach by Dupuis-Wang

- Let $\psi(\lambda)=\log E \exp \left(\lambda^{T} Y_{k}\right)$
- Put $I(x)=\max _{\lambda}\left[\lambda^{T} x-\psi(\lambda)\right]$
- $f_{\lambda}(y)=\exp \left(\lambda^{T} y-\psi(\lambda)\right) f(y)<$ Controls
- HJB eqn. to minimize 2nd moment...

$$
C_{n}(w)=\min _{\lambda} E\left[e^{-\lambda^{T} Y+\psi(\lambda)} C_{n}(w+Y / n)\right]
$$

- $C_{n}(w) \approx \exp (-n g(w))$
$0 \approx \min _{\lambda} \log E\left[e^{-\lambda^{\top} X+\psi(\lambda)-n[g(w+Y / n)-g(w)]}\right]$

$$
\approx \min _{\lambda} \log E\left[e^{-\lambda^{\top} X+\psi(\lambda)-\partial g(w)}\right]=\min _{\lambda}[\psi(\lambda)+\psi(-\lambda-\partial g(w))]
$$

- GET so-called Isaacs equation:

$$
\begin{aligned}
\psi(-\partial g(w) / 2) & =0, \quad \lambda^{*}(w)=-\partial g(w) / 2 \\
\text { Subject to } g(w) & =0 \text { on } A \cup B .
\end{aligned}
$$

Harmonic Functions \& Doob's h-transform

- $u_{n}(x)=1$ on $A \cup B$ and

$$
u_{n}(x)=P_{x}\left(T_{A \cup B}<\infty\right)=E\left[u_{n}\left(x+Y_{1} / n\right)\right]
$$

Harmonic Functions \& Doob's h-transform

- $u_{n}(x)=1$ on $A \cup B$ and

$$
u_{n}(x)=P_{x}\left(T_{A \cup B}<\infty\right)=E\left[u_{n}\left(x+Y_{1} / n\right)\right]
$$

- Zero-variance sampler is:

$$
\begin{aligned}
& P\left(Y_{k+1} \in d y \mid k<T_{A \cup B}<\infty, S_{k}=n x\right) \\
= & P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right)=f(y) \frac{u_{n}(x+y / n)}{u_{n}(x)} d y
\end{aligned}
$$

Isaacs Equation \& Harmonic Functions

- Zero-variance sampler

$$
P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right)=f(y) \frac{u_{n}(x+y / n)}{u_{n}(x)} d y
$$

Isaacs Equation \& Harmonic Functions

- Zero-variance sampler

$$
P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right)=f(y) \frac{u_{n}(x+y / n)}{u_{n}(x)} d y
$$

- Recall: $u_{n}(x)=\exp (-n h(x)+o(n))$

$$
\begin{aligned}
& P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right) \\
= & f(y) \exp (-n[h(x+y / n)-h(x)]+o(1)) d y \\
= & f(y) \exp (-\partial h(x) \cdot y+o(1)) d y
\end{aligned}
$$

Isaacs Equation \& Harmonic Functions

- Zero-variance sampler

$$
P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right)=f(y) \frac{u_{n}(x+y / n)}{u_{n}(x)} d y
$$

- Recall: $u_{n}(x)=\exp (-n h(x)+o(n))$

$$
\begin{aligned}
& P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right) \\
= & f(y) \exp (-n[h(x+y / n)-h(x)]+o(1)) d y \\
= & f(y) \exp (-\partial h(x) \cdot y+o(1)) d y
\end{aligned}
$$

- But

$$
1=\int P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right) \Longrightarrow \psi(-\partial h(x))=0
$$

Isaacs Equation \& Harmonic Functions

- Zero-variance sampler

$$
P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right)=f(y) \frac{u_{n}(x+y / n)}{u_{n}(x)} d y
$$

- Recall: $u_{n}(x)=\exp (-n h(x)+o(n))$

$$
\begin{aligned}
& P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right) \\
= & f(y) \exp (-n[h(x+y / n)-h(x)]+o(1)) d y \\
= & f(y) \exp (-\partial h(x) \cdot y+o(1)) d y
\end{aligned}
$$

- But

$$
1=\int P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right) \Longrightarrow \psi(-\partial h(x))=0
$$

- Equivalent to Isaacs equation with $g(x)=2 h(x)$

Isaacs Equation \& Harmonic Functions

- Zero-variance sampler

$$
P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right)=f(y) \frac{u_{n}(x+y / n)}{u_{n}(x)} d y
$$

- Recall: $u_{n}(x)=\exp (-n h(x)+o(n))$

$$
\begin{aligned}
& P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right) \\
= & f(y) \exp (-n[h(x+y / n)-h(x)]+o(1)) d y \\
= & f(y) \exp (-\partial h(x) \cdot y+o(1)) d y
\end{aligned}
$$

- But

$$
1=\int P^{*}\left(Y_{k+1} \in d y \mid S_{k}=n x\right) \Longrightarrow \psi(-\partial h(x))=0
$$

- Equivalent to Isaacs equation with $g(x)=2 h(x)$
- CONCLUSION (Dupuis-Wang 04): Sampler (mollified) is (weakly) asymptotically optimal... BUT

The Second Moment of a State-dependent Estimator

- Consider any sampler

$$
P^{Q}\left(Y_{k+1} \in d y \mid S_{k}=n x\right)=r^{-1}(x, x+y / n) f(y)
$$

The Second Moment of a State-dependent Estimator

- Consider any sampler

$$
P^{Q}\left(Y_{k+1} \in d y \mid S_{k}=n x\right)=r^{-1}(x, x+y / n) f(y)
$$

- Likelihood ratio

$$
r\left(W_{n}(0), W_{n}(1 / n)\right) \ldots r\left(W_{n}\left(T_{A \cup B}-1\right), W_{n}\left(T_{A \cup B}\right)\right)
$$

The Second Moment of a State-dependent Estimator

- Consider any sampler

$$
P^{Q}\left(Y_{k+1} \in d y \mid S_{k}=n x\right)=r^{-1}(x, x+y / n) f(y)
$$

- Likelihood ratio

$$
r\left(W_{n}(0), W_{n}(1 / n)\right) \ldots r\left(W_{n}\left(T_{A \cup B}-1\right), W_{n}\left(T_{A \cup B}\right)\right)
$$

- Second moment of estimator

$$
s(x)=E_{X}[r(x, x+Y / n) s(x+Y / n)]
$$

subject to $s(x)=1$ for $x \in A \cup B$.

The Lyapunov Inequality

Lemma

Blanchet \& Glynn '08: Lyapunov inequality

$$
v(x) \geq E_{x}[r(x, x+Y / n) v(x+Y / n)]
$$

subject to $v(x) \geq 1$ for $x \in A \cup B$. Then, $v(x) \geq s(x)$.

- How to use the result?

The Lyapunov Inequality

Lemma

Blanchet \& Glynn '08: Lyapunov inequality

$$
v(x) \geq E_{X}[r(x, x+Y / n) v(x+Y / n)]
$$

subject to $v(x) \geq 1$ for $x \in A \cup B$. Then, $v(x) \geq s(x)$.

- How to use the result?
- 1) Identify a change-of-measure,

The Lyapunov Inequality

Lemma

Blanchet \& Glynn '08: Lyapunov inequality

$$
v(x) \geq E_{x}[r(x, x+Y / n) v(x+Y / n)]
$$

subject to $v(x) \geq 1$ for $x \in A \cup B$. Then, $v(x) \geq s(x)$.

- How to use the result?
- 1) Identify a change-of-measure,
- 2) Use Large Deviations to force $v(x) \approx u_{n}(x)^{2}$.

The Lyapunov Inequalities and Subsolutions

- Lyapunov function $v(x)=\exp (-n \gamma(x)) \& \lambda=-\partial \gamma(x) / 2$

$$
1 \geq E\left[\exp \left(-\lambda^{T} Y+\psi(\lambda)\right) \exp (-n[\gamma(x+Y / n)-\gamma(x)])\right]
$$

subject to $\gamma(x) \leq 0$ for $x \in A \cup B$. Then, $v(x) \geq s(x)$.

The Lyapunov Inequalities and Subsolutions

- Lyapunov function $v(x)=\exp (-n \gamma(x)) \& \lambda=-\partial \gamma(x) / 2$

$$
1 \geq E\left[\exp \left(-\lambda^{T} Y+\psi(\lambda)\right) \exp (-n[\gamma(x+Y / n)-\gamma(x)])\right]
$$

subject to $\gamma(x) \leq 0$ for $x \in A \cup B$. Then, $v(x) \geq s(x)$.

- Expanding as $n \nearrow \infty$ we get

$$
1+O(1 / n) \geq \exp [2 \psi(-\partial \gamma(x) / 2)]
$$

The Lyapunov Inequalities and Subsolutions

- Lyapunov function $v(x)=\exp (-n \gamma(x)) \& \lambda=-\partial \gamma(x) / 2$

$$
1 \geq E\left[\exp \left(-\lambda^{T} Y+\psi(\lambda)\right) \exp (-n[\gamma(x+Y / n)-\gamma(x)])\right]
$$

subject to $\gamma(x) \leq 0$ for $x \in A \cup B$. Then, $v(x) \geq s(x)$.

- Expanding as $n \nearrow \infty$ we get

$$
1+O(1 / n) \geq \exp [2 \psi(-\partial \gamma(x) / 2)]
$$

- Yields subsolution to Isaacs equation (Dupuis-Wang '07)

$$
\psi(-\partial \gamma(x) / 2) \leq 0 \text { s.t. } \gamma(x) \leq 0, x \in A \cup B
$$

A Lyapunov Inequality

- Select

$$
\begin{aligned}
v(x) & =\left(w_{1}(x)+w_{2}(x)\right)^{2}<- \text { square of LD approx } \\
w_{1}(x) & =\exp \left(-n \theta_{1}^{*}\left(1-v_{1}^{T} x\right)\right) \\
w_{2}(x) & =\exp \left(-n \theta_{2}^{*}\left(1-v_{2}^{T} x\right)\right)
\end{aligned}
$$

A Lyapunov Inequality

- Select

$$
\begin{aligned}
v(x) & =\left(w_{1}(x)+w_{2}(x)\right)^{2}<- \text { square of LD approx } \\
w_{1}(x) & =\exp \left(-n \theta_{1}^{*}\left(1-v_{1}^{T} x\right)\right) \\
w_{2}(x) & =\exp \left(-n \theta_{2}^{*}\left(1-v_{2}^{T} x\right)\right)
\end{aligned}
$$

- Mixture sampler from density $\tilde{f}(y)$

$$
\frac{\widetilde{f}(y)}{f(y)}=\frac{w_{1}(x)}{w_{1}(x)+w_{2}(x)} \exp \left(\theta_{1}^{*} v_{1}^{\top} y\right)+\frac{w_{2}(x)}{w_{1}(x)+w_{2}(x)} \exp \left(\theta_{2}^{*} v_{2}^{\top} y\right)
$$

A Lyapunov Inequality

- Select

$$
\begin{aligned}
v(x) & =\left(w_{1}(x)+w_{2}(x)\right)^{2}<- \text { square of LD approx } \\
w_{1}(x) & =\exp \left(-n \theta_{1}^{*}\left(1-v_{1}^{T} x\right)\right) \\
w_{2}(x) & =\exp \left(-n \theta_{2}^{*}\left(1-v_{2}^{T} x\right)\right)
\end{aligned}
$$

- Mixture sampler from density $\widetilde{f}(y)$

$$
\frac{\widetilde{f}(y)}{f(y)}=\frac{w_{1}(x)}{w_{1}(x)+w_{2}(x)} \exp \left(\theta_{1}^{*} v_{1}^{T} y\right)+\frac{w_{2}(x)}{w_{1}(x)+w_{2}(x)} \exp \left(\theta_{2}^{*} v_{2}^{T} y\right)
$$

- Boundary condition on $A \cup B$

$$
v(x)=\left(w_{1}(x)+w_{2}(x)\right)^{2} \geq 1
$$

for $v_{1}^{T} x \geq 1$ OR $v_{2}^{T} x \geq 1 \ldots$ OK!

A Lyapunov Inequality

$$
\begin{aligned}
& w_{1}(x)=\exp \left(-n \theta_{1}^{*}\left(1-v_{1}^{T} x\right)\right) \\
& w_{2}(x)=\exp \left(-n \theta_{2}^{*}\left(1-v_{2}^{T} x\right)\right)
\end{aligned}
$$

A Lyapunov Inequality

$$
\begin{gathered}
w_{1}(x)=\exp \left(-n \theta_{1}^{*}\left(1-v_{1}^{\top} x\right)\right) \\
w_{2}(x)=\exp \left(-n \theta_{2}^{*}\left(1-v_{2}^{T} x\right)\right) \\
v(x)=\left(w_{1}(x)+w_{2}(x)\right)^{2} \\
w_{1}(x+Y / n)=w_{1}(x) e^{\theta^{*} v_{1}^{\top} Y} \\
w_{2}(x+Y / n)=w_{2}(x) e^{\theta^{*} v_{2}^{\top} Y}
\end{gathered}
$$

A Lyapunov Inequality

$$
\begin{gathered}
w_{1}(x)=\exp \left(-n \theta_{1}^{*}\left(1-v_{1}^{T} x\right)\right) \\
w_{2}(x)=\exp \left(-n \theta_{2}^{*}\left(1-v_{2}^{T} x\right)\right) \\
v(x)=\left(w_{1}(x)+w_{2}(x)\right)^{2} \\
w_{1}(x+Y / n)=w_{1}(x) e^{\theta^{*} v_{1}^{T} Y} \\
w_{2}(x+Y / n)=w_{2}(x) e^{\theta^{*} v_{2}^{T} Y} \\
E \frac{v(x+Y / n)}{v(x)} \frac{1}{\frac{w_{1}(x)}{w_{1}(x)+w_{2}(x)} e^{\theta_{1}^{*} v_{1}^{T} Y}+\frac{w_{2}(x)}{w_{1}(x)+w_{2}(x)} e^{\theta_{2}^{*} v_{2}^{T} Y}} \\
=E \frac{w_{1}(x) \exp \left(\theta_{1}^{*} v_{1}^{T} Y\right)+w_{2}(x) \exp \left(\theta_{2}^{*} v_{2}^{T} Y\right)}{w_{1}(x)+w_{2}(x)}=1 .
\end{gathered}
$$

Conclusion of the Example

- By Lyapunov inequality

2nd Moment of estimator $\leq v(0)=\left(w_{1}(0)+w_{2}(0)\right)^{2} \leq O\left(u_{n}(0)^{2}\right)$

Conclusion of the Example

- By Lyapunov inequality

2nd Moment of estimator $\leq v(0)=\left(w_{1}(0)+w_{2}(0)\right)^{2} \leq O\left(u_{n}(0)^{2}\right)$

- So, sampler is STRONGLY OPTIMAL.

Notes and Summary: Light Tails

- Smoothness of solution to Isaacs equation plays an important role in the performance

Notes and Summary: Light Tails

- Smoothness of solution to Isaacs equation plays an important role in the performance
- Dupuis-Wang 04, 07 introduced subsolutions approach for LIGHT-TAILED problems

Notes and Summary: Light Tails

- Smoothness of solution to Isaacs equation plays an important role in the performance
- Dupuis-Wang 04, 07 introduced subsolutions approach for LIGHT-TAILED problems
- Blanchet, Glynn and Leder 10 study sharper complexity via Lyapunov inequalities

Heavy-tailed Case

- Rich large deviations theory for random walks with subexponential increments:

$$
P\left(X_{1}+X_{2}>b\right) \sim P\left(\max \left(X_{1}, X_{2}\right)>b\right)
$$

as $b \longrightarrow \infty$.

- Focus on an important class of a subexponential distributions: regularly varying distributions (basically power-law type)

$$
P\left(X_{1}>t\right)=t^{-\alpha} L(t)
$$

for $\alpha>1$ and $L(t \beta) / L(t) \longrightarrow 1$ as $t \nearrow \infty$ for each $\beta>0$.

How Does Ruin Occur with Heavy-tails (e.g. Catastrophic Insurance)?

- Increments t-distributed (power law density) drift +1 variance +1

How Does Ruin Occur with Heavy-tails (e.g. Catastrophic Insurance)?

- Increments t-distributed (power law density) drift +1 variance +1
- Picture represents reserve CONDITIONAL ON RUIN!

How Does Ruin Occur with Heavy-tails (e.g. Catastrophic Insurance)?

- Increments t-distributed (power law density) drift +1 variance +1
- Picture represents reserve CONDITIONAL ON RUIN!
- Generated with Blanchet and Glynn (2008)'s algorithm

Problem Formulation

- Let X_{1}, X_{2}, \ldots are i.i.d. regularly varying
- $E X_{i}=\eta<0$
- $S_{n}=X_{1}+\ldots+X_{n},\left(S_{0}=0\right)$.
- $T_{b}=\inf \left\{n \geq 0: S_{n}>b\right\}$.
- Object of interest:

$$
u_{b}(s)=P_{s}\left(T_{b}<\infty\right)
$$

Interpretation of the Picture

- Interpretation: Prior to ruin, the random walk has drift $\eta<0$ and a large jump of size b occurs suddenly...

Interpretation of the Picture

- Interpretation: Prior to ruin, the random walk has drift $\eta<0$ and a large jump of size b occurs suddenly...
- So, at time $k, S_{k} \approx \eta k$ and chance of reaching b in the next step given $\left(T_{b}<\infty\right)$ is

$$
\begin{aligned}
\frac{P(X>b-\eta k)}{\sum_{k=1}^{\infty} P(X>b-\eta k)} & \approx \frac{P(X>b-\eta k)}{\int_{0}^{\infty} P(X>b-\eta u) d u} \\
& \approx \frac{-\eta P(X>b-\eta k)}{\int_{b}^{\infty} P(X>s) d u}=O\left(\frac{1}{b}\right)
\end{aligned}
$$

Interpretation of the Picture

- Interpretation: Prior to ruin, the random walk has drift $\eta<0$ and a large jump of size b occurs suddenly...
- So, at time $k, S_{k} \approx \eta k$ and chance of reaching b in the next step given $\left(T_{b}<\infty\right)$ is

$$
\begin{aligned}
\frac{P(X>b-\eta k)}{\sum_{k=1}^{\infty} P(X>b-\eta k)} & \approx \frac{P(X>b-\eta k)}{\int_{0}^{\infty} P(X>b-\eta u) d u} \\
& \approx \frac{-\eta P(X>b-\eta k)}{\int_{b}^{\infty} P(X>s) d u}=O\left(\frac{1}{b}\right) .
\end{aligned}
$$

- The analysis also gives

$$
P_{0}\left(T_{b}<\infty\right) \approx-\frac{1}{\eta} \int_{b}^{\infty} P(X>s) d s
$$

as $b \rightarrow \infty$. (Pakes-Veraberbeke Thm.)

The One Dimensional Case

- Family of changes-of-measure: Given s current position of the walk (NOTE $p(s)$ and $a \in(0,1)$)

$$
\begin{aligned}
f_{X \mid s}(x \mid s)= & p(s) \frac{f_{X}(x) I(x>a(b-s))}{P(X>a(b-s))} \\
& +(1-p(s)) \frac{f_{X}(x) I(x \leq a(b-s))}{P(X>a(b-s))}
\end{aligned}
$$

- In other words, $s_{0}=s$ and $s_{1}=s_{0}+x$

$$
\begin{aligned}
\frac{f_{X \mid s}(x \mid s)}{f(x)}: & =r\left(s_{0}, s_{1}\right)^{-1}=p\left(s_{0}\right) \frac{I\left(s_{1}-s_{0}>a\left(b-s_{0}\right)\right)}{P\left(X>a\left(b-s_{0}\right)\right)} \\
& +\left(1-p\left(s_{1}\right)\right) \frac{I\left(s_{1}-s_{0} \leq a\left(b-s_{0}\right)\right)}{P\left(X \leq a\left(b-s_{0}\right)\right)}
\end{aligned}
$$

Recall Lyapunov Inequality

- Lyapunov Inequalities for Variance Control:

Lemma (Blanchet \& Glynn '08)

Suppose that there is a positive function $g(\cdot)$ such that

$$
E_{s}\left(\frac{g\left(S_{1}\right) r\left(s, S_{1}\right)}{g(s)}\right) \leq 1
$$

for all $s \leq b$ and $g(s) \geq 1$ for $s>b$. Then, $g(s)$ bounds second moment of importance sampling estimator, that is

$$
E_{s}\left(\prod_{j=1}^{T_{b}-1} r\left(S_{j}, S_{j+1}\right) I\left(T_{b}<\infty\right)\right) \leq g(s) .
$$

Choosing the Candidate Lyapunov Function

- Want strong efficiency, so pick (by Pakes-Veraberbeke Thm)

$$
g(s)=\min \left(\kappa\left(\int_{b-s}^{\infty} P(X>u) d u\right)^{2}, 1\right) .
$$

- Pick

$$
p(s)=\theta \frac{P(X>b-s)}{\int_{b-s}^{\infty} P(X>s) d u}
$$

- Just select $\theta, \kappa>0$ to force Lyapunov inequality!

Testing the Lyapunov Inequality

- Testing the Inequality on $g(s)<1$ (note that $g \leq 1$):

$$
\begin{aligned}
& E_{s}\left(\frac{g\left(S_{1}\right) r\left(s, S_{1}\right)}{g(s)}\right) \\
= & \frac{E(g(s+X) ; X>a(b-s)) P(X>a(b-s))}{p(s) g(s)} \\
& +\frac{E(g(s+X) ; X \leq a(b-s)) P(X \leq a(b-s))}{(1-p(s)) g(s)}
\end{aligned}
$$

Testing the Lyapunov Inequality

- Testing the Inequality on $g(s)<1$ (note that $g \leq 1$):

$$
\begin{aligned}
& E_{s}\left(\frac{g\left(S_{1}\right) r\left(s, S_{1}\right)}{g(s)}\right) \\
= & \frac{E(g(s+X) ; X>a(b-s)) P(X>a(b-s))}{p(s) g(s)} \\
& +\frac{E(g(s+X) ; X \leq a(b-s)) P(X \leq a(b-s))}{(1-p(s)) g(s)} \\
\leq & \frac{P(X>a(b-s))^{2}}{p(s) g(s)}+\frac{E(g(s+X) ; X \leq a(b-s))}{(1-p(s)) g(s)}
\end{aligned}
$$

Choosing the Parameters and Testing the Inequality

- Testing the Inequality on $g(s)<1$ (note that $g \leq 1$):

$$
\begin{aligned}
& E_{s}\left(\frac{g\left(S_{1}\right) r\left(s, S_{1}\right)}{g(s)}\right) \\
= & \frac{E(g(s+X) ; X>a(b-s)) P(X>a(b-s))}{p(s) g(s)} \\
& +\frac{E(g(s+X) ; X \leq a(b-s)) P(X \leq a(b-s))}{(1-p(s)) g(s)} \\
\leq & \frac{P(X>a(b-s))^{2}}{p(s) g(s)}+\frac{E(g(s+X) ; X \leq a(b-s))}{(1-p(s)) g(s)} \\
\approx & \frac{a^{-\alpha} P(X>a(b-s))}{\theta \kappa \int_{b-s}^{\infty} P(X>u) d u}+1+2(\eta+\theta) \frac{P(X>(b-s))}{\left(\int_{b-s}^{\infty} P(X>u) d u\right)} \leq 1
\end{aligned}
$$

The One Dimensional Case

- Corresponding Algorithm:
- Select $a \in(0,1)$, then choose θ and κ based on Lyapunov inequality
- AT EACH TIME STEP TEST
-
- IF $g(s)<1$ apply Imp. Sampling according $p(s)$ - mixture
- ELSE do NOT apply I.S. and continue until hitting.
- OUTPUT PRODUCT OF LOCAL LIKELIHOOD RATIOS Z

Conclusion of Example: Blanchet and Glynn '08
2nd moment $\leq g(0) \sim \kappa\left(\int_{b}^{\infty} P(X>s) d s\right)^{2}=O\left(P\left(T_{b}<\infty\right)^{2}\right)$
so strong optimality holds.

Notes and Summary: Heavy Tails

- Change-of-measure should be chosen depending on tail environment

Notes and Summary: Heavy Tails

- Change-of-measure should be chosen depending on tail environment
- Use large deviations to select your Lyapunov inequality, similar to light-tailed case

References

(1) Blanchet (2010). http://www.columbia.edu/~jb2814/
(2) Blanchet and Glynn (2008). Annals of Applied Probability.
(3) Blanchet, Glynn and Leder (2010). http://www.columbia.edu/~jb2814/
(9) Blanchet and Lam (2011) Surveys in Oper. Res. and Mgmt. Sc. (To appear) http://www.columbia.edu/~jb2814/
(6) Dupuis and Wang (2004). Annals of Applied Probability
(6) Dupuis and Wang (2007) Math. of Operations Research

