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Optimal design of rare event simulation algorithms

@ Prof. Varadhan's Abel
prize citation on large
deviations theory: “...It
has greatly expanded
our ability to use
computers to analyze
rare events."
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Before | Answer How: Why Would Anybody Care?

A fast computational engine
enhances our ability to quantify uncertainty
via sensitivity analysis & stress tests...
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Example: A Simple Stochastic Network

Queueing Network Diagram
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Example: A Simple Stochastic Network

Questions of interest:

How would the system perform IF TOTAL POPULATION reaches n
inside a busy period?

How likely is this event under different parameters / designs?
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Naive Benchmark: Crude Monte Carlo

@SayA=.1,puy; =5 puy,=4p=.1
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Naive Benchmark: Crude Monte Carlo

@SayA=.1,puy; =5 puy,=4p=.1

@ Total population overflow = n = 10

e Overflow probability ~ 1075

e Each replication in crude Monte Carlo ~ 1073 secs

@ Time to estimate with 10% precision ~ 10" /1000 = 10* secs ~ 2.7
hours

@ What if you want to do sensitivity analysis for a wide range of
parameters?

@ What about different network designs?

Next demo based on Blanchet '10: Optimal Sampling of Overflow
Paths in Jackson Networks.
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Rare Events in Networks

@ Question: How does the TOTAL CONTENT OF THE SYSTEM is
most likely to reach a give level in an operation cycle?
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Rare Events in Networks

@ Question: How does the TOTAL CONTENT OF THE SYSTEM is
most likely to reach a give level in an operation cycle?

@ Say A = .2, y; = .3, u, = .5... How can total content reach 507
@ Naive Monte Carlo takes =~ 115 days

@ Each picture below took ~ .01 seconds (generated with Blanchet
(2010) algorithm).
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Rare Events in Networks

A=1p=3p=>5

Plot of Conditional Path
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Rare Events in Networks

A=1p =4 p,=.24

Plot of Conditional Path
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Large Deviations and Monte Carlo: A Conceptual Diagram

Large Deviations

[y
Enhanced Optimal
A path,
estimates,
. change-of-
optimal
algorithms measure,
intuition...
A 4

Efficient Monte Carlo

Blanchet (Columbia) 12 / 40



Performance analysis of rare event simulation algorithms

e P(A,) =exp(—nl+o(n))asn /ooforl>0.
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Performance analysis of rare event simulation algorithms

e P(A,) =exp(—nl+o(n))asn /ooforl>0.
o Asymptotic weak optimality: Z, satisfies EZ, = P (A,) and
EZ?
—" - =Com (n) =exp(o(n)).
b s = Com(n) =exp (o ()
e Asymptotic strong optimality: Z, satisfies EZ, = P (A,) and
EZ?
——"— =Com(n) =0(1).
P(A,)

@ Sufficient number of replications of Z, to get € relative error with

1 — J confidence:
e 26" 1Com (n)

@ Total cost TC(n) = Com(n) x Cost per replication
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Insurance Reserves (Random Walk): Light Tails (e.g. Car

Insurance)

Ruin with Gaussian Increments
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@ ORIGINAL increments are Gaussian drift +1 and variance +1
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Insurance Reserves (Random Walk): Light Tails (e.g. Car

Insurance)

Ruin with Gaussian Increments

120
100 +
80
60
40 4

Random Walk Value

0 e T T T T T T R T T T T T

1 12 23 34 45 56 67 78 89 100
A Time

ORIGINAL increments are Gaussian drift +1 and variance +1
Picture represents the reserve CONDITIONAL ON RUIN!

Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.
Generated with Siegmund’s 76 algorithm
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Stylized Example: Two Dimensional Ruin Problem

@ Two dimensional random walk
o A={s:v/s>1}and B={s:v/s>1}

Sa(k)

Vi

Si(k)
u
ES(K)2 uk

o Efficiently estimate as n " o0
up (0) = Py[Sk/n hits A OR B Eventually]
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Stylized Example

© S =Y+ ..+ Y], Yi'sareiid. with density f(-)
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Stylized Example

Sine] = Y1+ ..+ Y]pe, Yi'sareiid. with density f ()
W, (t) = S|ne)/n+x

ZM =Ty, and 2P = ] v,

Note EZ\") = vJ u < 0and EZ\”) = v i <0
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Stylized Example

Sine] = Y1+ ..+ Y]pe, Yi'sareiid. with density f ()
W, (t) = S|ne)/n+x

ZM =Ty, and 2P = ] v,

Note EZ\") = vJ u < 0and EZ\”) = v i <0

Assume there are 07,65 > 0 such that

Eexp(0;2)) = 1, Eexp(032/)) =1
E[exp(GTZIEl))Zlgl)] < o E[exp(9§Z£2))Z£2)] < o
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Large Deviations for the Stylized Example

uy(x) = Py[W,(t) hits A OR B
~ crexp(—nb;i(1— v x)) + cxexp(—nb3(1 — v x))
= exp(—nh(x)+o(n))

as n /" oo, where

h(x) = min[f7(1 — v x), 63(1 — v) x)].
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Control-theoretic Approach by Dupuis-Wang

o Let 1 (A) = log E exp (ATYk>

Blanchet (Columbia) 18 / 40



Control-theoretic Approach by Dupuis-Wang

o Let 1 (A) = log E exp (ATYk>
o Put I (x) = maxy[ATx — 9 (A)]

Blanchet (Columbia)



Control-theoretic Approach by Dupuis-Wang

o Let 1 (A) = log E exp (ATYk>
o Put I (x) = maxy[ATx — 9 (A)]
o fi(y) =exp ()\Ty -y (/\)) f(y) <— Controls

Blanchet (Columbia)



Control-theoretic Approach by Dupuis-Wang

o Let 1 (A) = log E exp (ATYk>
o Put I (x) = maxy[ATx — 9 (A)]
o fi(y) =exp ()\Ty -y (/\)) f(y) <— Controls

@ HJB egn. to minimize 2nd moment...

Gy (w) = mAin E[e_/\TY+l/’(/\) Gy (w4 Y/n)]

Blanchet (Columbia) 18 / 40



Control-theoretic Approach by Dupuis-Wang

o Let 1 (A) = log E exp (ATYk>

e Put/(x) = max/\[)\Tx — 1 (A)]

f(y) = exp (ATY -y (/\)) f(y) <— Controls
HJB egn. to minimize 2nd moment...

Gy (w) = mAin E[e_/\TY+l/’(/\) Gy (w4 Y/n)]

o Cp(w) =~ exp(—ng(w))

~ minlog E[e~? X+¥()=nlg(w+Y/n)—g(w))
A

= minlog Efe~ XHIN 0] — minfy (1) + ¢ (~A - 9g (w)]
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Control-theoretic Approach by Dupuis-Wang

o Let 1 (A) = log E exp (ATYk>

e Put/(x) = max/\[)\Tx — 1 (A)]

f(y) = exp (ATY -y (/\)) f(y) <— Controls
HJB egn. to minimize 2nd moment...

Gy (w) = mAin E[e_/\TY+l/’(/\) Gy (w4 Y/n)]

o Cp(w) =~ exp(—ng(w))
0 ~ minlog E[efﬂxﬂb(?\)*n[g(w+Y/n)*g(W)]]
A
~ m/\in log E[e_)‘TX+‘P(A)_ag(W)] = m/\in[l/) A+ ¢ (—A—9g (w))]
@ GET so-called Isaacs equation:

p(—9g(w)/2) = 0. A" (w)=—dg(w)/2
Subject to g(w) = 0 on AUB.
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Harmonic Functions & Doob’s h-transform

® u,(x)=1on AUB and

up (x) = Py (Taug < ) = E[u, (x4 Y1/n)]
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Harmonic Functions & Doob’s h-transform

® u,(x)=1on AUB and

up (x) = Py (Taug < 00) = E[u, (x + Y1/n)]
@ Zero-variance sampler is:

P (Yk+1 € dy|lk < Taug < 00, Sk = nx)

x+y/n)

* Up
= P (Ve € oyl S = ) = 7 () 2 CTI
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler

up (x+y/n)

P* (Yi41 € dy| Sk = nx) = f (y) o ()

dy
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler

* up (x+y/n
P (Yk+1€dy]5k:nx):f(y)w

up (x) dy

e Recall: u, (x) = exp (—nh(x)+ o (n))
P* (Yit1 € dy| Sk = nx)

f(y)exp(—nlh(x+y/n) = h(x)]+0(1))dy
= f(y)exp(—0h(x)-y+o(1))dy
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler

up (x+y/n)

P* (Yi41 € dy| Sk = nx) = f (y) o ()

dy

e Recall: u, (x) = exp (—nh(x)+ o (n))
P* (Yiy1 € dy| S = nx)
f (y)exp (=n[h(x+y/n) —h(x)] +0o(1)) dy
= fy)exp(=0h(x)-y+o(l))dy
e But

1:/P*(Yk+1 € dy| Sk = nx) = P (—dh(x)) =0

e Equivalent to Isaacs equation with g (x) = 2h (x)
o CONCLUSION (Dupuis-Wang 04): Sampler (mollified) is (weakly)
asymptotically optimal... BUT
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The Second Moment of a State-dependent Estimator

o Consider any sampler

pQ (Y1 € dy| Sk = nx) = rt (x,x+y/n)f(y)
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o Consider any sampler
pQ (Y1 € dy| Sk = nx) = r1 (x,x+y/n)f(y)
o Likelihood ratio
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The Second Moment of a State-dependent Estimator

o Consider any sampler
P (Vi1 € dy| Sk =nx) = r ' (x,x+y/n)f (y)
@ Likelihood ratio
r(W,(0), W, (1/n)) ..t(Wy(Taus — 1), Wa(Taus))
@ Second moment of estimator
s(x) = Ex[r(x,x+Y/n)s(x+ Y /n)]

subject to s(x) =1 for x € AUB.
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The Lyapunov Inequality

Blanchet & Glynn '08: Lyapunov inequality

v(x) > Ex[r(x,x+ Y/n)v(x+Y/n)]

subject to v(x) > 1 for x € AUB. Then, v (x) > s (x).

@ How to use the result?
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The Lyapunov Inequality

Blanchet & Glynn '08: Lyapunov inequality

v(x) > Ex[r(x,x+ Y/n)v(x+Y/n)]

subject to v(x) > 1 for x € AUB. Then, v (x) > s (x).

o How to use the result?
@ 1) Identify a change-of-measure,

e 2) Use Large Deviations to force v(x) & uj, (x)°.
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The Lyapunov Inequalities and Subsolutions

e Lyapunov function v (x) = exp(—ny (x)) & A = =97y (x) /2
1> Efexp(=ATY + 9 (M) exp(—n[y (x + Y /n) —v(x)])]

subject to y(x) < 0 for x € AUB. Then, v (x) > s (x).
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The Lyapunov Inequalities and Subsolutions

e Lyapunov function v (x) = exp(—ny (x)) & A = =97y (x) /2
1> Efexp(=ATY + 9 (M) exp(—n[y (x + Y /n) —v(x)])]

subject to y(x) < 0 for x € AUB. Then, v (x) > s (x).
@ Expanding as n " oo we get

14+ 0(1/n) > exp[2¢p(—07y (x) /2)]
@ Yields subsolution to Isaacs equation (Dupuis-Wang '07)

P (=07 (x)/2) <0st y(x)<0,x€ AUB
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A Lyapunov Inequality

@ Select
vix) = (m (x)+w (x))2 <— square of LD approx
wi (x) = exp(—nb7(1— vlTx))
wy (x) = exp(—nb3(1— vy x))
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A Lyapunov Inequality

@ Select
vix) = (m (x)+w (x))2 <— square of LD approx
wi (x) = exp(—nb7(1— vlTx))
wa (x) = exp(—nb3(1— vy x))

o Mixture sampler from density f (y)

() wi (x) wa (x) T
f (i) T m (x) + wa (x) P (61‘/1 y) + wy (x) + wa (x) &P (92 v2 y)

@ Boundary condition on AU B

v(x) = (w (x) + wa(x))* > 1

for vlTx >10R V2TX >1... OK!
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A Lyapunov Inequality

wi (x) = exp(—nfi(1—v{x))
wy (x) = exp(—nb3(1— vy x))
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A Lyapunov Inequality

wi (x) = exp(—nfi(1—v{x))

wy (x) = exp(—nb3(1— vy x))

vix) = (wi(x)+w(x)?
wi (x+Y/n) = w(x
wo (x+Y/n) = w(x
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A Lyapunov Inequality

°
wi (x) = exp(—nb7(1— vlTx))
wy (x) = exp(—nb5(1— VQTX))
°
vix) = (wi(x)+w(x))?
wi (x+Y/n) = w(x) Y
wo (x+Y/n) = w(x) Y
°
Ev(x+ Y/ n) 1
wi (x) orv] Y ws (x) 05 Y
v (X) WI(X)1+W2(X)e 1V _|_ Wl(X)2+W2(X)e 2Vs

L (x)exp (01v{ Y) + wo (x) exp (65v Y)

wi (x) + wz (x)
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Conclusion of the Example

@ By Lyapunov inequality

2nd Moment of estimator < v (0) = (wy(0) + w2(0))? < O(uj (0)?)
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Conclusion of the Example

@ By Lyapunov inequality
2nd Moment of estimator < v (0) = (wy(0) + w2(0))? < O(uj (0)?)

@ So, sampler is STRONGLY OPTIMAL.
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Notes and Summary: Light Tails

@ Smoothness of solution to Isaacs equation plays an important
role in the performance
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Notes and Summary: Light Tails

@ Smoothness of solution to Isaacs equation plays an important
role in the performance

o Dupuis-Wang 04, 07 introduced subsolutions approach for
LIGHT-TAILED problems

e Blanchet, Glynn and Leder 10 study sharper complexity via
Lyapunov inequalities
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Heavy-tailed Case

@ Rich large deviations theory for random walks with subexponential
increments:

P (X1 4+ Xo > b) ~ P (max (X1, X2) > b)

as b — oo.

@ Focus on an important class of a subexponential distributions:
regularly varying distributions (basically power-law type)

P(X1>t)=1t"L(t)

fora > 1and L(tp)/L(t) — 1 ast / oo for each B > 0.
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How Does Ruin Occur with Heavy-tails (e.g. Catastrophic

Insurance)?

Ruin with Power-law Type Increments

400
300 1
200 /
100 1

10041 21 41 61 81 101 121 141 161 181 20

Random Walk Value

-200
B Time

@ Increments t-distributed (power law density) drift +1 variance +1
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How Does Ruin Occur with Heavy-tails (e.g. Catastrophic

Insurance)?

Ruin with Power-law Type Increments

400
300 1
200 /
100 1

10041 21 41 61 81 101 121 141 161 181 20

Random Walk Value

-200
B Time

@ Increments t-distributed (power law density) drift +1 variance +1
@ Picture represents reserve CONDITIONAL ON RUIN!
@ Generated with Blanchet and Glynn (2008)'s algorithm
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Problem Formulation

Let X1, Xo,... arei.i.d. regularly varying
EXi=1n<0

So=X1+ ...+ X, (So=0).

T, =inf{n>0:5, > b}.

Object of interest:

Ub(S) :Ps(Tb <00).
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Interpretation of the Picture

o Interpretation: Prior to ruin, the random walk has drift # < 0 and a
large jump of size b occurs suddenly...
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Interpretation of the Picture

o Interpretation: Prior to ruin, the random walk has drift # < 0 and a
large jump of size b occurs suddenly...
@ So, at time k, Sy =~ nk and chance of reaching b in the next step
given (Tp < o) is
P (X > b—nk) N P (X > b—nk)
Y P(X>b—nk) — [TP(X>b—nyu)du

—nP (X >b—nk) 1
[P (X >s)du _O<b)'
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Interpretation of the Picture

o Interpretation: Prior to ruin, the random walk has drift # < 0 and a
large jump of size b occurs suddenly...

@ So, at time k, Sy =~ nk and chance of reaching b in the next step
given (Tp < o) is
P (X > b—nk) N P (X > b—nk)
Y1 P(X > b—rnk) fOOOP(X>b—77u)du
—nP (X > b—nk) O(l)

b

[ P(X > s)du

@ The analysis also gives

Po(Tp < 0) ~ — /b P(X >s)ds

|

as b — co. (Pakes-Veraberbeke Thm.)
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The One Dimensional Case

o Family of changes-of-measure: Given s current position of the
walk (NOTE p(s) and a € (0,1))
(

fxis (x|s) = p(s )fX PX()X(;( j(z(_bs_))s))
(1 p(e)) PR = B2

@ In other words, s = s and s; = sp + x

fx|5((;:)’5) D o=r(s,5) " =p(%) /(,il(;siz(ab(f;))sg))
+1-p(a) U s A0S
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Recall Lyapunov Inequality

@ Lyapunov Inequalities for Variance Control:

Lemma (Blanchet & Glynn '08)
Suppose that there is a positive function g (-) such that

E. (M><l

g (s)

for all s < b and g (s) > 1 for s > b. Then, g (s) bounds second moment
of importance sampling estimator, that is

E, (Tﬁlf(Sj-Sm) (T, < °°)> <g(s).

J=1
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Choosing the Candidate Lyapunov Function

e Want strong efficiency, so pick (by Pakes-Veraberbeke Thm)

g(s) = min <K </::P(X> u)du)2,1>.

o Pick b X~ bs)
p(s)zgfljjsp(x>s)du

@ Just select 6, ¥ > 0 to force Lyapunov inequality!
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Testing the Lyapunov Inequality

o Testing the Inequality on g (s) < 1 (note that g < 1):

g(51)r (s, 51)
5“5 )
E(g(s+X);X>a(b—s))P(X>a(b—s))
p(s)g(s)
E(g(s+X)iX <a(b—5)P(X <a(b—5))

(1-p(s))g(s)

+
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Testing the Lyapunov Inequality

o Testing the Inequality on g (s) < 1 (note that g < 1):

g(51)r(s S)

ES( £(s) )
E(g(s+X);X>a(b—s))P(X>a(b—ys))
p(s)g(s)
LElg(s+X)iX<a(b=s))P(X<a(b=s))
(1—p(s))g(s)
P(X>a(b—s))® E(g(s+X);X<a(b—s))

e (1-p()e(s)




Choosing the Parameters and Testing the Inequality

o Testing the Inequality on g (s) < 1 (note that g < 1):

IN

Q

+E(g(s—i—X);XSa

g (51)r (s S1)
&< g (s) >
E(g(s+X);X>a(b—s)P(X>a(b—s))
p(s)g(s)
(b—s))P(X<a(b—ys))
(1—p(s)g(s)
P(X>a(b—s))? E(g(s+X);X<a(b—s))

e (-p()e()
a“P(X>a(b-ys)) P(X>(b—s))

<1

- F142(p40
O [, P(X > u)du 0 +-6)

(fbs (X > u) du)




The One Dimensional Case

o Corresponding Algorithm:
@ Select a € (0, 1), then choose 6 and «k based on Lyapunov inequality
o AT EACH TIME STEP TEST

o IF g (s) <1 apply Imp. Sampling according p (s) - mixture
e ELSE do NOT apply I.S. and continue until hitting.

e OUTPUT PRODUCT OF LOCAL LIKELIHOOD RATIOS Z
Conclusion of Example: Blanchet and Glynn '08

o]

2nd moment < g (0) NK(/b P(X>s)ds)2: O(P(Tb <oo)2)

so strong optimality holds.
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Notes and Summary: Heavy Tails

o Change-of-measure should be chosen depending on tail
environment
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Notes and Summary: Heavy Tails

o Change-of-measure should be chosen depending on tail
environment

o Use large deviations to select your Lyapunov inequality, similar
to light-tailed case
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