## Efficient Monte Carlo for Risk Analysis

#### Jose Blanchet

Columbia Department of IEOR

< 3 > < 3 >

#### • General theme of this line of research

3

▶ ▲ 문 ▶ ▲ 문 ▶

Image: Image:

- General theme of this line of research
- Design: Light Tails

▶ ▲ 문 ▶ ▲ 문 ▶

- General theme of this line of research
- Design: Light Tails
- Design: Heavy Tails

 Prof. Varadhan's Abel prize citation on large deviations theory: "...It has greatly expanded our ability to use computers to analyze rare events."  Prof. Varadhan's Abel prize citation on large deviations theory: "...It has greatly expanded our ability to use computers to analyze rare events."

 Goal of this line of research: To investigate exactly HOW? A fast computational engine enhances our ability to quantify uncertainty via sensitivity analysis & stress tests...

### Example: A Simple Stochastic Network



### Questions of interest:

How would the system perform IF TOTAL POPULATION reaches *n* inside a busy period?

How likely is this event under different parameters / designs?

. . . . . . . .

• Say 
$$\lambda = .1$$
,  $\mu_1 = .5$ ,  $\mu_2 = .4$ ,  $p = .1$ 

▲口 > ▲ □ > ▲ 回 > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ■ □ > ■ ○ < □ > ■ □ > ■ ○ < □ > ■ □ > ■ □ > ■ ○ < □ > ■ ○ < □ > ■ □ > ■ □ > ■ □ > ■ ○ < □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ ○ < □ > ■ □ > ■ ○ < □ > ■ □ > ■ ○ < □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ □

- Say  $\lambda=.1$ ,  $\mu_1=.5$ ,  $\mu_2=.4$ , p=.1
- Total population overflow = n = 10

・ロト ・聞ト ・ ほト ・ ほト

• Say 
$$\lambda=.1$$
,  $\mu_1=.5$ ,  $\mu_2=.4$ ,  $p=.1$ 

- Total population overflow = n = 10
- $\bullet~{\rm Overflow}$  probability  $\approx 10^{-5}$

∃ ► < ∃ ►</p>

• Say 
$$\lambda=.1$$
,  $\mu_1=.5$ ,  $\mu_2=.4$ ,  $p=.1$ 

- Total population overflow = n = 10
- $\bullet~{\rm Overflow}$  probability  $\approx 10^{-5}$
- ullet Each replication in crude Monte Carlo  $\approx 10^{-3}~{\rm secs}$

- Say  $\lambda=.1$ ,  $\mu_1=.5$ ,  $\mu_2=.4$ , p=.1
- Total population overflow = n = 10
- Overflow probability pprox 10<sup>-5</sup>
- $\bullet$  Each replication in crude Monte Carlo  $\approx 10^{-3}~{\rm secs}$
- Time to estimate with 10% precision  $\approx 10^7/1000 = 10^4~{\rm secs} \approx 2.7$  hours

- Say  $\lambda=.1$ ,  $\mu_1=.5$ ,  $\mu_2=.4$ , p=.1
- Total population overflow = n = 10
- Overflow probability pprox 10<sup>-5</sup>
- $\bullet$  Each replication in crude Monte Carlo  $\approx 10^{-3}~{\rm secs}$
- $\bullet\,$  Time to estimate with 10% precision  $\approx 10^7/1000 = 10^4\,$  secs  $\approx 2.7\,$  hours
- What if you want to do sensitivity analysis for a wide range of parameters?

- Say  $\lambda=.1$ ,  $\mu_1=.5$ ,  $\mu_2=.4$ , p=.1
- Total population overflow = n = 10
- Overflow probability pprox 10<sup>-5</sup>
- $\bullet$  Each replication in crude Monte Carlo  $\approx 10^{-3}~{\rm secs}$
- Time to estimate with 10% precision  $\approx 10^7/1000 = 10^4~{\rm secs} \approx 2.7$  hours
- What if you want to do sensitivity analysis for a wide range of parameters?
- What about different network designs?

- Say  $\lambda=.1$ ,  $\mu_1=.5$ ,  $\mu_2=.4$ , p=.1
- Total population overflow = n = 10
- Overflow probability pprox 10<sup>-5</sup>
- $\bullet$  Each replication in crude Monte Carlo  $\approx 10^{-3}~{\rm secs}$
- Time to estimate with 10% precision  $\approx 10^7/1000 = 10^4~{\rm secs} \approx 2.7$  hours
- What if you want to do sensitivity analysis for a wide range of parameters?
- What about different network designs?
- Next demo based on Blanchet '10: Optimal Sampling of Overflow Paths in Jackson Networks.



• Question: How does the TOTAL CONTENT OF THE SYSTEM is most likely to reach a give level in an operation cycle?



• Question: How does the TOTAL CONTENT OF THE SYSTEM is most likely to reach a give level in an operation cycle?

• Say  $\lambda = .2$ ,  $\mu_1 = .3$ ,  $\mu_2 = .5...$  How can total content reach **50**?



- Question: How does the TOTAL CONTENT OF THE SYSTEM is most likely to reach a give level in an operation cycle?
- Say  $\lambda = .2$ ,  $\mu_1 = .3$ ,  $\mu_2 = .5...$  How can total content reach **50**?
- Naive Monte Carlo takes pprox 115 days



- Question: How does the TOTAL CONTENT OF THE SYSTEM is most likely to reach a give level in an operation cycle?
- Say  $\lambda = .2$ ,  $\mu_1 = .3$ ,  $\mu_2 = .5...$  How can total content reach **50**?
- Naive Monte Carlo takes pprox 115 days
- Each picture below took  $\approx$  .01 seconds (generated with Blanchet (2010) algorithm).

$$\lambda = .1$$
,  $\mu_1 = .3$ ,  $\mu_2 = .5$ 



æ

イロト イ団ト イヨト イヨト

$$\lambda = .1$$
,  $\mu_1 = .5$ ,  $\mu_2 = .2$ 



2

イロト イ団ト イヨト イヨト

$$\lambda = .1$$
,  $\mu_1 = .4$ ,  $\mu_2 = .4$ 



æ

イロト イ団ト イヨト イヨト

## Large Deviations and Monte Carlo: A Conceptual Diagram



• 
$$P(A_n) = \exp(-nI + o(n))$$
 as  $n \nearrow \infty$  for  $I > 0$ .

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

13 / 40

- $P(A_n) = \exp(-nI + o(n))$  as  $n \nearrow \infty$  for I > 0.
- Asymptotic weak optimality:  $Z_n$  satisfies  $EZ_n = P(A_n)$  and

$$\frac{EZ_n^2}{P(A_n)^2} = \mathbf{Com}(n) = \exp(o(n)).$$

イロン イ理と イヨン イヨン

- $P(A_n) = \exp(-nI + o(n))$  as  $n \nearrow \infty$  for I > 0.
- Asymptotic weak optimality:  $Z_n$  satisfies  $EZ_n = P(A_n)$  and

$$\frac{EZ_n^2}{P(A_n)^2} = \mathbf{Com}(n) = \exp(o(n)).$$

• Asymptotic strong optimality:  $Z_n$  satisfies  $EZ_n = P(A_n)$  and

$$\frac{EZ_n^2}{P(A_n)^2} = \mathbf{Com}(n) = O(1).$$

イロト イ団ト イヨト イヨト 三日

- $P(A_n) = \exp(-nI + o(n))$  as  $n \nearrow \infty$  for I > 0.
- Asymptotic weak optimality:  $Z_n$  satisfies  $EZ_n = P(A_n)$  and

$$\frac{EZ_n^2}{P(A_n)^2} = \mathbf{Com}(n) = \exp(o(n)).$$

• Asymptotic strong optimality:  $Z_n$  satisfies  $EZ_n = P(A_n)$  and

$$\frac{EZ_n^2}{P(A_n)^2} = \mathbf{Com}(n) = O(1).$$

• Sufficient number of replications of  $Z_n$  to get  $\varepsilon$  relative error with  $1 - \delta$  confidence:

$$\varepsilon^{-2}\delta^{-1}\mathbf{Com}\left(n\right)$$

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

- $P(A_n) = \exp(-nI + o(n))$  as  $n \nearrow \infty$  for I > 0.
- Asymptotic weak optimality:  $Z_n$  satisfies  $EZ_n = P(A_n)$  and

$$\frac{EZ_n^2}{P(A_n)^2} = \mathbf{Com}(n) = \exp(o(n)).$$

• Asymptotic strong optimality:  $Z_n$  satisfies  $EZ_n = P(A_n)$  and

$$\frac{EZ_{n}^{2}}{P\left(A_{n}\right)^{2}}=\mathbf{Com}\left(n\right)=O\left(1\right).$$

• Sufficient number of replications of  $Z_n$  to get  $\varepsilon$  relative error with  $1 - \delta$  confidence:

$$\varepsilon^{-2}\delta^{-1}\mathbf{Com}(n)$$

• Total cost  $TC(n) = Com(n) \times Cost per replication$ 



• ORIGINAL increments are *Gaussian* drift +1 and variance +1



ORIGINAL increments are *Gaussian* drift +1 and variance +1
Picture represents the reserve CONDITIONAL ON RUIN!



- ORIGINAL increments are *Gaussian* drift +1 and variance +1
- Picture represents the reserve CONDITIONAL ON RUIN!
- Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.



- ORIGINAL increments are *Gaussian* drift +1 and variance +1
- Picture represents the reserve CONDITIONAL ON RUIN!
- Light tails: Exponential, Gamma, Gaussian, mixtures of these, etc.
- Generated with Siegmund's 76 algorithm Blanchet (Columbia)

## Stylized Example: Two Dimensional Ruin Problem

• Two dimensional random walk

•  $A = \{s : v_2^T s \ge 1\}$  and  $B = \{s : v_1^T s \ge 1\}$ 



• Efficiently estimate as  $n \nearrow \infty$ 

 $u_n(0) = P_0[S_k/n \text{ hits } A \text{ OR } B \text{ Eventually}]$ 

# • $S_{\lfloor nt \rfloor} = Y_1 + ... + Y_{\lfloor nt \rfloor}$ , $Y_k$ 's are i.i.d. with density $f(\cdot)$

Blanchet (Columbia)

16 / 40

2

イロト イ理ト イヨト イヨト
# • $S_{\lfloor nt \rfloor} = Y_1 + \ldots + Y_{\lfloor nt \rfloor}$ , $Y_k$ 's are i.i.d. with density $f(\cdot)$ • $W_n(t) = S_{\lfloor nt \rfloor} / n + x$

16 / 40

• 
$$S_{\lfloor nt \rfloor} = Y_1 + \ldots + Y_{\lfloor nt \rfloor}$$
,  $Y_k$ 's are i.i.d. with density  $f(\cdot)$   
•  $W_n(t) = S_{\lfloor nt \rfloor} / n + x$   
•  $Z_k^{(1)} = v_1^T Y_k$  and  $Z_k^{(2)} = v_2^T Y_k$ 

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

•  $S_{\lfloor nt \rfloor} = Y_1 + ... + Y_{\lfloor nt \rfloor}$ ,  $Y_k$ 's are i.i.d. with density  $f(\cdot)$ •  $W_n(t) = S_{\lfloor nt \rfloor} / n + x$ •  $Z_k^{(1)} = v_1^T Y_k$  and  $Z_k^{(2)} = v_2^T Y_k$ • Note  $EZ_k^{(1)} = v_1^T \mu < 0$  and  $EZ_k^{(2)} = v_2^T \mu < 0$ 

伺 ト イヨト イヨト

•  $S_{\lfloor nt \rfloor} = Y_1 + \ldots + Y_{\lfloor nt \rfloor}$ ,  $Y_k$ 's are i.i.d. with density  $f(\cdot)$ •  $W_n(t) = S_{\lfloor nt \rfloor} / n + x$ 

• 
$$Z_k^{(1)} = v_1^T Y_k$$
 and  $Z_k^{(2)} = v_2^T Y_k$ 

- Note  $\textit{EZ}_k^{(1)} = \textit{v}_1^T \mu < 0$  and  $\textit{EZ}_k^{(2)} = \textit{v}_2^T \mu < 0$
- Assume there are  $\theta_1^*, \theta_2^* > 0$  such that

$$E \exp(\theta_1^* Z_k^{(1)}) = 1, \ E \exp(\theta_2^* Z_k^{(2)}) = 1$$
  
 $E[\exp(\theta_1^* Z_k^{(1)}) Z_k^{(1)}] < \infty, \ E[\exp(\theta_2^* Z_k^{(2)}) Z_k^{(2)}] < \infty$ 

通 ト イヨ ト イヨ ト

### • Then

$$u_{n}(x) = P_{x}[W_{n}(t) \text{ hits } A \text{ OR } B]$$
  

$$\sim c_{1} \exp(-n\theta_{1}^{*}(1-v_{1}^{T}x)) + c_{2} \exp(-n\theta_{2}^{*}(1-v_{2}^{T}x))$$
  

$$= \exp(-nh(x) + o(n))$$

as  $n \nearrow \infty$ , where

$$h(x) = \min[\theta_1^*(1 - v_1^T x), \theta_2^*(1 - v_2^T x)].$$

2

ヘロト 人間 ト くほ ト くほ トー

• Let 
$$\psi(\lambda) = \log E \exp(\lambda^T Y_k)$$

<ロト < @ ト < 臣 ト < 臣 ト = 三 の Q ()</p>

• Let 
$$\psi(\lambda) = \log E \exp(\lambda^T Y_k)$$
  
• Put  $I(x) = \max_{\lambda} [\lambda^T x - \psi(\lambda)]$ 

18 / 40

• Let 
$$\psi(\lambda) = \log E \exp(\lambda^T Y_k)$$
  
• Put  $I(x) = \max_{\lambda} [\lambda^T x - \psi(\lambda)]$   
•  $f_{\lambda}(y) = \exp(\lambda^T y - \psi(\lambda)) f(y)$  <--- Controls

æ

イロト イヨト イヨト イヨト

• Let 
$$\psi(\lambda) = \log E \exp(\lambda^T Y_k)$$
  
• Put  $I(x) = \max_{\lambda} [\lambda^T x - \psi(\lambda)]$   
•  $f_{\lambda}(y) = \exp(\lambda^T y - \psi(\lambda)) f(y)$  <--- Controls

• HJB eqn. to minimize 2nd moment...

$$C_{n}(w) = \min_{\lambda} E[e^{-\lambda^{T}Y + \psi(\lambda)}C_{n}(w + Y/n)]$$

æ

イロト イヨト イヨト イヨト

• Let 
$$\psi(\lambda) = \log E \exp(\lambda^T Y_k)$$
  
• Put  $I(x) = \max_{\lambda} [\lambda^T x - \psi(\lambda)]$   
•  $f_{\lambda}(y) = \exp(\lambda^T y - \psi(\lambda)) f(y)$  <--- Controls  
• HJB eqn. to minimize 2nd moment...  
 $C_n(w) = \min_{\lambda} E[e^{-\lambda^T Y + \psi(\lambda)} C_n(w + Y/n)]$   
•  $C_n(w) \approx \exp(-ng(w))$   
0  $\approx \min_{\lambda} \log E[e^{-\lambda^T X + \psi(\lambda) - n[g(w + Y/n) - g(w)]}]$   
 $\approx \min_{\lambda} \log E[e^{-\lambda^T X + \psi(\lambda) - \partial g(w)}] = \min_{\lambda} [\psi(\lambda) + \psi(-\lambda - \partial g(w))]$ 

2

イロト イ理ト イヨト イヨト

• Let 
$$\psi(\lambda) = \log E \exp(\lambda^T Y_k)$$
  
• Put  $I(x) = \max_{\lambda} [\lambda^T x - \psi(\lambda)]$   
•  $f_{\lambda}(y) = \exp(\lambda^T y - \psi(\lambda)) f(y)$  <--- Controls  
• HJB eqn. to minimize 2nd moment...  
 $C_n(w) = \min_{\lambda} E[e^{-\lambda^T Y + \psi(\lambda)} C_n(w + Y/n)]$   
•  $C_n(w) \approx \exp(-ng(w))$   
0  $\approx \min_{\lambda} \log E[e^{-\lambda^T X + \psi(\lambda) - n[g(w + Y/n) - g(w)]}]$   
 $\approx \min_{\lambda} \log E[e^{-\lambda^T X + \psi(\lambda) - \partial g(w)}] = \min_{\lambda} [\psi(\lambda) + \psi(-\lambda - \partial g(w))]$ 

GET so-called Isaacs equation:

$$\begin{split} \psi\left(-\partial g\left(w\right)/2\right) &= 0, \ \lambda^{*}\left(w\right) = -\partial g\left(w\right)/2\\ \text{Subject to } g\left(w\right) &= 0 \ \text{on} \ A\cup B. \end{split}$$

æ

イロト イ理ト イヨト イヨトー

• 
$$u_n(x) = 1$$
 on  $A \cup B$  and

$$u_n(x) = P_x(T_{A\cup B} < \infty) = E[u_n(x + Y_1/n)]$$

æ

イロト イヨト イヨト イヨト

• 
$$u_n(x) = 1$$
 on  $A \cup B$  and

$$u_n(x) = P_x(T_{A\cup B} < \infty) = E[u_n(x + Y_1/n)]$$

• Zero-variance sampler is:

$$P(Y_{k+1} \in dy | k < T_{A \cup B} < \infty, S_k = nx)$$
  
=  $P^*(Y_{k+1} \in dy | S_k = nx) = f(y) \frac{u_n(x + y/n)}{u_n(x)} dy$ 

< 3 > < 3 >

• Zero-variance sampler

$$P^{*}(Y_{k+1} \in dy | S_{k} = nx) = f(y) \frac{u_{n}(x + y/n)}{u_{n}(x)} dy$$

Image: Image:

. . . . . . . .

• Zero-variance sampler

$$P^{*}(Y_{k+1} \in dy | S_{k} = nx) = f(y) \frac{u_{n}(x + y/n)}{u_{n}(x)} dy$$
  
• Recall:  $u_{n}(x) = \exp(-nh(x) + o(n))$   
 $P^{*}(Y_{k+1} \in dy | S_{k} = nx)$   
 $= f(y) \exp(-n[h(x + y/n) - h(x)] + o(1)) dy$   
 $= f(y) \exp(-\partial h(x) \cdot y + o(1)) dy$ 

20 / 40

æ

イロト イポト イヨト イヨト

• Zero-variance sampler

$$P^{*}(Y_{k+1} \in dy | S_{k} = nx) = f(y) \frac{u_{n}(x + y/n)}{u_{n}(x)} dy$$
  
• Recall:  $u_{n}(x) = \exp(-nh(x) + o(n))$   
 $P^{*}(Y_{k+1} \in dy | S_{k} = nx)$   
 $= f(y) \exp(-n[h(x + y/n) - h(x)] + o(1)) dy$   
 $= f(y) \exp(-\partial h(x) \cdot y + o(1)) dy$ 

But

$$1 = \int P^* \left( \left| Y_{k+1} \in dy \right| S_k = nx \right) \Longrightarrow \psi \left( -\partial h \left( x \right) \right) = 0$$

æ

<ロト < 団ト < 団ト < 団ト

• Zero-variance sampler

$$P^{*}(Y_{k+1} \in dy | S_{k} = nx) = f(y) \frac{u_{n}(x + y/n)}{u_{n}(x)} dy$$
  
• Recall:  $u_{n}(x) = \exp(-nh(x) + o(n))$   
 $P^{*}(Y_{k+1} \in dy | S_{k} = nx)$   
 $= f(y) \exp(-n[h(x + y/n) - h(x)] + o(1)) dy$   
 $= f(y) \exp(-\partial h(x) \cdot y + o(1)) dy$ 

But

$$1 = \int P^* \left( \left| Y_{k+1} \in dy \right| S_k = nx \right) \Longrightarrow \psi \left( -\partial h \left( x \right) \right) = 0$$

• Equivalent to Isaacs equation with g(x) = 2h(x)

イロト 不得下 イヨト イヨト

Zero-variance sampler

$$P^* (Y_{k+1} \in dy | S_k = nx) = f(y) \frac{u_n (x + y/n)}{u_n (x)} dy$$
  
• Recall:  $u_n (x) = \exp(-nh(x) + o(n))$   
 $P^* (Y_{k+1} \in dy | S_k = nx)$   
 $= f(y) \exp(-n[h(x + y/n) - h(x)] + o(1)) dy$   
 $= f(y) \exp(-\partial h(x) \cdot y + o(1)) dy$ 

But

$$1 = \int P^* \left( \left| Y_{k+1} \in dy \right| S_k = nx \right) \Longrightarrow \psi \left( -\partial h \left( x \right) \right) = 0$$

- Equivalent to Isaacs equation with g(x) = 2h(x)
- CONCLUSION (Dupuis-Wang 04): Sampler (mollified) is (weakly) asymptotically optimal... BUT

## The Second Moment of a State-dependent Estimator

• Consider any sampler

$$P^{Q}(Y_{k+1} \in dy | S_{k} = nx) = r^{-1}(x, x + y/n) f(y)$$

< 3 > < 3 >

• Consider any sampler

$$P^{Q}(Y_{k+1} \in dy | S_{k} = nx) = r^{-1}(x, x + y/n) f(y)$$

Likelihood ratio

 $r(W_n(0), W_n(1/n)) \dots r(W_n(T_{A \cup B} - 1), W_n(T_{A \cup B}))$ 

3 K K 3 K

• Consider any sampler

$$P^{Q}(Y_{k+1} \in dy | S_{k} = nx) = r^{-1}(x, x + y/n) f(y)$$

Likelihood ratio

$$r(W_n(0), W_n(1/n)) \dots r(W_n(T_{A \cup B} - 1), W_n(T_{A \cup B}))$$

Second moment of estimator

$$s(x) = E_x[r(x, x + Y/n)s(x + Y/n)]$$

subject to s(x) = 1 for  $x \in A \cup B$ .

글 > - + 글 >

#### Lemma

Blanchet & Glynn '08: Lyapunov inequality

$$v(x) \geq E_x[r(x, x+Y/n)v(x+Y/n)]$$

subject to  $v(x) \ge 1$  for  $x \in A \cup B$ . Then,  $v(x) \ge s(x)$ .

• How to use the result?

伺下 イヨト イヨト

#### Lemma

Blanchet & Glynn '08: Lyapunov inequality

$$v(x) \geq E_x[r(x, x+Y/n)v(x+Y/n)]$$

subject to  $v(x) \ge 1$  for  $x \in A \cup B$ . Then,  $v(x) \ge s(x)$ .

#### • How to use the result?

• 1) Identify a change-of-measure,

#### Lemma

Blanchet & Glynn '08: Lyapunov inequality

$$v(x) \geq E_x[r(x, x+Y/n)v(x+Y/n)]$$

subject to  $v(x) \ge 1$  for  $x \in A \cup B$ . Then,  $v(x) \ge s(x)$ .

### • How to use the result?

- 1) Identify a change-of-measure,
- 2) Use Large Deviations to force  $v(x) \approx u_n(x)^2$ .

## The Lyapunov Inequalities and Subsolutions

• Lyapunov function  $v(x) = \exp(-n\gamma(x))$  &  $\lambda = -\partial\gamma(x)/2$ 

 $1 \ge E[\exp(-\lambda^T Y + \psi(\lambda))\exp(-n[\gamma(x + Y/n) - \gamma(x)])]$ 

subject to  $\gamma(x) \leq 0$  for  $x \in A \cup B$ . Then,  $v(x) \geq s(x)$ .

イロト 不得下 イヨト イヨト 二日

## The Lyapunov Inequalities and Subsolutions

• Lyapunov function  $v\left(x
ight) = \exp(-n\gamma\left(x
ight))$  &  $\lambda = -\partial\gamma\left(x
ight)/2$ 

$$1 \geq E[\exp(-\lambda^{T}Y + \psi(\lambda))\exp(-n[\gamma(x + Y/n) - \gamma(x)])]$$

subject to  $\gamma(x) \leq 0$  for  $x \in A \cup B$ . Then,  $v(x) \geq s(x)$ .

• Expanding as  $n \nearrow \infty$  we get

$$1+O\left(1/n\right)\geq\exp[2\psi(-\partial\gamma\left(x\right)/2)]$$

イロト イポト イヨト イヨト

## The Lyapunov Inequalities and Subsolutions

• Lyapunov function  $v(x) = \exp(-n\gamma(x))$  &  $\lambda = -\partial\gamma(x)/2$ 

$$1 \ge E[\exp(-\lambda^{T}Y + \psi(\lambda))\exp(-n[\gamma(x + Y/n) - \gamma(x)])]$$

subject to  $\gamma(x) \leq 0$  for  $x \in A \cup B$ . Then,  $v(x) \geq s(x)$ . • Expanding as  $n \nearrow \infty$  we get

$$1 + O(1/n) \ge \exp[2\psi(-\partial\gamma(x)/2)]$$

• Yields subsolution to Isaacs equation (Dupuis-Wang '07)

$$\psi\left(-\partial\gamma\left(x
ight)/2
ight)\leq$$
0 s.t.  $\gamma\left(x
ight)\leq$ 0,  $x\in A\cup B$ 

イロト イヨト イヨト イヨト

Select

$$\begin{array}{lll} v(x) &=& (w_1(x) + w_2(x))^2 < - \text{ square of LD approx} \\ w_1(x) &=& \exp(-n\theta_1^*(1 - v_1^T x)) \\ w_2(x) &=& \exp(-n\theta_2^*(1 - v_2^T x)) \end{array}$$

2

イロト イ団ト イヨト イヨト

Select

$$\begin{array}{lll} v(x) &=& (w_1(x) + w_2(x))^2 < - \text{ square of LD approx} \\ w_1(x) &=& \exp(-n\theta_1^*(1 - v_1^T x)) \\ w_2(x) &=& \exp(-n\theta_2^*(1 - v_2^T x)) \end{array}$$

• Mixture sampler from density  $\tilde{f}(y)$ 

$$\frac{\widetilde{f}\left(y\right)}{f\left(y\right)} = \frac{w_{1}\left(x\right)}{w_{1}\left(x\right) + w_{2}\left(x\right)} \exp\left(\theta_{1}^{*}v_{1}^{\mathsf{T}}y\right) + \frac{w_{2}\left(x\right)}{w_{1}\left(x\right) + w_{2}\left(x\right)} \exp\left(\theta_{2}^{*}v_{2}^{\mathsf{T}}y\right)$$

æ

ヘロト 人間 と 人 臣 とう

Select

$$\begin{array}{lll} v(x) &=& (w_1(x) + w_2(x))^2 < - \text{ square of LD approx} \\ w_1(x) &=& \exp(-n\theta_1^*(1 - v_1^T x)) \\ w_2(x) &=& \exp(-n\theta_2^*(1 - v_2^T x)) \end{array}$$

• Mixture sampler from density  $\tilde{f}(y)$ 

$$\frac{\widetilde{f}\left(y\right)}{f\left(y\right)} = \frac{w_{1}\left(x\right)}{w_{1}\left(x\right) + w_{2}\left(x\right)} \exp\left(\theta_{1}^{*}v_{1}^{T}y\right) + \frac{w_{2}\left(x\right)}{w_{1}\left(x\right) + w_{2}\left(x\right)} \exp\left(\theta_{2}^{*}v_{2}^{T}y\right)$$

• Boundary condition on  $A \cup B$ 

$$v(x) = (w_1(x) + w_2(x))^2 \ge 1$$

for  $v_1^T x \ge 1$  OR  $v_2^T x \ge 1...$  OK!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

٥

$$w_1(x) = \exp(-n\theta_1^*(1-v_1^T x)) w_2(x) = \exp(-n\theta_2^*(1-v_2^T x))$$

2

イロト イ団ト イヨト イヨト

۲

٢

 $w_1(x) = \exp(-n\theta_1^*(1-v_1^T x))$  $w_2(x) = \exp(-n\theta_2^*(1-v_2^T x))$ 

$$v(x) = (w_1(x) + w_2(x))^2$$
  

$$w_1(x + Y/n) = w_1(x) e^{\theta^* v_1^T Y}$$
  

$$w_2(x + Y/n) = w_2(x) e^{\theta^* v_2^T Y}$$

25 / 40

۲

٢

۲

 $w_1(x) = \exp(-n\theta_1^*(1-v_1^T x))$  $w_2(x) = \exp(-n\theta_2^*(1-v_2^T x))$ 

$$v(x) = (w_1(x) + w_2(x))^2$$
  

$$w_1(x + Y/n) = w_1(x) e^{\theta^* v_1^T Y}$$
  

$$w_2(x + Y/n) = w_2(x) e^{\theta^* v_2^T Y}$$

$$E \frac{v(x+Y/n)}{v(x)} \frac{1}{\frac{w_1(x)}{w_1(x)+w_2(x)}} e^{\theta_1^* v_1^T Y} + \frac{w_2(x)}{w_1(x)+w_2(x)}} e^{\theta_2^* v_2^T Y}}{e^{\theta_2^* v_2^T Y}}$$
  
=  $E \frac{w_1(x) \exp\left(\theta_1^* v_1^T Y\right) + w_2(x) \exp\left(\theta_2^* v_2^T Y\right)}{w_1(x)+w_2(x)} = 1.$ 

• By Lyapunov inequality

2nd Moment of estimator  $\leq v(0) = (w_1(0) + w_2(0))^2 \leq O(u_n(0)^2)$ 

イロト イポト イヨト イヨト

• By Lyapunov inequality

2nd Moment of estimator  $\leq v(0) = (w_1(0) + w_2(0))^2 \leq O(u_n(0)^2)$ 

• So, sampler is STRONGLY OPTIMAL.

• Smoothness of solution to Isaacs equation plays an important role in the performance

- A I I I A I I I I
- Smoothness of solution to Isaacs equation plays an important role in the performance
- Dupuis-Wang 04, 07 introduced subsolutions approach for LIGHT-TAILED problems

伺下 イヨト イヨト

- Smoothness of solution to Isaacs equation plays an important role in the performance
- Dupuis-Wang 04, 07 introduced subsolutions approach for LIGHT-TAILED problems
- Blanchet, Glynn and Leder 10 study sharper complexity via Lyapunov inequalities

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rich large deviations theory for random walks with subexponential increments:

$$P(X_1 + X_2 > b) \sim P(\max(X_1, X_2) > b)$$

as  $b \longrightarrow \infty$ .

• Focus on an important class of a subexponential distributions: regularly varying distributions (basically power-law type)

$$P(X_1 > t) = t^{-\alpha}L(t)$$

 $\text{for }\alpha>1\text{ and }L\left( t\beta\right) /L\left( t\right) \longrightarrow1\text{ as }t\nearrow\infty\text{ for each }\beta>0.$ 

イロト 不得下 イヨト イヨト 二日

# How Does Ruin Occur with Heavy-tails (e.g. Catastrophic Insurance)?



• Increments *t*-distributed (power law density) drift +1 variance +1

# How Does Ruin Occur with Heavy-tails (e.g. Catastrophic Insurance)?



- Increments *t*-distributed (power law density) drift +1 variance +1
- Picture represents reserve CONDITIONAL ON RUIN!

# How Does Ruin Occur with Heavy-tails (e.g. Catastrophic Insurance)?



- Increments t-distributed (power law density) drift +1 variance +1
- Picture represents reserve CONDITIONAL ON RUIN!
- Generated with Blanchet and Glynn (2008)'s algorithm

• Let  $X_1$ ,  $X_2$ ,... are i.i.d. regularly varying

• 
$$EX_i = \eta < 0$$

• 
$$S_n = X_1 + ... + X_n$$
,  $(S_0 = 0)$ .

• 
$$T_b = \inf\{n \ge 0 : S_n > b\}.$$

• Object of interest:

$$u_b(s) = P_s(T_b < \infty)$$
.

< 3 > < 3 >

 Interpretation: Prior to ruin, the random walk has drift η < 0 and a large jump of size b occurs suddenly...

### Interpretation of the Picture

- Interpretation: Prior to ruin, the random walk has drift η < 0 and a large jump of size b occurs suddenly...
- So, at time k,  $S_k \approx \eta k$  and chance of reaching b in the next step given  $(T_b < \infty)$  is

$$\frac{P(X > b - \eta k)}{\sum_{k=1}^{\infty} P(X > b - \eta k)} \approx \frac{P(X > b - \eta k)}{\int_{0}^{\infty} P(X > b - \eta u) du}$$
$$\approx \frac{-\eta P(X > b - \eta k)}{\int_{b}^{\infty} P(X > s) du} = O\left(\frac{1}{b}\right).$$

イロト イポト イヨト イヨト

### Interpretation of the Picture

- Interpretation: Prior to ruin, the random walk has drift η < 0 and a large jump of size b occurs suddenly...
- So, at time k,  $S_k \approx \eta k$  and chance of reaching b in the next step given  $(T_b < \infty)$  is

$$\frac{P\left(X > b - \eta k\right)}{\sum_{k=1}^{\infty} P\left(X > b - \eta k\right)} \approx \frac{P\left(X > b - \eta k\right)}{\int_{0}^{\infty} P\left(X > b - \eta u\right) du}$$
$$\approx \frac{-\eta P\left(X > b - \eta k\right)}{\int_{b}^{\infty} P\left(X > s\right) du} = O\left(\frac{1}{b}\right).$$

The analysis also gives

$$\mathsf{P}_{0}\left(\mathsf{T}_{b}<\infty
ight)pprox-rac{1}{\eta}\int_{b}^{\infty}\mathsf{P}\left(X>s
ight)ds$$

as  $b \rightarrow \infty$ . (Pakes-Veraberbeke Thm.)

▶ ★ 문 ▶ ★ 문 ▶

### The One Dimensional Case

Family of changes-of-measure: Given s current position of the walk (NOTE p (s) and a ∈ (0, 1))

$$\begin{split} f_{X|s}\left(x|s\right) &= p\left(s\right) \frac{f_{X}\left(x\right) I\left(x > a\left(b-s\right)\right)}{P\left(X > a\left(b-s\right)\right)} \\ &+ \left(1-p\left(s\right)\right) \frac{f_{X}\left(x\right) I\left(x \le a\left(b-s\right)\right)}{P\left(X > a\left(b-s\right)\right)} \end{split}$$

• In other words,  $s_0 = s$  and  $s_1 = s_0 + x$ 

$$\frac{f_{X|s}(x|s)}{f(x)} := r(s_0, s_1)^{-1} = p(s_0) \frac{I(s_1 - s_0 > a(b - s_0))}{P(X > a(b - s_0))} \\ + (1 - p(s_1)) \frac{I(s_1 - s_0 \le a(b - s_0))}{P(X \le a(b - s_0))}$$

#### • Lyapunov Inequalities for Variance Control:

#### Lemma (Blanchet & Glynn '08)

Suppose that there is a positive function  $g\left(\cdot\right)$  such that

$$E_{s}\left(rac{g\left(S_{1}
ight)r\left(s,S_{1}
ight)}{g\left(s
ight)}
ight)\leq1$$

for all  $s \le b$  and  $g(s) \ge 1$  for s > b. Then, g(s) bounds second moment of importance sampling estimator, that is

$$E_{s}\left(\prod_{j=1}^{T_{b}-1}r\left(S_{j},S_{j+1}\right)I\left(T_{b}<\infty\right)\right)\leq g\left(s\right).$$

• Want strong efficiency, so pick (by Pakes-Veraberbeke Thm)

$$g(s) = \min\left(\kappa\left(\int_{b-s}^{\infty} P(X > u) du\right)^2, 1\right).$$

Pick

$$p(s) = \theta \frac{P(X > b - s)}{\int_{b-s}^{\infty} P(X > s) du}$$

• Just select  $\theta$ ,  $\kappa > 0$  to force Lyapunov inequality!

• Testing the Inequality on g(s) < 1 (note that  $g \le 1$ ):

$$E_{s}\left(\frac{g(S_{1})r(s,S_{1})}{g(s)}\right) = \frac{E(g(s+X); X > a(b-s))P(X > a(b-s))}{p(s)g(s)} + \frac{E(g(s+X); X \le a(b-s))P(X \le a(b-s))}{(1-p(s))g(s)}$$

イロト イ理ト イヨト イヨト

• Testing the Inequality on g(s) < 1 (note that  $g \leq 1$ ):

$$E_{s}\left(\frac{g(S_{1})r(s,S_{1})}{g(s)}\right)$$

$$=\frac{E(g(s+X); X > a(b-s))P(X > a(b-s))}{p(s)g(s)}$$

$$+\frac{E(g(s+X); X \le a(b-s))P(X \le a(b-s))}{(1-p(s))g(s)}$$

$$\le \frac{P(X > a(b-s))^{2}}{p(s)g(s)} + \frac{E(g(s+X); X \le a(b-s))}{(1-p(s))g(s)}$$

イロト イポト イヨト イヨト

## Choosing the Parameters and Testing the Inequality

• Testing the Inequality on g(s) < 1 (note that  $g \le 1$ ):

$$E_{s}\left(\frac{g(S_{1})r(s,S_{1})}{g(s)}\right)$$

$$=\frac{E(g(s+X);X > a(b-s))P(X > a(b-s))}{P(s)g(s)}$$

$$+\frac{E(g(s+X);X \le a(b-s))P(X \le a(b-s))}{(1-p(s))g(s)}$$

$$\leq \frac{P(X > a(b-s))^{2}}{p(s)g(s)} + \frac{E(g(s+X);X \le a(b-s))}{(1-p(s))g(s)}$$

$$\approx \frac{a^{-\alpha}P(X > a(b-s))}{\theta\kappa\int_{b-s}^{\infty}P(X > u)du} + 1 + 2(\eta+\theta)\frac{P(X > (b-s))}{\left(\int_{b-s}^{\infty}P(X > u)du\right)} \le 1$$

イロト イポト イヨト イヨト

## The One Dimensional Case

#### • Corresponding Algorithm:

- Select  $a \in (0, 1)$ , then choose  $\theta$  and  $\kappa$  based on Lyapunov inequality
- AT EACH TIME STEP TEST
  - IF g(s) < 1 apply Imp. Sampling according p(s) mixture
  - ELSE do NOT apply I.S. and continue until hitting.
  - OUTPUT PRODUCT OF LOCAL LIKELIHOOD RATIOS Z

Conclusion of Example: Blanchet and Glynn '08

$$2nd \text{ moment } \leq g\left(0
ight) \sim \kappa \left(\int_{b}^{\infty} P\left(X > s
ight) ds
ight)^{2} = O\left(P\left(T_{b} < \infty
ight)^{2}
ight)$$

so strong optimality holds.

• Change-of-measure should be chosen depending on tail environment

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Change-of-measure should be chosen depending on tail environment
- Use large deviations to select your Lyapunov inequality, similar to light-tailed case

- Blanchet (2010). http://www.columbia.edu/~jb2814/
- Islanchet and Glynn (2008). Annals of Applied Probability.
- Blanchet, Glynn and Leder (2010). http://www.columbia.edu/~jb2814/
- Blanchet and Lam (2011) Surveys in Oper. Res. and Mgmt. Sc. (To appear) http://www.columbia.edu/~jb2814/
- Oupuis and Wang (2004). Annals of Applied Probability
- **(5)** Dupuis and Wang (2007) Math. of Operations Research

- < A > < B > < B >