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Abstract

The fluctuations of Internet traffic possess an intricate structure which cannot be simply
explained by long-range dependence and self-similarity. In this work, we explore the use of
the wavelet spectrum, whose slope is commonly used to estimate the Hurst parameter of
long-range dependence. We show that much more than simple slope estimates are needed
for detecting important traffic features. In particular, the multi-scale nature of the traffic
does not admit simple description of the type attempted by the Hurst parameter. We also
demonstrate some practical limitations of the wavelet spectrum. We explore the causes of
these limitations using simulated data. This analysis leads us to a better understanding of
a number of challenging phenomena observed in real network traffic.

1 Introduction

In the past decade the study of Internet traffic has attracted the interest of researchers in
computer science, engineering, applied probability and statistics. A number of studies in the
mid 1990’s have shown that the classical models for telephone traffic do not apply to the traffic in
modern computer tele-communication networks (see Leland, Taqqu, Willinger andWilson (1993)
and Paxson and Floyd (1995)). Statistical analyses indicate that the random fluctuations in the
arrival rates, measured in packets or bytes per unit time, are strongly correlated over large time
lags, i.e. are long-range dependent.

The long-range dependence property of the traffic fluctuations has important implications
on the performance, design and dimensioning of the network. A simple, direct parameter char-
acterizing the degree of long-range dependence is the Hurst parameter. This parameter controls
the regularity and the magnitude of the fluctuations in the data on medium and large time
scales (for a precise definition and more references on the long-range dependence phenomenon
see Section 2.1, below).

A number of methods have been proposed to estimate the Hurst parameter. Some of the most
popular include the aggregated variance, local Whittle and the wavelet-based methods. These and
other methods are described and discussed in Taqqu, Teverovsky and Willinger (1995), Taqqu
and Teverovsky (1998), Abry, Flandrin, Taqqu and Veitch (2003), Bardet, Lang, Oppenheim,



Philippe, Stoev and Taqqu (2003) and Hernández-Campos, Le, Marron, Park, Park, Pipiras,
Smith, Smith, Trovero and Zhu (2004). This last study performs an extensive comparison of
the most successful methods of estimation by using simulated, synthetic and real Internet traffic
data sets. It reveals a number of important challenges which one faces when estimating the
long-range dependence parameter in Internet data traffic traces. Our goal in this paper is to
explore some of these challenges in more detail by using the wavelet spectrum method.

Wavelets capture both time and frequency features in the data and often provide a richer
picture than the classical Fourier analysis. Since the seminal work of Abry and Veitch (1998),
they have become a very popular tool for studying the long-range dependence properties of
network traffic. The self-similar scaling which is often encountered in the presence of long-range
dependence is naturally captured by the wavelet spectrum of the data. This scaling is used to
define the wavelet estimator of the Hurst parameter (see Sections 2.1 and 3 below), in terms of
the slope of the wavelet spectrum.

The Hurst parameter, however, characterizes the dependence of the traffic only on large
scales. Very often, the wavelet spectrum contains additional useful information about the de-
pendence in the data on medium and small time scales. It can also capture important traffic
features such as periodic components, deterministic breaks in the mean traffic rate and other
intricate non-stationary features in the data. This information is being neglected when one uses
only the estimate of the Hurst long-range dependence parameter to characterize network traffic.

In this paper, we focus on the wavelet spectrum tool for the analysis of Internet traffic data.
Our main goal here is to first demonstrate how this tool can be used not only to estimate the
Hurst parameter reliably but also to detect important details in the data. We then explore the
advantages and limitations of the wavelet estimators and of the wavelet spectrum.

The paper is structured as follows. In Section 2.1, we define the Hurst parameter and provide
intuition on some basic notions related to the long-range dependence phenomenon. In Section
2.2, we discuss in detail several wavelet spectra for real network traffic traces. The first of these
is “well-behaved” in the sense of showing features predicted by current prevalent models for
traffic. In particular, the Hurst parameter captures most of the important dependence features
in the data. We also demonstrate that the classical fractional Gaussian noise time series provides
an effective model for this example of traffic, over a wide range of time scales (see Figures 1 and
2 below). But other examples in Section 2.2 show more challenging phenomena in the data (see
Figures 3 – 6, below). These wavelet spectra exhibit unusual features which are inconsistent
with the classical models of long-range dependence. Our goal in the rest of the paper is to
understand the origins of such features and the limitations of wavelet spectrum analysis.

In Section 3, we start by briefly introducing the discrete wavelet transform of a signal and
discuss how it can be used in practice to analyze discrete time series. We then present the
classical wavelet estimator of the Hurst parameter of a second order stationary time series. In
Section 3.3, we focus on the wavelet spectrum and discuss its connection to the classical Fourier
spectrum of a time series.

Section 4 is devoted to exploring the wavelet spectrum using controlled simulated examples.
We start by demonstrating that, in ideal situations, the wavelet estimator is comparable with
some of the best available quasi-maximum likelihood estimators such as the local Whittle estima-
tor. We also show that, unlike the local Whittle estimator, the wavelet estimator is rather robust
with respect to smooth, non-stationary trends in the data (see Figures 7 and 8, below). Then,
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in the analyses presented in Figures 11 and 12, we explore the effects of deterministic trends on
the wavelet spectrum. We also show how some short-range dependent stochastic models affect
the wavelet spectrum. An important observation is that each of these can induce structure in
the wavelet spectrum that looks roughly the same as that of long-range dependence.

Using the insights developed in Section 4, we revisit in Section 5 the challenging examples of
wavelet spectra of network traffic traces, shown in Section 2. We interpret some of the observed
features and identify the limitations of the wavelet spectrum in practice. These limitations,
suggest the need of further tools. We conclude by describing briefly two of them, which are
presented in detail in Park, Godtliebsen, Taqqu, Stoev and Marron (2004) and Stoev, Taqqu,
Park, Michailidis and Marron (2004).

Conclusion. The wavelet estimator of the Hurst parameter stands out as one of the most
reliable estimators in practice. It is semi-parametric, in nature, and quite robust with respect to
smooth polynomial trends in the data. This estimator is based on the wavelet spectrum, which
in turn captures additional important characteristics of the dependence structure of the data
as well as deterministic fluctuations. And yet, in practice, when used blindly both the wavelet
Hurst parameter estimator and the wavelet spectrum can mislead the practitioner. A traffic
trace with a number of deterministic shifts in the mean rate, for example, results in a steep
wavelet spectrum which leads to overestimating the Hurst parameter. In addition, complex
short-range dependent stochastic models can have an even more subtle effect on the wavelet
spectrum and also lead to overestimating the Hurst parameter.

These limitations cannot be overcome if one focuses only on the wavelet spectrum of the
data. One can gain an important insight, however, by making a deeper analysis of the features
in the wavelet coefficients of the data. This can be done by using the scale-space type analysis
in Park, Godtliebsen, Taqqu, Stoev and Marron (2004). Another possibility is to perform a local
analysis of the long-range dependence so that one reduces the effect of intricate non-stationarity
and in addition obtains a richer picture of the local dependence structure in the data. We explore
this approach in Stoev, Taqqu, Park, Michailidis and Marron (2004).

2 Motivating examples

We first briefly review some basic notions related to the long-range dependence phenomenon and
then present examples of Internet traces and their corresponding wavelet spectra. The wavelet
spectrum of a stationary time series and the corresponding wavelet-based estimator of the Hurst
long-range dependence parameter are briefly presented in Section 3.

2.1 Long-range dependence

A second order stationary time series Y = {Y (k)}k∈Z is said to be long-range dependent (LRD),
if the series of its covariances is non-summable:

∞∑

k=0

Cov(Y (k), Y (0)) =∞.
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In general, LRD time series Y are also asymptotically self-similar. Namely, suppose that
EY (k) = 0, k ∈ Z and let

Yn(k) := Y (n)(k) := Y (nk + 1) + Y (nk + 2) + · · ·+ Y (nk + n), k ∈ Z,

denote the aggregations of the time series Y over blocks of size n ∈ N. The time series Y is
called asymptotically self-similar, if, as n→∞, one has

{Y (m)
n (k), k ∈ Z} ∼d {mHYn(k), k ∈ Z}, (2.1)

where ∼d means asymptotic equivalence of the finite-dimensional distributions. The parameter
H is called the Hurst parameter of the time series Y . It controls the asymptotic self-similarity
scaling as well as the degree of long-range dependence.

The process Yn can be interpreted as a “zoomed-out” version of the time series Y viewed
on the time scale n. Thus Relation (2.1) means that on large time scales, the process Y looks
(approximately) statistically the same, up to a multiplicative factor, which depends on the time
scale. The time series Yn is called self-similar when Relation (2.1) holds exactly.

The fractional Gaussian noise (FGN), GH = {GH(k)}k∈Z, is a fundamental model which
exhibits both long-range dependence and self-similarity. It is a stationary Gaussian process
with mean zero and covariances:

Cov
(
GH(k), GH(0)

)
=
σ2

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
,

where σ2 = EGH(0)2 = Var(GH(0)) and where the parameter H is restricted to the range

0 < H < 1.

One can show that the FGN is the only (up to rescaling) stationary self-similar Gaussian time
series. When H = 1/2, the FGN time series GH becomes uncorrelated white noise. However, it
is long-range dependent, when 1/2 < H < 1.

Many classical statistical results do not work in the presence of long-range dependence. For
more details on the fractional Gaussian noise and its role in the theory of long-range dependence,
see, for example, Taqqu (2003) and the references therein.

2.2 Examples of wavelet spectra

In Figure 1, we present one packet trace collected from the UNC main link in 2002 on April
13, Saturday from 19:30 to 21:30. We focus on the time series Y = {Y (k), k = 1, 2, . . . , N} of
the number of packets arriving on the link every 1 millisecond. The wavelet spectrum of this
time series is shown on the bottom-right plot of Figure 1. This plot displays the statistics Sj

as a function of the scale j (see Section 3 below for more details). The statistic Sj quantifies
the energy of the time series {Y (k)} concentrated at a frequency range corresponding to scale
j. The scale j can be related to a frequency in the spectral density of the time series Y . Large j
correspond to low frequencies and small j to high frequencies. The energy of a white noise time
series is uniformly distributed across all scales or frequencies and hence its wavelet spectrum
is essentially constant or flat. The short-term dependence structure of a time series is related
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to its high frequency behavior and therefore affects its wavelet spectrum only at small scales
j. However, if the time series does not have strong dependence at large time lags, the wavelet
spectrum at large scales j continues to be flat or close to a constant. As seen in Figure 1, this
is not the case with the time series of Internet traffic. The linear, non-constant scaling of the
wavelet spectrum at large scales j = 10, 11, . . . , 20 indicates that the time series Y is long-range
dependent and, in fact, approximately self-similar.

Figure 1 around here

The Hurst parameter H of the time series Y can be estimated by using the slope of the
wavelet spectrum at large scales j (for more details, see Section 3 below). When the value of
the parameter H is in the range 1/2 < H < 1, the time series exhibits long-range dependence
and it cannot be modeled by using classical telephony models (see, for example, Leland, Taqqu,
Willinger and Wilson (1993) and Paxson and Floyd (1995)).

The bottom-left plot in Figure 1 displays the time series obtained by using block-wise ag-
gregation over blocks of size 1000 observations of the original time series appearing on the top
plot. It thus corresponds to the number of packets per 1 second time intervals of the traffic
trace. The marginal distributions of the aggregated time series are essentially symmetric and
approximately Gaussian (see also Figure 2).

In Figure 2, we compare the time series of aggregated traffic (at 1 second, that is, aggregated
by a factor of 1000) shown on the bottom left plot of Figure 1 to a fitted FGN time series.
Roughly, the wavelet spectrum of the aggregated time series (1000 ≈ 210), corresponds to the
large-scale components (10 ≤ j ≤ 20) of the wavelet spectrum of the original time series. As
seen on the bottom-right plot of Figure 2 this is indeed the case, since the wavelet spectrum
therein is essentially linear and has about the same slope.

The wavelet spectrum of the original 1-millisecond traffic trace at small time scales 1 ≤ j ≤ 5
appears to be flat, which suggests that the traffic fluctuations are rather weakly correlated on
small time scales. This feature is typical for many other traffic traces, in particular, in case
of heavily multiplexed back-bone links and it has already been noted in the literature (see, for
example, Cao, Cleveland, Lin and Sun (2002) and Zhang, Ribeiro, Moon and Diot (2003)).

At large scales, however, the long-range dependence of traffic is ubiquitous. Figure 2 shows
that the short-term dependence structure has been washed-out after aggregation and the traffic
appears to be statistically self-similar and long-range dependent.

Figure 2 around here

The analysis shown in Figure 2, indicates that the fractional Gaussian noise model captures
very well the key features of the network traffic trace on large time scales, that is, its approximate
self-similarity and long-range dependence behavior. The empirical distribution of the packet
trace time series is essentially normal as seen from the QQ-plot in Figure 2, with the exception
of the far tails which appear heavier than the normal ones. The downwards spike at time 3000
of the packet trace contributes to the outliers in the QQ-plot.

We also display several other wavelet spectra of Internet traffic traces. Whereas the wavelet
spectra shown in Figures 1 and 2 appear consistent with the traditional fractional Gaussian
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noise type models of network traffic, these other traces possess a number of unsettling features.
Firstly, the estimated Hurst exponent H, based on the wavelet spectra, is sometimes greater

than 1, that is, outside the theoretically admissible range 0 < H < 1, as in Figures 3 and 6.
The wavelet spectrum of these traces, however, still exhibits linear, long-range dependence-type
scaling at large scales. This shows that it is inadvisable to blindly estimate Hurst parameters
to understand the long range dependence properties of internet traffic data, and that the clas-
sical long range dependence model, parametrized by a single Hurst parameter, is insufficient to
characterize some of the phenomena present in such data.

Secondly, as seen in Figures 3 – 6, the wavelet spectrum contains (at all scales) important
information about the second order properties of the traffic traces, which are not captured by
the Hurst parameter. Namely, note the spike at scales j = 11 and 12 of the wavelet spectrum
in Figure 3 and also the unusually steep slope in the spectrum at scales 5 ≤ j ≤ 7 in Figure 5.

Figure 3 around here

Figure 4 around here

Figure 5 around here

Figure 6 around here

We provide an explanation of these strange phenomena in Section 5. The explanation is based
on understanding how such features can be generated, using a number of simulated examples,
explored in Section 4. First a quick wavelet overview, together with a precise definition of the
wavelet spectrum is given in Section 3.

The Internet traffic data sets, displayed on Figures 1–6 are freely available from
http://www-dirt.cs.unc.edu/ts/ (add unc02 ts, unc03 ts or Abilene-I ts). The file names
corresponding to the data sets in Figures 1–6 are:
2002 Apr 13 Sat 1930.7260.sk1.1ms.B P.ts.gz,
2002 Apr 13 Sat 1300.7260.sk1.1ms.B P.ts.gz,
2002 Apr 11 Thu 1300.7260.sk1.1ms.B P.ts.gz,
2003 Apr 10 Thu 1500.3660.em1.10ms.B P.ts,
and IPLS-KSCY-1.ts.gz, respectively.

3 Wavelet Spectrum

We introduce here the discrete wavelet transform of a deterministic or a random signal, discuss
some of its classical applications and its computation in practice. We then define the wavelet
spectrum and recall the classical wavelet estimator of the Hurst parameter, proposed by Abry
and Veitch (1998).

3.1 The discrete wavelet transform

We start with the discrete wavelet transform in the space of square integrable functions
L2(dt) := {f : R 7→ R,

∫
R f

2(t)dt < ∞}. More details on the discrete wavelet transform,
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and its applications can be found, for example, in the book of Mallat (1998).
Let ψ(t) ∈ L2(dt) be a square integrable function with M ∈ N zero moments, M ≥ 1, that is

∫

R
tmψ(t)dt = 0, for all m = 0, 1, . . . ,M − 1. (3.1)

Consider the functions
ψj,k(t) := 2−j/2ψ(2−jt− k), j, k ∈ Z,

obtained by dyadic dilations and integer translations of ψ.
The function ψ is called an orthogonal mother wavelet, if the set {ψj,k(t)}j,k∈Z is an or-

thonormal basis of the Hilbert space L2(dt). That is, if for any signal g(t) ∈ L2(dt), we have

g(t) =
∑

j∈Z

∑

k∈Z
dj,k(g)ψj,k(t), (3.2)

where the coefficients dj,k(g) are given by

dj,k(g) :=

∫

R
g(t)ψj,k(t)dt =

∫

R
g(t)2−j/2ψ(2−jt− k)dt, j, k ∈ Z. (3.3)

and where the series in (3.2) converges in the L2(dt) sense. The basis {ψj,k}j,k is called an
orthogonal wavelet basis of L2(dt) and the coefficients dj,k(g) are called the discrete wavelet
transform coefficients of the signal g.

The indices j and k of the wavelet coefficients dj,k(g) are called scale and location, respec-
tively. When the scale j is large, the effective support of the function ψj,k in (3.3) is wide and
then the coefficient dj,k(g) captures low frequency or coarse scale behavior of the signal g(t).
Conversely, at small scales j, the dj,k(g)s quantify the high-frequency or fine scale details of the
signal g(t). The index k controls the time-location of the function ψj,k(t) = ψj,0(t − 2jk) via
translation.

Thus the set of DWT coefficients dj,k(g), j, k ∈ Z captures both time and frequency behavior
of the signal g. This is a powerful feature which distinguishes the wavelet analysis from the
classical Fourier analysis of signals (see, for example, Ch. 1 in Daubechies (1992) and Flandrin
(1999)).

The mere existence of functions ψ, which generate orthogonal wavelet bases is not trivial.
The Haar function ψ(t) = 1[0,1/2)(t)− 1[1/2,1)(t), t ∈ R is the simplest example of an orthogonal
wavelet. In the past two decades many families of orthogonal wavelets have been constructed by
using elegant ideas from the theory of multiresolution analysis (MRA) (see Mallat (1989, 1998)).
Wavelets have interesting approximation theoretical properties as well as many important appli-
cations in numerical analysis, signal processing and statistics (see, for example, Cohen (2003),
Vetterli and Kovacevic (1995), Ogden (1996) and Vidakovic (1999)).

In applications, the wavelet function ψ is chosen to be well-localized in the time and in the
frequency domains. In particular, the Daubechies wavelets are very useful in practice, since they
have compact support in the time domain and since their support in the frequency domain is
well-localized. These wavelets can be chosen to be smooth and with several zero moments M
(for more details, see Ch. 6 in Daubechies (1992)). For simplicity, in the sequel we suppose that
ψ is a Daubechies wavelet with compact support and M ≥ 1 zero moments.
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The multiresolution analysis involves, in addition, a father wavelet function φ(t) ∈ L2(dt),
which is orthogonal to the mother wavelet ψ. The integer translates φk(t) := φ(t− k), k ∈ Z of
the father wavelet are required to be orthonormal. Furthermore, the function φ is chosen so that
{φk}k∈Z becomes an equivalent basis to the mother wavelet basis, {ψj,k, j = 1, 2, . . . , k ∈ Z}.
The expansion (3.2) can be equivalently expressed by using the father wavelet basis, as follows:

g(t) =
∑

k∈Z
ak(g)φk(t) +

∑

j≤0

∑

k∈Z
dj,k(g)ψj,k(t), (3.4)

where the coefficients ak(g) are:

ak(g) =

∫

R
g(t)φk(t)dt =

∫

R
g(t)φ(t− k)dt, k ∈ Z.

The first term in (3.4) is equal to the contribution of the coarse scale wavelets, that is,

g0(t) =
∑

k∈Z
ak(g)φk(t) =

∞∑

j=1

∑

k∈Z
dj,k(g)ψj,k(t). (3.5)

Therefore the set of functions {φk(t), k ∈ Z} ∪ {ψj,k(t), j ≤ 0, k ∈ Z} is also an orthonormal
basis of L2(dt).

The father wavelet associated with the Haar mother wavelet ψ(t) = 1[0,1/2)(t) − 1[1/2,1)(t)
is the box-car function φ(t) := 1[0,1)(t), t ∈ R. Observe that in this case the functions
{φk(t)}k are orthogonal and they are indeed orthogonal to all finer scale wavelets ψj,k(t) =
2−j/2(1[2jk,2j(k+1/2))(t) − 1[2j(k+1/2),2j(k+1))(t)), where the index j ≤ 0 is a negative integer or
zero.

The first term in (3.4) can be viewed as a coarse scale approximation to the signal g(t).
The resolution of this approximation is determined by the time scale of the father wavelet φ.
The second term in (3.4), involves the successive fine scale or higher frequency details of the
signal g(t), which are captured by the wavelet coefficients dj,k(g), j ≤ 0, k ∈ Z. Thus often the
coefficients ak(g) are called approximation coefficients and the dj,k(g)s are called detail wavelet
coefficients.

3.2 Applications and practical issues

Given a finite discrete-time sample g(k), k = 1, . . . , N of a signal g(t) ∈ L2(dt), one cannot
obtain exactly the wavelet coefficients dj,k(g), since they involve integrals. Furthermore, the
highest frequency details of the signal are limited by the sampling rate. Thus, in practice, one
can only compute approximations to the coarse scale wavelet coefficients dj,k(g), j ≥ 1 appearing
in (3.5). This can be done, efficiently, by using Mallat’s fast discrete wavelet transform algorithm.

Namely, set
ak := g(k), k = 1, . . . , N, (3.6)

and consider the function

g̃0(t) :=
N∑

k=1

akφ(t− k)
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to be an approximation to the projection g0(t) of the signal g(t) given in Relation (3.5) above.
Using a computationally efficient algorithm, involving discrete convolutions and sub-sampling,
one can compute the coarser scale wavelet coefficients involved in the sum on the right-hand
side of (3.5). Since we work with compactly supported wavelets, only a finite number of these
coefficients will be non-zero. One typically obtains a “triangular” array of about N approximate
wavelet coefficients:

d̃j,k(g), k = 1, . . . , Nj ,

where
Nj ≈ N/2j , and j = 1, . . . , J, J ≤ [log2(N)].

That is, one has about J ≈ [log2(N)] dyadic scales and the number, Nj , of wavelet coefficients
on scale j is about N/2j . For more details on Mallat’s algorithm and its applications, see, for
example, Ch. 7.3.1 in Mallat (1998).

In practice, the error made on the initialization step (3.6) of Mallat’s algorithm becomes
essentially negligible on large scales j. The resulting approximate wavelet coefficients d̃j,k(g)
often represent very well the important features of the theoretical wavelet coefficients dj,k(g).
In applications, when additional information on the signal g is available, one can reduce the
error due to initialization, by setting ak in (3.6) to be equal to some pre-filtered version of the
sampled signal g(k) (see the Remarks below).

Mallat’s fast discrete wavelet transform algorithm can be inverted and the original set of
approximation coefficients a(k), k = 1, . . . , N can be recovered. Furthermore, for compactly
supported wavelets, Mallat’s algorithm and its inverse have time and memory complexity of order
O(N). The efficiency of these algorithms and the useful time/frequency localization property
of wavelets make them a very useful tool in engineering and signal processing, which sometimes
outperforms the classical Fourier transform tools (see, for example, Rioul and Vetterli (1991)).

The wavelet expansions of large classes of deterministic signals are sparse. That is, there are
very few coefficients of large magnitude which capture most features of the signal. In particular,
far fewer wavelet coefficients are required to represent well functions with discontinuities or
cusps, as opposed to Fourier coefficients, for example. These features lead to the development
efficient algorithms for image compression and numerous statistical techniques for smoothing
and denoising data (see, for example, Ch. 11 and 9 in Mallat (1998)).

3.3 Wavelet spectrum and the estimation of the Hurst parameter

Consider now a second order stationary stochastic signal Y = {Y (t)} and let

Y (t) ∝
∑

j∈Z

∑

k∈Z
dj,k(Y )ψj,k(t) (3.7)

be its formal wavelet series, where the wavelet coefficients dj,k(Y ) are defined as in (3.3) with
g replaced by Y. Since the wavelet ψ has compact support, the integrals in (3.3) converge in
the L2-sense and the random variables dj,k(Y ) are well defined. (Observe, that Y (t) need not
belong to L2(dt) and therefore in (3.7), we may not have an equality.)

The stationarity of Y implies the stationarity of the wavelet coefficients {dj,k(Y )}k∈Z, for all
scales j ∈ Z. Let Ej denote the mean energy of the wavelet coefficients at scale j, that is,

Ej := Ed2
j,k(Y ), j ∈ Z.
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The wavelet coefficients dj,k(Y ) on scale j capture frequency details of Y in a frequency range
about 2j . Thus, one expects that the wavelet energy spectrum Ej , j ∈ Z can be related to the
classical spectral density of the process Y .

Indeed, suppose that Y has a spectral density fY (ξ), ξ ∈ R, that is

fY (ξ) =
1√
2π

∫

R
eiξtrY (t)dt,

where rY (t) := Cov(Y (t+ s), Y (s)), t ∈ R denotes the auto-covariance function of Y . By using
the Parseval identity and a change of variables one can show that

Ed2
j,k(Y ) =

∫

R
ψj,k(t)

∫

R
ψj,k(s)rY (t− s)dsdt =

∫

R
|ψ̂j,k(ξ)|2fY (ξ)dξ,

= 2j
∫

R
|ψ̂(2jξ)|2fY (ξ)dξ =

∫

R
|ψ̂(η)|2fY (η/2j)dη. (3.8)

The last expression in Relation (3.8) relates the mean energy Ej of the wavelet coefficients
dj,k(Y ) to the spectral density of the stationary signal Y (t). For large scales j, the function
fY (η/2

j), η ∈ R can be viewed as an expanded or zoomed version of the spectral density fY (η)
around the zero frequencies. Therefore, the integral in the right-hand side of (3.8) picks out the
spectral behavior of Y at low frequencies. Conversely, the energy Ej on small scales j corresponds
to the high-frequencies in the the spectral density fY .

Now let Y be a long-range dependent process, that is, with a spectral density which is
unbounded at the origin. Suppose that, as t→ 0,

fY (t) ∼ cf
1

|t|α , with 0 < α < 1, (3.9)

where cf > 0 and where ∼ means that the ratio of the left and the right-hand sides converges
to 1. Relations (3.8) and (3.9) imply that, as j →∞,

Ed2
j,k(Y ) ∼ cf

∫

R
|ψ̂(η)|2|η/2j |−αdη = cfC2

jα, (3.10)

where C = C(ψ, α) =
∫
R |ψ̂(η)|2|η|−αdη.

Relation (3.10) suggests that the long-range dependence parameter α, and correspondingly
the related Hurst parameter

H = (1 + α)/2

can be estimated by using the fact that

log2(Ej) = log2(Ed
2
j,k(Y )) ∼ (2H − 1)j + const , as j →∞. (3.11)

As discussed above, given a finite sample Y (k), k = 1, 2, . . . , N of the signal Y , by us-
ing Mallat’s algorithm, one can obtain a triangular array of approximate wavelet coefficients
dj,k(Y ), k = 1, . . . , Nj , j = 1, . . . , J . Thus, one can estimate log2(Ej) by using the sample
energy of these coefficients:

Sj := log2

( 1

Nj

Nj∑

k=1

d2
j,k(Y )

)
≈ log2(Ej). (3.12)
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For large Nj we expect the statistics Sj to approximate well the quantity log2(Ej). The set
of statistics Sj , j = 1, . . . , J is often called the log-scale wavelet spectrum of the time series
{Y (k), k = 1, . . . , N} or the wavelet spectrum, in short. In view of Relation (3.11), the wavelet
spectrum of long-range dependent random signals scales linearly on large scales with slope
α = 2H − 1. One can thus define the following estimator of the Hurst parameter H:

Ĥ[j1,j2] =
1

2

j2∑

j=j1

wjSj +
1

2
, (3.13)

where 1 ≤ j1 < j2 ≤ J and where wj , j = j1, . . . , j2, are such that

∑

j

wj = 0 and
∑

j

jwj = 1.

That is, H is estimated from the slope 2Ĥ − 1 of a linear regression fit of the wavelet spectrum
Sj against j, over the range of scales j1, . . . , j2 (see Figure 7 in Section 4, below).

The wavelet estimator Ĥ[j1,j2] in (3.13) performs well when the data are not far from a FGN.
Empirical studies indicate that it is very robust with respect to smooth deterministic trends
and changes in the short-range dependence structure of the time series Y (k), k = 1, . . . , N
(see, for example, Figure 7 below, Abry, Flandrin, Taqqu and Veitch (2003) and Bardet, Lang,
Oppenheim, Philippe, Stoev and Taqqu (2003)).

Theoretically, the linear scaling of the wavelet spectrum {Sj} occurs at large scales j (see
(3.11)). Therefore, when estimating H in practice, one should choose a range of relatively large
scales [j1, j2]. Nevertheless, in many cases the left-hand side in Relation (3.11) scales almost
exactly as the right-hand side therein. For more details on the choice of scales j1 and j2, see the
Remarks below.

The asymptotic statistical properties of the wavelet estimator Ĥ[j1,j2] have been established
when Y is a Gaussian process, under general conditions (see Bardet, Lang, Moulines and Soulier
(2000)). These authors have shown that the estimator Ĥ[j1,j2] is consistent, as

j1 and N/2j2 −→∞.

Under additional conditions on the rate of growth of the scales j1 and j2, as a function of the
sample size N , one also obtains the asymptotic normality of the estimator Ĥ (for more details,
see Bardet et al. (2000)).

These results follow from a key statistical property of the wavelet coefficients dj,k(Y ).
Namely, that dj,k(Y ), k ∈ Z are short-range dependent. More precisely, under general con-
ditions on Y , it follows that for sufficiently large fixed j,

Cov(dj,k(Y ), dj,m(Y )) = Edj,k(Y )dj,m(Y ) = O(|k −m|2H−1−2M ), (3.14)

where M denotes the number of zero moments of the wavelet ψ (see Bardet et al. (2000) and
the related results in Kim and Tewfik (1992) and Bardet (2002)). Thus, when ψ has sufficiently
large number of zero moments M , the wavelet coefficients dj,k(Y ), k ∈ Z can be considered
essentially uncorrelated and the sample approximation of the mean energy Ej in (3.12) becomes
very good in practice.
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Wavelet estimators for the Hurst and/or self-similarity parameter can be also defined for
stable infinite variance processes, such as the fractional autoregressive integrated moving average
(FARIMA) time series with stable innovations and the linear fractional stable motion (see Stoev
and Taqqu (2003), Pipiras, Taqqu and Abry (2001) and Stoev, Pipiras and Taqqu (2002)).

In Section 4, we discuss the positive features of the wavelet estimator Ĥ and study extensively
its limitations through simulated examples. In the following remarks we list some of the key
issues encountered when using the estimator Ĥ in practice (see also Veitch and Abry (1999)).

Remarks

1. (Initialization of Mallat’s algorithm) Veitch, Taqqu and Abry (2000) propose an initial-
ization procedure for Mallat’s algorithm, which is well-suited to the case of fractional
Gaussian noise processes Y .

2. (The choice of wavelet ψ) Usually one uses Daubechies wavelets ψ with compact support
and at least M = 2 zero moments. These wavelets are well-localized in the time and
frequency domains and they yield essentially decorrelated wavelet coefficients dj,k(Y ), k ∈
Z. Numerical experiments have shown that choosing a very large number of zero moments
M (eg M > 5) does not improve the performance of the estimators of H. Wavelets with
infinite support, such as the Mexican Hat or the Meyer wavelets can be also used. One
expects, however, the estimates of H to have higher sample variance than in the case when
wavelets with compact support are used.

3. (Bias correction) Suppose that Ed2
j,k(Y ) = const 2j(2H−1) and that for all j, the wavelet

coefficients dj,k(Y ), k ∈ Z are independent and Gaussian. Then, the estimator Ĥ in (3.13)

is asymptotically unbiased, as Nj →∞, j = j1, . . . , j2. For finite, Nj , however, Ĥ is biased,
due to the non-linearity of the function log2, that is, since ESj 6= log2(Ed

2
j,k(Y )). Under

the above idealized assumptions, Veitch and Abry (1999) have corrected the bias of the
statistics Sj :

S̃j := log2

( 1

Nj

Nj∑

k=1

d2
j,k(Y )

)
+ g(Nj , j). (3.15)

The bias correction term g(Nj , j) is asymptotic to −1/(ln(2)Nj), as Nj →∞ and can be
essentially ignored for large values of Nj . It has only a small effect on the largest scales j
(see Section II.B in Abry and Veitch (1998), for more details).

4. (The choice of weights wj) Given a finite sample Y (1), . . . , Y (N) of the process Y , one
can extract only about Nj ≈ N/2j wavelet coefficients at scale j, j = 1, . . . , J ≈ [log2(N)].

Thus, the statistics N−1
j

∑Nj

k=1 d
2
j,k(Y ), involved in (3.13), have larger variance at large

scales j, rather than at small scales. One can compensate for this by choosing appropriately
the weights wj in (3.13), so that the estimator Ĥ has a lower sample variance (see Veitch
and Abry (1999)).

5. (The choice of the range of scales [j1, j2]) As argued in the previous point, given a time
series Y (k), k = 1, . . . , N of length N , one has at most J ≈ [log2(N)] available scales
j = 1, . . . , J . Theoretically, the long-range dependence scaling occurs at large scales j,
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which correspond to low frequencies in the spectrum of the process Y . In practice, one
can have different and often non-linear scaling of Ed2

j,k(Y ) at the small scales j. The
wavelet coefficients at the small scales j capture the short-term dependence structure of
the process Y , which in principle, is not related to the Hurst parameter H.

Therefore, in practice one chooses all sufficiently large available scales [j1, . . . , j2], where
the log-energy log2 Ed2

j,k(Y ) appears to scale linearly. In the case of time series Y (k) which
exhibit exact self-similarity such as the FGN, one can choose essentially all available scales.

The choice of scales is a very difficult problem in practice and is analogous to the bias-
variance trade-off when choosing the bandwidth in kernel density estimation. Veitch,
Taqqu and Abry (2003) have proposed a method for automatic selection of the range of
scales [j1, j2] based on the mean square error loss function.

6. (Implementation) Veitch and Abry have implemented in Matlab the wavelet estimator
discussed above. Their code has become standard among practitioners and is freely avail-
able from http://www.cubinlab.ee.mu.oz.au/˜darryl/secondorder code.html. This
implementation, uses Daubechies wavelets with various zero moments, it involves bias cor-
rection, options for initialization of Mallat’s algorithm and automatic choice of the scales
j1 and j2, as discussed in the references, above.

4 Benchmark wavelet spectra

In this section, we explore the wavelet spectrum tool by using several simulated examples.
Our goal is to understand its practical limitations and to provide a guideline for its use in the
estimation of the Hurst parameter and in explaining characteristic features in data.

4.1 The effect of deterministic trends

We start by briefly illustrating the advantages of the wavelet spectrum for the analysis of long-
range dependent data.

• Fractional Gaussian Noise
Consider first an ideal, benchmark situation when the data Y (k) = BH(k+1)−BH(k), k =

1, . . . , N is a sample of fractional Gaussian noise with self-similarity (Hurst) parameter H. In
this case the wavelet estimator performs very well and is essentially as good as one of the best
available quasi-maximum likelihood estimators – the local Whittle estimator.

In the top-right plot of Figure 7, we display the log-scale wavelet spectrum of one path of
FGN. This plot shows the statistics S̃j(Y ), defined in (3.15) above, as a function of the scale j,
where dj,k(Y ), k = 1, . . . , Nj , j = 1, . . . , J are all available wavelet coefficients, computed from
the data Y (k), k = 1, . . . , N .

The vertical segments on the wavelet spectrum plot indicate the variability of the statistics
S̃j(Y ) above. The length of these intervals grows as j increases since there are fewer wavelet
coefficients Nj ≈ N/2j at the large scales j.

Observe that the wavelet spectrum is approximately linear. The slope of this line corresponds
to 2H − 1 which yields an estimate of H (see (3.11) and (3.12)). Usually, due to the problem of
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initialization or due to the presence of non-trivial short-range dependence, one needs to ignore
the first few smallest scales. On the bottom-left plot of Figure 7, we give estimates of H obtained
by using different starting scales j1 and all available larger scales. Note that, for all choices of
j1, but j1 = 1 and j1 = 2 the sample confidence intervals cover the true value of H.

The bottom-right plot in Figure 7 displays confidence intervals for the local Whittle esti-
mator with different values of the parameter m, which controls the range of frequencies in the
periodogram of the data that are used in the estimation. Roughly, the parameters j1 and m can
be related by j1 = log2(N/m). That is, large scales j correspond to low values for the frequency
cut-off parameter m and vice versa. Therefore, to be able to compare the wavelet and local
Whittle estimators, we chose values of m ≈ N/2j1 , j1 = 1, 2, . . . , 7 so that small values of j1 on
the bottom-left plot correspond to large values of m on the bottom-right plot. For more details
on the local Whittle estimator and its applications, see Robinson (1995), Taqqu and Teverovsky
(1997) and, for example, Hernández-Campos, Le, Marron, Park, Park, Pipiras, Smith, Smith,
Trovero and Zhu (2004).

As seen in Figure 7, the wavelet estimator is essentially as good as the local Whittle estimator.
Since the local Whittle estimator is an approximate quasi-maximum likelihood estimator for this
model it is essentially one of the best possible estimators. Observe that the sample standard
deviations of the wavelet estimator are always slightly larger than the corresponding ones for
the local Whittle estimator.

Figure 7 around here

• FGN plus a smooth trend
One major advantage of the wavelet estimator for the Hurst parameter is that it is immune

to smooth polynomial trends in the data. Indeed, if

Ỹ (t) = Y (t) + Pn(t), k = 1, . . . , N,

where Pn(t) = a0t
n + · · · + an−1t + an, t ∈ R is a polynomial of degree n ∈ N. When n < M ,

where M is the number of zero moments of the wavelet ψ, Relation (3.1), implies that

dj,k(Ỹ ) =

∫

R
(Y (t) + Pn(t))ψj,k(t)dt =

∫

R
Y (t)ψj,k(t)dt = dj,k(Y ).

Hence, theoretically, the estimators of H, based on the wavelet coefficients of the perturbed
process Ỹ will be identical to those based on the process Y . This, as shown in Figure 8, yields
practical benefits.

Observe that the local Whittle estimator is greatly affected by the trend and is essentially
unusable, whereas the wavelet estimator is unaffected by the trend.

Figure 8 around here

The relative robustness of the wavelet estimator with respect to smooth trends and the clear
visual interpretation of the wavelet spectrum are very important in practice. These features
make wavelets a preferable tool in the analysis of long-range dependent network traffic data,
which often exhibit non-trivial trends.
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• FGN plus high-frequency oscillating trends
Although the wavelet estimator is robust with respect to a large class of smooth low-frequency

trends, it can be quite sensitive to high-frequency deterministic oscillations. Consider for exam-
ple

Ỹ (k) = GH(k) + hν(k), k = 1, . . . , N, where hν(t) = sin(2πνt/N), ν > 0, (4.1)

and where GH(k) = BH(k+1)−BH(k), k = 1, . . . , N is a FGN time series. Here ν corresponds
to the number of oscillations of hν in the interval [0, N ]. If ν << M , where M is the number of
zero moments of ψ, then the function hν(k) can be essentially interpolated by a polynomial of
degree n < M , and hence the wavelet estimator of H remains unaffected.

However, as shown in Figure 9, if ν > M , then the oscillations of hν start to affect significantly
the wavelet spectrum of Ỹ . This perturbation results in a bump of the spectrum at scales j of
the order of log2(N/ν). Indeed, consider, for example, the wavelet coefficient dj,0(hν) of the
function hν . In view of (3.3), by making a change of variables, we get

dj,0(hν) = 2j/2
∫

R
sin(2πν2jτ/N)ψ(τ)dτ =

√
2π2j/2Im

(
ψ̂(2πν2j/N)

)
, (4.2)

where ψ̂(ξ) := (2π)−1/2
∫
R e

iξtψ(t)dt denotes the Fourier transform of ψ and where Im(z) denotes
the imaginary part of the complex number z.

Since the mother wavelet ψ is well-localized in the frequency domain and since ψ̂(0) =
(2π)−1/2

∫
R ψ(t)dt = 0, the right-hand side of (4.2) vanishes rapidly as ν2j/N , approaches ∞ or

0. Thus |dj,0(hν)| is non-negligible when

ν2j

N
≈ 1 or, equivalently, j ≈ log2

(N
ν

)
.

Figure 9 around here

Figure 10 displays the time series of wavelet coefficients of Ỹ (k), of the deterministic function
hν(k), ν = 100 and of the original FGN time series GH(k). Observe, that the wavelet coefficients
of the function hν dominate those of the FGN on scales 10–11. These are the scales where the
“bump” appears in the top-right plot in Figure 9.

Figure 10 around here

• FGN plus breaks
The wavelet spectrum of a time series Y (k) is influenced in a different, and in fact more

subtle, to way by breaks or shifts in the mean. Let

Y (k) = GH(k) + h(k), k = 1, . . . , N,

where GH(k) = BH(k+1)−BH(k) is a FGN time series and where the function h(t) is a linear
combination of indicator functions. In Figure 11 below, we show what happens for one specific
choice of the function h.
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Unlike the case of a high-frequency smooth perturbation (see Figures 9 and 10), in the case
of breaks, the spectrum of the deterministic perturbation is essentially linear (on the scales, we
observe). This results in a subtle change of the scaling exponent of the data at large scales j
rather than in a bump of the spectrum of the data. The location of the “knee” can be controlled
by changing the magnitude of the function h.

Observe that, visually, based on the top-left plot in Figure 11, it may be difficult to determine
that we have a FGN time series plus a simple deterministic trend. Thus, in practice, one may
be misled to model the data with a long-range dependent time series with large Hurst exponent
H ≈ 0.99 rather than to account for the breaks. Such situations are often encountered when
dealing with network traffic (see Section 5, below).

Figure 12 displays the wavelet coefficients of the data, the deterministic function and the
original FGN time series on several scales. It gives some insight into the differences in the
wavelet spectra on the top-right plot of Figure 11.

Figure 11 around here

Figure 12 around here

4.2 The effect of stochastic models

Here, we investigate the wavelet spectra of stochastic models, which are essentially different
from the classical fractional Gaussian noise model. We do so in order to understand the possible
causes of the features observed in the wavelet spectra of network traffic, in Section 2.2.

• Non-homogeneous Poisson processes
Let Y (k), k = 1, . . . , N be a time series of independent Poisson random variables with

parameters Λ(k) = EY (k) > 0, driven by a deterministic function Λ(t), t ∈ R. The process
{Y (k)} can be viewed as a discretized (binned) version of a non-homogeneous Poisson point
process N with a step-wise intensity function Λ(t) = Λ(k), t ∈ [k, k + 1). That is, Y (k) equals
the number of arrivals of the point process N in the interval [k, k + 1).

In Figure 13, we display the wavelet spectrum of the process Y (k), k = 1, . . . , N , where the
function Λ is “periodic”:

Λν(k) := b×
(
sin(2πνk/N) + a

)
, (4.3)

with a = 10, b = 2. We let ν = 10, 100 and 1000.
The wavelet spectrum of a discretized homogeneous Poisson process is essentially flat. Indeed,

the Poisson process has finite variance, stationary and independent increments therefore it is
asymptotically self-similar with Hurst parameter H = 1/2. On large time scales it can be viewed
as an approximation to the classical Brownian motion plus drift.

The non-homogeneous Poisson process with bounded intensity should also have approxi-
mately flat wavelet spectrum at large scales. In practice, however, due to limited sample size
one may observe significant deviations from a constant wavelet spectrum at large scales (see the
top-right plot in Figure 13, below).

Figure 13, shows how the frequency ν of the periodic intensity function Λν affects the wavelet
spectrum of the Poisson process. As in Relation (4.2), above, one can argue that this effect, is
limited to a range of scales about j ≈ log2(N/ν) (see Figure 9).
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Figure 13 around here

•Cox processes
Now let N = {εj}j∈Z be a homogeneous Poisson point process on R, with intensity λ.

Consider the following kernel smoothed version of this point process:

Λλ,h(t) := µ
∑

j∈Z
Φh(t− εj), t ∈ R,

where Φh(·) = h−1Φ(·/h) and where Φ(x) = (2π)−1/2 exp{−x2/2}, x ∈ R denotes the standard
Gaussian kernel.

The random process Λλ,h = {Λλ,h(t)}t∈R can be viewed as a (two-sided) shot-noise process.
Given the function Λλ,h(t), consider a non-homogeneous Poisson point process Q = {Qj}j∈Z
with intensity Λλ,h(t) > 0. The point process Q is a particular case of a Cox process or doubly
stochastic Poisson point process.

As before, let Y (k), k ∈ Z be the discretized or binned version of the point process Q. Thus,
the random variables Y (k), k ∈ Z are conditionally independent and Poisson with parameters∫ k+1
k Λλ,h(t)dt, k ∈ Z.

Figure 14 shows one simulated path of the process Y (k), k = 1, . . . , N, where h = 0.1, λ =
1000, µ = 0.01 and N = 50 000. The wavelet spectrum of this path and the wavelet spectrum
of the underlying intensity Λλ,h are given on the bottom-right plot.

Observe that, although, theoretically, this Cox process is short-range dependent, the wavelet
spectrum in Figure 14 suggests that this is not the case. The doubly stochastic nature of
this process is responsible for non-trivial short-range dependence in the form of apparent non-
stationarity. This, in turn, can mislead the wavelet spectrum and, in fact, any other methodology
(that we are aware of) for the analysis of long-range dependence.

Figure 14 around here

5 Examples revisited

We now comment briefly on the examples of wavelet spectra of network traffic traces shown in
Figures 3–6, using insights developed in Section 4.

Firstly, the spike at scale j = 11 in the wavelet spectrum in Figure 3 may be due to a
high-frequency deterministic component in the network traffic trace (see Figure 9). This is also
confirmed by the periodogram of the traffic trace shown in Figure 15. This feature of the Internet
traffic trace in Figure 3 is further analyzed by using scale-space smoothing tools such as SiZer
and SiNos in Park, Godtliebsen, Taqqu, Stoev and Marron (2004). That analysis reveals an
extremely strong periodic component (at the indicated frequency) that is localized within the
peak visible at time 3269–3636 (sec), perhaps caused by an intense IP port scan.

Secondly, although the Abilene trace shown in Figure 6 has an essentially linear wavelet
spectrum at large scales 5 ≤ j ≤ 16, the corresponding slope is quite steep. In fact, the
estimated Hurst parameter is greater than the theoretically admissible value of 1. This behavior
is consistent with non-stationarity in the form of breaks or abrupt changes in the mean and
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is analogous to the situation studied in Figures 11 and 12. Our experience with a number of
other traces indicates that the Hurst parameter is typically overestimated when the traffic traces
possess such non-stationary features.

The wavelet spectra of the traces shown in Figures 4 and 5 are quite interesting. The high
variability of the wavelet spectrum in Figure 4 indicates that traffic is strongly dependent, but
that it also lies outside the scope of the traditional models for long-range dependence such as
the fractional Gaussian noise. The bumps in the spectrum at large scales cannot be reliably
connected to any of the situations studied in Section 4. The following two approaches can be
used in addition to the wavelet spectrum to understand better the structure network traffic.
• The statistics Sj , j = 1, . . . , J of the wavelet spectrum involve averaging over time of the

wavelet coefficients of the data (see (3.12)). Consequently, the wavelet spectrum is essentially
blind to subtle non-stationarity effects of the underlying time series. The tools introduced in
Park, Godtliebsen, Taqqu, Stoev and Marron (2004) provide a way of addressing this problem
by detecting hidden non-stationarity. This is done by applying scale-space smoothing methods
such as SiZer and SiNos to the time series of the wavelet coefficients of the traffic trace. For
example, as illustrated in that paper, by using this tool to analyze the trace in Figure 4, one
notices significant changes in the network traffic.

Indeed, the lower-right plot in Figure 4 shows that the wavelet spectrum has a “bump”
at scale j = 14. This suggests that there is unusual scaling behavior corresponding to this
particular scale, that is, 214 = 16 384 (ms) ≈ 16 (sec). From this plot, it is not easy to determine
which part of the trace causes the “bump”. However, the lower left plot, which displays the
aggregate number of packets in 1 second intervals, shows a sharp and deep drop in the packet
arrival rate at time about 2 500 seconds. Park, Godtliebsen, Taqqu, Stoev and Marron (2004)
used the scale-space smoothing methods to determine that this “bump” is due to the sharp drop
in the lower-left plot. In fact, this drop turns out to be an 8 second long network outage.
• In Stoev, Taqqu, Park, Michailidis and Marron (2004), we propose a tool for analyzing the

local dependence structure of network traffic traces. We develop statistical and visualization
techniques for the local wavelet spectrum and the corresponding local Hurst parameter of the
data. Such analysis can be very useful when dealing with large Internet traffic data sets. It
bypasses many problems due to non-stationarity and provides a more detailed picture of the
local dependence structure of the traffic. We also propose and implement a robustified version
of the wavelet spectrum which involves taking sample medians rather than sample averages in
(3.12). This yields more reliable estimates of both the local and global Hurst parameters.

Finally, the wavelet spectrum displayed in Figure 5 is strikingly different from most of the
wavelet spectra of other traffic traces we have encountered. Note the steep slope of the spec-
trum at scales 5 ≤ j ≤ 7. A detailed analysis of this traffic trace based on IP packet level
information which separates different protocols and communication ports is presented in Park,
Rolls, Hernandez-Campos, Smith and Marron (2004). This strong feature turns out to be driven
by a single UDP (User Datagram Protocol) based application, with a strongly quasi-periodic
component. This confirms the fact that the wavelet spectrum can incorporate subtle details of
network behavior.
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6 Conclusion

The wavelet spectrum is a useful tool for analyzing the dependence structure of network traffic. It
can be used to obtain relatively reliable estimators of the critical Hurst parameter for stationary
traffic traces. The use of the wavelet spectrum must not be limited to the estimation of the
Hurst parameter. Very often non-stationarity and important periodic components of the traffic
(perhaps localized in time) can be detected by using the small and medium scales of the spectrum.
On the other hand, severe bursts and non-stationarity in the form of mean shifts and, in fact,
lower frequency oscillations affect the wavelet spectrum in a subtle way. In such cases, the analyst
may be mislead and overestimate the Hurst long-range dependence parameter, in particular when
the wavelet estimator is used blindly without inspecting the whole spectrum.

We concluded Section 5 by referring to two new, complementary tools for a deeper analysis
of the dependence in network traffic. The first tool is used to detect significant deviations
from stationarity by using graphical scale-space smoothing techniques applied to the wavelet
coefficients of the traffic. It provides useful time and frequency information about the nature of
the non-stationary effects. The second tool can be used to obtain more reliable estimates for the
Hurst parameter. It focuses on estimation of the local the Hurst parameter and also includes
a robust median-based version of the wavelet spectrum. More details on these two approaches
can be found in Park, Godtliebsen, Taqqu, Stoev and Marron (2004) and Stoev, Taqqu, Park,
Michailidis and Marron (2004), respectively.

Figure 15 around here
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Figure 1: The top plot shows the time series of the number of packets arriving on a link in 1
millisecond time intervals. Observe that this time scale is rather fine and hence the distribution
of the time series appears to be skewed and non-Gaussian. The mean of the time series is over-
plotted in white. The lower-left plot displays the aggregate number of packets (for the same
trace) in 1 second intervals. In white, we show the mean of this time series. On the lower-right
plot we show the log-scale wavelet spectrum of the time series displayed in the top plot. Observe
that the wavelet spectrum is essentially linear at large scales (10 ≤ j). The Hurst parameter,
estimated by fitting a line to the wavelet spectrum on scales j1 = 10, 11, . . . , 20 is Ĥ ≈ 0.8513
(for more details, see Section 3 below). This trace is effectively modeled by standard FGN.
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Figure 2: The top-left plot displays the time series of packet arrivals per 1 second obtained from
the two-hour trace shown in Figure 1. The plot on the right displays a time series of simulated
fractional Gaussian noise with sample mean, sample variance and Hurst parameter equal to
the estimated mean, variance and Hurst parameter from the packet trace in Figure 1. The
bottom-left plot shows the empirical quantiles of the standardized packet trace above versus
the quantiles of standard normal distribution (in red). To indicate the sampling variability,
we also add (in blue) 100 independent QQ-plots based on samples from the standard normal
distribution. The bottom-right plot displays the wavelet spectrum of the packet trace in the
top left and of the “simulated” FGN time series in the top right. Observe that the two spectra
are very similar. (The vertical segments on the plot indicate 95% confidence intervals for the
statistics Sj corresponding to FGN.)
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Figure 3: The top plot shows the time series of the number of packets arriving on a link in 1
millisecond time intervals. The mean of the time series is over-plotted in white. The lower-left
plot displays the aggregate number of packets (for the same trace) in 1 second intervals. In
white, we show the mean of this time series. On the lower-right plot we show the log-scale
wavelet spectrum of the time series given in the top plot. Observe the sharp spike in the
wavelet spectrum around scales j = 11 and 12. The spectrum appears linear on large scales
14 ≤ j ≤ 20. The estimated Hurst parameter over this range of large scales (j1 = 14, 15, . . . , 20)
is about Ĥ ≈ 1.328. The spike is uncharacteristic of FGN data, and is explained in Section 5.
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Figure 4: The top plot shows the time series of the number of packets arriving on a link in 1
millisecond time intervals. The mean of the time series is over-plotted in white. The lower-left
plot displays the aggregate number of packets (for the same trace) in 1 second intervals. In white,
we show the mean of this time series. On the lower-right plot we show the log-scale wavelet
spectrum of the time series given in the top plot. Observe that the spectrum exhibits high
variability on large scales. The estimated Hurst parameter over the range of scales 10 ≤ j ≤ 20
is about Ĥ ≈ 0.958. This variability in the spectrum is explained in Section 5.
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Figure 5: The top plot shows the time series of the number of packets arriving on a link in 10
millisecond time intervals. Observe that this time scale is coarser than the time scale of the top
plots in Figures 1 and 3. The mean of the time series is over-plotted in white. The lower-left plot
displays the aggregate number of packets (for the same trace) in 1 second intervals. In white,
we show the mean of this time series. On the lower-right plot we show the log-scale wavelet
spectrum of the time series given in the top plot. Note that the wavelet spectrum appears to be
linear on large scales: 7 ≤ j ≤ 15. The estimated Hurst parameter over this range of scales is
Ĥ ≈ 0.781. Observe, however, the striking difference between the shape of the wavelet spectrum
in this case and in the cases shown in Figures 1 and 3, above, and Figure 6, below. This unusual
wavelet spectrum shape is explained in Section 5 below.
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Figure 6: The top plot shows the time series of the number of packets arriving on a link in 10
millisecond time intervals. The data was collected on August 14, 2002 between 9:00 am and
11:00 am from the Internet-2 (Abilene) backbone link connecting Kansas City to Indianapolis.
(for more details, see http://pma.nlanr.net/Traces/long/ipls1.html). Observe that this
time scale is coarser than the time scale of the top plots in Figures 1 and 3. The mean of the
time series is over-plotted in white. The lower-left plot displays the aggregate number of packets
(for the same trace) in 1 second intervals and appears non-stationary. In white, we show the
mean of this time series. On the lower-right plot we show the log-scale wavelet spectrum of the
time series given in the top plot. Note that the wavelet spectrum appears to be essentially linear
on a wide range of relatively large scales: 5 ≤ j ≤ 16. The estimated Hurst parameter over this
range of scales is Ĥ ≈ 1.044. This wavelet spectrum shape will be explained in Section 5.

25



0 1 2 3

x 10
4

−5

0

5
FGN, H = 0.8, N = 30000 obs.

Y
(k

)

k
2 4 6 8 10

−1

0

1

2

3

4

5

Log−scale Wavelet Spectrum

Scales j

2 4 6
0.5

0.6

0.7

0.8

0.9

1

95
%

 C
I’s

 fr
om

 1
00

 p
at

hs

Parameter j
1
 

The Wavelet Estimator

8 10 12 14
0.5

0.6

0.7

0.8

0.9

1

95
%

 C
I’s

 fr
om

 1
00

 p
at

hs

Parameter log
2
(m) 

The Local Whittle Estimator

Figure 7: Comparison between the wavelet and the local Whittle estimators for fractional Gaus-
sian noise (FGN). The top plot on the left displays one simulated path of FGN with Hurst
parameter H = 0.8. The plot on the right shows the wavelet log-scale spectrum of this path.
(We used the Daubechies wavelets with 3 zero moments.) The vertical segments on this plot
are the estimated 95% confidence intervals of the log-mean-energy statistics of the wavelet spec-
trum. The bottom-left plot displays wavelet estimates of the Hurst parameter H obtained from
100 independently simulated paths of FGN by using different choices of the parameter j1. The
variability of these estimates is summarized through 95% sample confidence intervals, based on
a normal approximation. There is a small bias at small j1 (no initialization was done) and the
variance increases as j1 increases. The bottom plot on the right contains estimates of H obtained
via the local Whittle estimator. They were computed over the same set of 100 independent paths
as the wavelet estimators, with different choices of the frequency cut-off parameter m. As for the
wavelet estimators, we display 95% sample confidence intervals. Note the resemblence between
the two plots, with m ≈ N/2j1 .
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Figure 8: The top plot on the left displays one simulated path of fractional Gaussian noise (FGN)
with H = 0.8 plus a “smooth” additive trend, over-plotted in white. The plot on the right shows
the wavelet log-scale spectrum of this path and the spectrum of the corresponding path of “pure”
FGN (see Figure 7). Observe that these two spectra essentially coincide. The bottom-left plot
displays wavelet estimates of the Hurst parameter H obtained from 100 independently simulated
paths of FGN plus the same additive trend. As in Figure 7, we show 95% sample confidence
intervals for various choices of the scale j1. The bottom plot on the right contains estimates of H
obtained via the local Whittle estimator, computed over the same set of 100 independent paths
as the wavelet estimators. As for the wavelet estimators, we display 95% sample confidence
intervals. Note that, in contrast to the wavelet estimator, the local Whittle estimator is greatly
affected by the trend.
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Figure 9: These four plots display wavelet spectra of a FGN, perturbed by adding a high-
frequency trend as in (4.1). The length of the time series is N = 300 000. We show what
happens for four different values of the frequency ν = 10, 100, 1 000 and 10 000. Observe that
the impact of this perturbation on the spectra is well-localized around scales j ≈ log2(N/ν).
The rest of the spectra essentially coincide with that of the FGN time series. If the number of
scales j were significantly increased, we expect the top-left plot to look like the bottom-right
plot. Here we used Daubechies wavelets with M = 3 zero moments.
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Figure 10: Let Ỹ (k) = GH(k)+hν(k), where GH is FGN and hν(k) = sin(2πνk/N) with ν = 100.
The plots in the first column show the time series of wavelet coefficients (on several different
scales j) of the time series Ỹ (k). The second column of plots displays the wavelet coefficients
of the function hν(k) and the third column - those of the FGN GH(k). The parameter ν equals
100. We used Daubechies wavelets with M = 3 zero moments. One clearly sees that the wavelet
coefficients of the function hν dominate on scales 10 and 11, giving rise to the bump in the
wavelet spectrum of Figure 9.
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Figure 11: The top-left plot displays a FGN time series perturbed by adding deterministic breaks
displayed in the bottom-right plot. The corresponding pure FGN time series is shown on the
bottom-left plot. The plot on the top-right shows the wavelet spectra of the three time series: the
data (perturbed FGN), the function (deterministic breaks) and the FGN (the original fractional
Gaussian noise time series). Observe that the spectrum of the FGN is essentially linear, so is the
spectrum of the function, however the slopes of the two lines are quite different. At large scales j,
the spectrum of the function dominates that of the FGN and hence it determines the behavior
of the spectrum of the data. Consequently, the wavelet estimator of the Hurst parameter is
essentially misleading. A linear fit starting from scale j1 = 9 and using all larger scales yields
Ĥ(data) = 1.1419 whereas Ĥ(FGN) = 0.8281.
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Figure 12: The first column of plots show time series of wavelet coefficients of the time series
Y (k), k = 1, . . . , N, N = 300 000, displayed in Figure 11. The second and third columns of
plots contain the wavelet coefficients of the deterministic function and the FGN time series from
Figure 11, respectively. Observe that at scales j = 10 to 13 the wavelet coefficients of the
function become larger in magnitude than those of the FGN, and this affects the corresponding
wavelet spectra (as shown in the top-right plot in Figure 11).
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Figure 13: The first column of plots show realizations of binned paths of Poisson point processes
with non-constant intensities Λν , defined in (4.3), with ν = 10, 100, 1 000. The corresponding
intensities are over-plotted in white (the white band in the bottom plot is due to the very rapid
oscillations). The plots on the right show the wavelet spectrum of the corresponding binned
path of the Poisson process and the wavelet spectrum of the corresponding intensity function
Λν . Note that the value of the frequency ν controls the location of the spike on the wavelet
spectrum of the Poisson process as in Figures 9. The spike appears roughly around j = 13, 10
and 7, respectively.
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Figure 14: The top plot shows one realization if a binned path of a Cox process, which is a non-
homogeneous Poisson process with random intensity. The underlying intensity is over-plotted in
white. The lower-left plot displays a more detailed portion of the path above. The lower-right
plot shows the wavelet spectrum of the path of the Cox process and the wavelet spectrum of
its intensity. Observe that the two spectra essentially coincide on large scales. At small time
scales, as expected, the wavelet spectrum of the Cox process is flat, which is consistent with the
spectrum of a homogeneous Poisson process or a white noise process.
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Figure 15: The top plot shows the periodogram of a two-hour packet trace. It was computed from
the time series of packet arrivals per 10 millisecond time intervals. The bottom-left plot shows the
low-frequency part of the periodogram (to the left of the vertical line in the top plot). The spike
located at frequency ν ≈ 0.2× 104 = 2000 may be related to the bump in the wavelet spectrum
of this traffic trace in Figure 3. Indeed, using j ≈ log2(N/ν), we get j ≈ log2(300 000/2000) ≈ 7.
This corresponds to scale j ≈ 7 + log2(10) ≈ 10 in the wavelet spectrum displayed in Figure 3
which involves the time series of packet arrivals per 1 millisecond rather than per 10 milliseconds.
The bottom-right plot indicates the 1/f or long-range dependence behavior of the time series of
packet arrivals.
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