The Ensemble Kalman Filter: a state estimation method for hazardous weather prediction.

Sarah L Dance

Department of Mathematics and Department of Meteorology, University of Reading, UK

With thanks to Laura Baker, David Livings, Nancy Nichols and Ruth Petrie

Sarah L Dance

Outline

Hazardous weather prediction

2 The Ensemble Kalman filter

- Some problems and solutions
 - Sampling errors
 - Algorithm bias

.⊒...>

Why worry about weather?

- During 2006 an estimated 130 million people worldwide were affected by storms, floods and droughts.
- Anticipated increase in severe storms due to anthropogenic climate change
- High resolution forecasts needed for fog and air quality

Boscastle storm 2004

BBC

Birmingham tornado 2005

BBC

Heathrow fog Christmas 2006

Hazardous weather prediction The Ensemble Kalman filter

Forecasting

NWP Forecasts

- Models are typically numerical solutions of PDES
- Global (60km) → Convective-scale (1-4km)
- Dynamics is very different on these scales
- Current models have length of state vector O(10⁷) variables
- Next UK model 1.5km with about a billion state variables.

Met Office 4km UM hindcast Boscastle storm

< < >> < </>

Observations

- About O(10⁶) observations currently assimilated every 3-6 hours.
- Observational coverage is heterogeneous
- Many observations are from remote sensing

EnKF

- System size
- Multiscale

- System size
- Multiscale
- Nonlinearity

<ロ> (日) (日) (日) (日) (日)

Issues

- System size
- Multiscale
- Nonlinearity
- Model errors

æ

イロト イポト イヨト イヨト

- System size
- Multiscale
- Nonlinearity
- Model errors
- Spin-up in forecast

イロト イポト イヨト イヨト

- System size
- Multiscale
- Nonlinearity
- Model errors
- Spin-up in forecast

イロト イポト イヨト イヨト

- System size
- Multiscale
- Nonlinearity
- Model errors
- Spin-up in forecast

Current operational approach is variational assimilation.

ヨト イヨト

< < >> < </>

ъ

- System size
- Multiscale
- Nonlinearity
- Model errors
- Spin-up in forecast

Current operational approach is variational assimilation. We will consider the Ensemble Kalman filter

.≣⇒

The Ensemble Kalman filter (EnKF), Evensen (1994)

Idea:

- Treat ensembles as Gaussian
- Carry out observation updates using approximate Kalman filter style equations.

The Ensemble Kalman Filter Equations

Let $\{\mathbf{x}_i\}$ (i = 1, ..., m) be an *m*-member ensemble in \mathbb{R}^n . The ensemble mean is

$$\overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i.$$

イロト イポト イヨト イヨト

ъ

The Ensemble Kalman Filter Equations

Let $\{\mathbf{x}_i\}$ (i = 1, ..., m) be an *m*-member ensemble in \mathbb{R}^n . The ensemble mean is

$$\overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i.$$

The ensemble perturbation matrix is the $n \times m$ matrix

$$\mathbf{X} = \frac{1}{\sqrt{m-1}} \begin{pmatrix} \mathbf{x}_1 - \overline{\mathbf{x}} & \mathbf{x}_2 - \overline{\mathbf{x}} & \dots & \mathbf{x}_m - \overline{\mathbf{x}} \end{pmatrix}.$$

.≣⇒

< < >> < </>

The Ensemble Kalman Filter Equations

Let $\{\mathbf{x}_i\}$ (i = 1, ..., m) be an *m*-member ensemble in \mathbb{R}^n . The ensemble mean is

$$\overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i.$$

The ensemble perturbation matrix is the $n \times m$ matrix

$$\mathbf{X} = \frac{1}{\sqrt{m-1}} \begin{pmatrix} \mathbf{x}_1 - \overline{\mathbf{x}} & \mathbf{x}_2 - \overline{\mathbf{x}} & \dots & \mathbf{x}_m - \overline{\mathbf{x}} \end{pmatrix}.$$

The ensemble covariance matrix is the $n \times n$ matrix

$$\mathbf{P} = \mathbf{X}\mathbf{X}^{T} = \frac{1}{m-1}\sum_{i=1}^{m} (\mathbf{x}_{i} - \overline{\mathbf{x}})(\mathbf{x}_{i} - \overline{\mathbf{x}})^{T}.$$

Square root implementation

The analysis ensemble $\{\mathbf{x}_i\}$ is obtained as

$$\mathbf{x}_i = \widetilde{\mathbf{x}} + \mathbf{x}'_i,$$

for i = 1, 2, ..., m.

イロト イポト イヨト イヨト

ъ

Square root implementation

The analysis ensemble $\{\mathbf{x}_i\}$ is obtained as

$$\mathbf{x}_i = \widetilde{\mathbf{x}} + \mathbf{x}'_i,$$

for i = 1, 2, ..., m. The state-estimate, $\tilde{\mathbf{x}}$, a column *n*-vector $\tilde{\mathbf{x}}$ satisfies

$$\widetilde{\mathbf{x}} = \overline{\mathbf{x}^{f}} + \mathbf{K}(\mathbf{y} - \overline{\mathbf{H}(\mathbf{x}^{f})}),$$

where

$$\mathbf{K} = \mathbf{X}^{f} (\mathbf{Y}^{f})^{T} (\mathbf{Y}^{f} (\mathbf{Y}^{f})^{T} + \mathbf{R})^{-1},$$

and

$$\mathbf{Y} = \frac{1}{\sqrt{m-1}} \left(\begin{array}{cc} \mathbf{H}(\mathbf{x}_1) - \overline{\mathbf{H}(\mathbf{x})} & \mathbf{H}(\mathbf{x}_2) - \overline{\mathbf{H}(\mathbf{x})} & \dots & \mathbf{H}(\mathbf{x}_m) - \overline{\mathbf{H}(\mathbf{x})} \end{array} \right).$$

イロト イポト イヨト イヨト

Updating the perturbation matrix

Recall

$$\mathbf{x}_i = \widetilde{\mathbf{x}} + \mathbf{x}'_i,$$

<ロト <回 > < 注 > < 注 > 、

Updating the perturbation matrix

Recall

$$\mathbf{x}_i = \widetilde{\mathbf{x}} + \mathbf{x}'_i,$$

The column *n*-vector \mathbf{x}'_i is the *i*-th column of the $n \times m$ matrix

$$\widetilde{\mathbf{X}} = \mathbf{X}^{f}\mathbf{T},$$

and **T** is an $m \times m$ matrix,

$$\mathbf{T}\mathbf{T}^{T} = \mathbf{I} - (\mathbf{Y}^{f})^{T}\mathbf{D}^{-1}\mathbf{Y}^{f}.$$

イロト イポト イヨト イヨト

[Chosen so that \mathbf{P}^a satisfies $\mathbf{P}^a = (I - KH)\mathbf{P}^f$.]

Sampling errors Algorithm bias

イロト イポト イヨト イヨト

э

• General problems

- Sampling errors
- Model errors
- Dealing properly with nonlinearity
- What to do about BCs in limited area models?
- Problems for specific implementations
 - Algorithm bias
 - Ensemble collapse

Sampling errors Algorithm bias

Noisy correlations

Picture from Petrie (2008)

- Adds extra degrees of freedom (Hamill et al 2001)
- But introduces imbalance (Mitchell et al 2002, Lorenc 2003)
- Imposes lengthscales in the analysis?

• • • • • • • •

Sampling errors Algorithm bias

Algorithm Bias

For consistency, we want $\tilde{\mathbf{x}} = \mathbf{x}^a$, $\Rightarrow \tilde{\mathbf{X}}\mathbf{1} = \mathbf{0}$. We showed this does not necessarily hold (Livings Et Al, 2008).

Sampling errors Algorithm bias

Bias cont

This results in $\overline{\mathbf{x}^a} \neq \widetilde{\mathbf{x}}$.

Furthermore,

$$\mathbf{P}^{a} = \widetilde{\mathbf{X}}\widetilde{\mathbf{X}}^{T} - \frac{m}{m-1}\overline{\mathbf{x}'}\,\overline{\mathbf{x}'}^{T},$$

Ensemble standard deviation will be too small

 \Rightarrow filter divergence?

イロト イポト イヨト イヨト

ъ

Sampling errors Algorithm bias

To avoid the problem, need some extra conditions on **T** such that

$$\widetilde{\mathbf{X}} = \mathbf{X}^{f}\mathbf{T}.$$

This one is the most practically useful...

Theorem (Livings et al, 2008)

If T satisfies

$$\mathbf{T}\mathbf{T}^T = \mathbf{I} - (\mathbf{Y}^f)^T \mathbf{D}^{-1} \mathbf{Y}^f.$$

and is a symmetric matrix, then the resulting SRF is unbiased in the sense that $\tilde{\mathbf{x}} = \overline{\mathbf{x}^a}$.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sampling errors Algorithm bias

Summary

ETKF with symmetric **T** (Livings et al, 2008)

• • • • • • • •

프 🕨 🗉 프

Summary

- The Ensemble Kalman filter has potential advantages over other methods for some applications
- There are several implementations
- Care is needed in choice of implementation to avoid bias and ensemble collapse

.≣⇒

• Can we make basis of algorithm more rigorous and remove ad-hoc fixes?