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I. BASIC THEORY



Three viewpoints of extreme values theory:

1. Limit theorems for sample maxima
e [ hree types theorem
e Generalized Extreme Value distribution

2. Exceedances Over Thresholds
e (Generalized Pareto distribution

3. Point process approach
e Joint distribution of exceedance time and excess values
approximated by a nonhomogeneous Poisson process



Limit theorems for multivariate sample maxima —
Let Y, = (Y;1...Y;,)! bei.i.d. d-dimensional vectors, i = 1,2, ...
My; = max{Yy;,..., Y,;}(1 < j < d) — j'th-component maximum

Look for constants ay;, by,; such that

M. —b.
Pr{ nj J Smy ]:]_,’d} — G(acl,...,a:'d).

anj

Vector notation:

an

Pr{Mn_bngx} — G(x).



Before going on, two rather easy points:
1. If we fix some j' € {1,...,d} and define z; = +oco for j # j/,
we deduce

M. . —b. .
Pr{ ny’ nj/} > G(00,00, ..., Zj1, ..., 00).

anj/

T herefore, all the marginal distributions of GG are GEV.

2. If we know the joint distribution of maxima from {Y;;, ¢ =
1,2,3,...,5 = 1,....,d}, then we immediately know also the
joint distribution of {g;(Y;;)} for any monotone increasing
functions {g;, j = 1,...,d}. This is true because

max{gj(Ylj), ey gj(Yn])} = gj(max{Ylj, ey Yn]})

T herefore, without loss of generality, we may restrict the marginal
distributions of G to be any member of the GEV family. Com-

mon choices are the Gumbel law, e_e_x, and the Fréchet law,

e~*" " for some a > 0. Here we use Fréchet, often with o = 1.
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Basic of Multivariate Regular Variation
(following Resnick (2006), Chapter 6)

After transformation of margins,

. X, .
tlTotPr{b(t)EA} = v(A)

b regularly varying function of index o >0 (w.l.o.g. a=1), v a
measure on the cone

& = [07 Oo]d o {O}
satisfying
v(tA) = t “v(A)

for any scalar t > 0.



X2

tA

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,



The last statement implies that v can be decomposed into a
product of radial and angular components. Define

S; = {(x1,...,29): 1 >0,...,2y> 0,21+ ... + x4 = 1}
Consider sets A of form
X
A = {XEE’: ||| > r, —GS}
[|x[]

for some S € §,.

Then
v(A) = r “H(S)

for some measure H on §;.

||| can be any norm but the choice of norm affects the definition

of H. Henceforth assume ||x|| = Z?zl r;. Also, assume a = 1.
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First Interpretation:

Consider i.i.d. vectors X;, ¢ = 1,2,....} whose distribution is
MRV.
Let P, be a measure on [0, co]? consisting of the points {b}((—nl), s b}((—n%}

Let A be a measurable set on £, then the expected number of
points of P, in A is

X
nPr{b(n)EA} — v(A) as n — oo.

With some measure-theoretic formalities, this shows that P, con-
verges vaguely to a nonhomogeneous Poisson process on £ with
intensity measure v.
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Second Interpretation:

Fix 1 > 0,...,zg > 0, Z?:l z; > 0. Let A be the complement of

[0,z1] X [0, x5] X ... X [0, x4].
Then

Prn{mgxl,...,b(—n)gxd (1)

is the probability that P, places no points in the set A. By
Poisson limit theorem, this probability tends to e~ “(4) as n — oo.
Therefore, the limit of (1) is

G(x) = exp{-V(x)} (2)
where V(x) = v(A).

Moreover, using the radial-spectral decomposition of v,

Vi(x) = max (ﬂ) dH (w). (3)
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The function V(x) is called the exponent measure and formula
(3) is the Pickands representation. If we fix 5/ € {1,...,d} with
0 <z < oo, and define z; = +oo for j 7 j/, then

V(x) = max (=2 | dH (w)
1
= — |, wydH(w)
CCj/ Sd
SO we must have
w;dH(w) = 1, j=1,..,4d, (4)

Sq
to ensure that the marginal distributions are correct.
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Note that
X

BV (x) = V(E)

(which is in fact another characterization of V) so

GF(x) = exp(—kV(x)

oo+ (})
- of})

Hence G is max-stable. In particular, if X1,...,X; are i.i.d. from
G, then max{Xq,..., X} (vector of componentwise maxima) has
the same distribution as £X;.
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II. EXAMPLES OF MULTIVARIATE
EXTREME VALUE DISTRIBUTIONS
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Logistic (Gumbel and Goldstein, 1964)
d 1/r
- —Tr
Vix) = (Zla:j ) , r>1.
j:

Check:
1. V(x/k) = kV(x)
2. V((+o0,+o00,...,xj,..., +00, +00) = CCj_l

3. eV js a valid c.d.f.

Limiting cases:
e r — 1: independent components

e r — oo: the limiting case when X;; = X;» = ... = X4 with
probability 1.
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Asymmetric logistic (Tawn 1990)

vE) = 3 {Z («9,&,6)7’0}1/%’

ceC \i1€c )
where C' is the class of non-empty subsets of {1,...,d}, re >
1, 0;,=0ifi¢gc, 0;.>0, >.ccb;.=1 for each .

Negative logistic (Joe 1989)

1 6, \re) /"
Vix) = Z_._|_ Z (_1)ICI {Z( Z,.c> } |
i cec: |e|>2 i€c \ i
re <0, ;. =01ifige, 0;.>0, Yeec(—1)I60; . < 1 for each i.

Bilogistic (Smith 1990 — only for d = 2)
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Tilted Dirichlet (Coles and Tawn 1991)

A general construction: Suppose h* is an arbitrary positive func-
tion on Sy with m; = [s_ u;h*(u)du < oo, then define

d
_ miwi mJawgy
(E MW ) (d+1) m;h* ( R > .
El AT mpwy” T mpwy

h is density of positive measure H satisfying de ujdH(u) = 1.

h(w)

As a special case of this, they considered Dirichlet density

*(u _ r(zaj) d ’U,(-Xj_l
h™(u) = er(aj)jl;ll i

Leads to
d a—1
: [ 1 J
rMw) = ] Y (X oy +d-|—)1 H ( QAW ) |
j=1 r(aj) (Za] ]> > QW
Disadvantage: need for numerical integrat|on
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III. ESTIMATION
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Coles and Tawn (1991):
1. Fix thresholds uy,...,uy.

2. Transform margins to unit Fréchet. Typically this involves
fitting a GPD to Y; > uy, an empirical CDF to Y; < u,, and
applying the probability integral transformation.

3. Likelihood based on the Poisson process approximation on
([O,’LL]_] X oo X [O7ud])c'

Joe, Smith and Weissman (1992) proposed a somewhat similar
method.
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Smith (1994) and Smith, Tawn and Coles (1997) proposed a
more direct threshold approach. Suppose the raw data points are
represented by vectors (Y;1,...,Y;q), ¢ = 1,...,n. However in the
spirit of threshold methods we replace Y;; by (9;;, X;;) where §;; =
I(Y;5 > uj), X5 = 6;;(Y;; —uj;). We use the limiting multivariate
EVT to propose an approximation to F(yi,...,ygq) When y; >
ui,..-,Yq > ugq. 1his allows us to calculate the contribution to
the likelihood from all (Yjq,...,Y;q) for which Y;1 > uq, ..., Y;q > uy.
All other cases (observations Y; where some Y;; are above the
threshold and others are below) are approximated by adding and
subtracting terms based on y; > uy,...,yq > ugy-

Ledford and Tawn (1996) proposed an alternative approximation
which is more cumbersome but performs better.

More recent authors have thought about the problem directly in
terms of multivariate Generalized Pareto distributions, see e.g.
Rootzén and Tajvidi, Bernoulli 12 917—930 (2006).
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IV. DEPENDENCE MEASURES
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T he first paper to suggest that multivariate extreme value theory
(as defined so far) might not be general enough was Ledford and
Tawn (1996).

Suppose (Z1,Z>) are a bivariate random vector with unit Fréchet

margins. Traditional cases lead to
r~1  dependent cases

—2

PrizZ1 >r, Zo>r}~
121 2 ) {r exact independent

They showed by example that for a number of cases of practical
interest,

Pr{Z1>r, Zo>r}r~ £(r)7‘_1/77,

where L is a slowly varying function and n € (%, 1).

Estimation: used fact that 1/n is Pareto index for min(Zq, Z5.
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More general case (Ledford and Tawn 1997):

Pr{Z1 > 21,20 > 2z2,} = L(21,22)2] ‘25 2,

O<n<1;,¢c1+co= %; L slowly varying in sense that

- L(tzy,t20)
= |im .

They showed ¢g(z1,22) = g« (zl—l—z ) but were unable to estimate
g« directly — needed to make parametric assumptions about this.

More recently, Resnick and co-authors were able to make a more
rigorous mathematical theory using concept of hidden regular
variation (see e.g. Resnick 2002, Maulik and Resnick 2005,
Heffernan and Resnick 2005; see also Section 9.4 of Resnick
(2006)).
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The latest?

Heffernan, Tawn and Zhang (Extremes, 2007) have proposed an
approximation based on moving maxima processes that incorpo-
rates these dependence measures.

Yia = mgaxmkaXaZ,i’de,i_k

with {Wy;_j} independent GEV.

T he representation generalizes earlier work by Smith and Weiss-
man (1996), Zhang (and Smith) (2001....... ).

The representation is quite general (not restricted to d = 2).

But estimation is much harder for these types of processes (MLE
doesn’'t work).

Open question to find better estimation methods for these mod-
els, or better models!
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