


Chapter 9

Extreme Value
Distributions

9.1 Preliminaries

A random variable X is said to have a Type-I Extreme Value (EV) dis-
tribution with parameters � and � provided the pdf of X is given as

f 1(x j �; � ) =
1
�

e� (x � � )=� exp
n

� e� (x � � )=�
o

; x 2 R ; � > 0;

� 2 R (9.1.1)

The above positively skewedpdf with range over the whole real line has
the cdf

F1(x) = P(X � x) = exp
n

� e� (x � � )=�
o

(9.1.2)

and henceforth the distribution will be called as EV-I( �; � ) distribution.
When � = 1 and � = 0, the above pdf (1.1.1) reduces to

f 1(x j 0; 1) = e� x exp
�

� e� x 	
(9.1.3)

and this is known as EV-I(1; 0) or standard Type I Extreme Value Dis-
tribution.
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Figure 9.1.1: Type-I EV distribution pdfs for various � and � .

The above Type-I Extreme Value Distribution is also known asdou-
ble exponential distribution due to the structure of the distribution
function (1.1.2) (presence of two è' s).

There are two other types of extreme value distributions widely used
by the researchers. These are Type-II and Type-III extreme value distri-
butions with three parameters given as:

(a). Type-II extreme value distribution (EV-II ( �; �; � ) ) with pdf

f 2(xj �; �; � ) =
�

�
�

� �
x � �

�

� � ( � +1)

exp

(

�
�

x � �
�

� � �
)

;

x � �; � > 0; � 2 R ; � > 0 (9.1.4)
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(b). Type-III Extreme Value Distribution (EV-III( �; �; � ) ) with pdf

f 3(xj �; �; � ) =
�

�
�

� �
� � x

�

� ( � � 1)

exp
�

�
�

� � x
�

� � �
;

x � �; � > 0; � 2 R ; � > 0 (9.1.5)

The cdf s corresponding to above Type-II and Type-III pdfs are re-
spectively

F2(x) = P(X � x) =

(
0 if x < �

exp
n

� ( x � �
� ) � �

o
if x � �

(9.1.6)
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Figure 9.1.2: Type-II EV distribution pdf s for various � , � , and � .

and

F3(x) = P(X � x) =

(
exp

n
� ( � � x

� ) �
o

if x � �

1 if x > �
(9.1.7)
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Figure 9.1.3: Type-III EV distribution pdf s for various � , � , and � .

The standard Type-II Extreme Value Distribution is obtained when
� = 1 ; � = 1, and � = 0 (i.e., EV-II (1 ; 1; 0) ) with pdf

f 2(xj 1; 1; 0) = x � 2e� 1=x ; x > 0 (9.1.8)

Similarly, the standard Type-III Extreme Value Distribution (i.e., EV-
III (1 ; 1; 0)) has pdf

f 3(xj 1; 1; 0) = ex ; x � 0 (9.1.9)

The name `extreme value' is attached to the above mentioned dis-
tributions because they can be obtained, under certain conditions, as
limiting distributions (as n ! 1 ) of the largest value of n independent
random variables each having the same continuous distribution.
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The Type-I limiting distribution of the smallest value of n iid ran-
dom variables has thecdf G 1(x) given as

G1(x) = 1 � exp
n

� e(x � � )=�
o

(9.1.10)

with pdf

g1(xj �; � ) =
1
�

e(x � � )=� exp
n

� e(x � � )=�
o

;

x 2 R ; � > 0; � 2 R (9.1.11)

Note that, since min f X �
1 ; : : : ; X �

n g= � max f� X �
1 ; : : : ; � X �

n g, the above
pdf (1.1.11) can be obtained from (1.1.1) by replacingX by (� X ) and
� by (� � ). In a similar way one can easily derive Type-II and Type-III
limiting distributions of the smallest value of iid observations from (1.1.4)
and (1.1.5).

If X �
1 ; X �

2 ; : : : ; X �
n are independent random variables with common

pdf f � (x); then the cumulative distribution function ( cdf ) of X �
(n ) =

maxf X �
1 ; : : : ; X �

n g is F �
(n ) (x) = [ F � (x)]n , where F � (x) is the common

cdf of X �
i 's, 1 � i � n: It is obvious that

lim
n !1

F �
(n ) (x) =

8
><

>:

1 if F � (x) = 1

0 if F � (x) < 1

which is of very little interest. The limiting distribution is thus found b y
considering a sequence

n
(X �

(n ) � � �
n )=� �

n

o
where the constants� �

n and � �
n

may depend onn only (� �
n and � �

n are not necessary measures of location
and scale of the distribution of X �

(n ) ). The EV-I distribution is found by
taking � �

n = 1 ; and the other two types are derived by taking � �
n 6= 1 :

In a fundamental paper Gnedenko (1943) established certain corre-
spondences between the parent distributionF � (x) (from which the ob-
servations X �

1 ; : : : ; X �
n come) and the type of EV distribution to which

the limiting distribution belongs. It was shown that the conditions relate
essentially to the behavior ofF � (x) for large (or small) values of x if the
limiting distribution of the largest (or smallest) value of f X �

1 ; : : : ; X �
n g is

to be considered. It is quite possible thatX �
(n ) = max f X �

1 ; : : : ; X �
n g and

X �
(1) = min f X �

1 ; : : : ; X �
n g may have a di�erent limiting distributions.

Gnedenko's (1943) conditions, which are necessary and su�cient, do
characterize the extreme value distributions described above. The condi-
tions are given in the following:
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(i) For Type-I EV distribution : Let � �
c be the (100c)th percentile point

of the distribution F � (�); i.e., F � (� �
c ) = c (0 < c < 1): Then the

condition is:

lim
n !1

n
h
1 � F �

n
� �

1� 1=n + x(� �
1� 1=(ne ) � � �

1� 1=n )
oi

= e� x (9.1.12)

(ii) For Type-II EV distribution:

lim
x !1

1 � F � (x)
1 � F � (bx)

= b� for any b > 0, � > 0 (9.1.13)

(iii) For Type-III EV distribution: There exists d 2 R such that

lim
x !1

1 � F � (bx + d)
1 � F � (x)

= b� for any b > 0, � > 0 (9.1.14)

where F � (d) = 1 ; F � (x) < 1 for x < d

The extreme value distributions are used widely in many applied prob-
lems ranging from industrial engineering to clinical studies. Fuller (1914)
�rst considered the concept of `extreme value' in connection with 
ood
control. Later Gumbel (1941, 1944, 1945, 1949), while studying the re-
turn of 
ood 
ows, gave the theory of EV distribution a solid foundation.
In hydrological studies one is concerned about the height of a dam or a
river-bank wall which is exceeded by annual maximum hourly or daily or
weekly water level with a (small) probability p, which can vary from site
to site depending upon the potential amount of damage from 
ooding.
While one looks at maximum value of water level recorded over a �xed
period for 
ood control, the opposite, i.e., minimum value of water level
recorded over a �xed period is used for building ports or docks to main-
tain a certain level of navigation. For applications of EV distributions in
sea-level studies see Tawn (1992) and many other references therein.

Gumbel (1937a, 1937b) used extreme value distributions for modelling
human life times radioactive emissions. Other areas where EV distribu-
tions have found applications include meteorological data (Thom (1954),
Jenkinson (1955)), corrosion studies (Aziz (1955), Eldredge (1957)), en-
vironmental studies (DasGupta and Bhaumik (1995)), and analyzing the
results of horse races (Henery (1984)). Also, in industrial engineering
problems the job characteristics like ovality, eccentricity, etc. follow an
Extreme Value Distribution (see e.g., DasGupta, Ghosh, and Rao (1981),
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DasGupta (1993)).

Example 9.1.1. DasGupta and Bhaumik (1995) reproduced a data set
(Table 9.1.1) on ozone concentration in stratosphere which protects the
earth from ultraviolet (UV) radiation emitted by the sun. The data set
was originally reported by Pyle (1985). It has been observed that the
ozone level is most stable at midnight and varies greatly during the day
time. Also, the ozone level and its 
uctuation are dependent on the al-
titude. The following table gives minimum of four observations (at an
interval of 15 minutes) per hour recorded in terms of percentage deviation
from midnight values for a diurnal cycle for two di�erent altitudes (40
and 48 km from the earth's surface).

Altitude Altitude
Hour 40 km 48 km Hour 40 km 48 km

0 0.00 0.00 13 2.64 -5.21
1 0.1 0.1 14 3.43 -5.86
2 0.20 0.15 15 4.14 -6.00
3 0.15 0.15 16 4.43 -5.71
4 0.20 0.20 17 4.14 -4.14
5 0.25 0.25 18 1.00 -1.43
6 0.30 0.30 19 0.00 -0.14
7 -1.00 -0.21 20 -0.25 -0.25
8 -1.14 0.86 21 -0.20 -0.20
9 -0.71 -0.57 22 -0.15 -0.15
10 0.21 -2.71 23 -0.10 -0.10
11 1.43 -4.14 24 -0.05 -0.05

Table 9.1.1: Ozone Level Values (in percentage deviation from midnight
= 0 hour) at Two Altitudes.

The following two frequency tables with �ve subgroups each have been
created for the ozone level data for altitudes 40 and 48 km respectively.



232 Chapter 9 Extreme Value Distributions

Intervals Freq- Relative
uency frequency

(-1.135, -0.021) 10 41.67%
(-0.021, 1.093) 8 33.33%
(1.093, 2.207) 1 4.17%
(2.207, 3.321) 1 4.17%
(3.321, 4.435) 4 16.67%

Totals 24 100%

Intervals Freq- Relative
uency frequency

(-5.995, -4.623) 4 16.67%
(-4.623, -3.251) 2 8.33%
(-3.251, -1.879) 1 4.17%
(-1.879, -0.507) 2 8.33%
(-0.507, 0.865) 15 62.50%

Totals 24 100%

(a) Altitude = 40 km (b) Altitude = 48 km

Table 9.1.2: Frequency Tables for the Ozone Level Data.

The following two histograms are drawn with the above relative fre-
quencies.
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Figure 9.1.4: (a) Histogram for altitude 40 km and a matching EV-I pdf .
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Example 9.1.2. The following data set (Table 9.1.3) was reported by
Press (1950) where frequency distribution of maximum gust-velocity mea-
surements per traverse was obtained and extreme value theory was ap-
plied to model this observed frequency distribution.

Note that in the table gust-velocities are all even values. For a better
representation of the data and to draw a relative frequency histogram,
each gust-velocityx can be thought of representing the interval (x � 1; x +
1). This is given in the following Table 9.1.4, and the corresponding
histogram is given in Figure 9.1.5.

An interesting relationship among the three EV distributions dis-
cussed earlier is that by simple l̀n' (natural logarithm) transformations
we can transform Type-II and Type-III EV distributions to Type-I EV
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Gust- Frequency Gust- Frequency
velocity (pf s) velocity (pf s)

2 4 22 17
4 11 24 18
6 27 26 8
8 48 28 7
10 62 30 6
12 58 32 3
14 55 34 1
16 60 36 2
18 61 38 1
20 36

Table 9.1.3: Frequency Distribution of 485 Maximum Gust-Velocity Mea-
surements.

Interval Relative frequency Interval Relative frequency

1.0{3.0 0.82% 21.0{23.0 3.51%
3.0{5.0 2.26% 23.0{25.0 3.71%
5.0{7.0 5.57% 25.0{27.0 1.65%
7.0{9.0 9.90% 27.0{29.0 1.44%
9.0{11.0 12.78% 29.0{31.0 1.24%
11.0{13.0 11.96% 31.0{33.0 0.62%
13.0{15.0 11.34% 33.0{35.0 0.21%
15.0{17.0 12.37% 35.0{37.0 0.41%
17.0{19.0 12.58% 37.0{39.0 0.21%
19.0{21.0 7.42%

Table 9.1.4: Relative Frequency Distribution of Gust-Velocity Measure-
ments.

distribution as shown below.

If X follows EV-II ( �; �; � ) (i.e., has pdf (9.1.4)) then Y = ln(X � � )
follows EV-I ( � � ; � � ) (with pdf (9.1.1)) where � � = 1=� and � � = ln � .
Note that the range of the new random variableY is the whole real line.

Similarly, if X follows EV-III ( �; �; � ) (i.e., has pdf (9.1.5)) then
Y = � ln (� � X ) follows EV-I ( � � ; � � ) (with pdf (1.1.1)) where � � = 1=�
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Figure 9.1.5: Relative frequency histogram of gust-velocity data and a
matching EV-I pdf .

and � � = � ln� . Again, note that the new random variable Y has the
whole real line as its range.

Converse of the above two properties are also true. IfX follows EV-I
(�; � ) (as given in (1.1.1)) then:

(a) Y1 = � + exp(X ) follows EV-II( � � ; � � ; � � ) where � � = 1=� , � � =
exp(� ) and � � = �

(b) Y2 = � � exp(� X ) follows EV-III( � �� ; � �� ; � �� ), where � �� = 1=� ,
� �� = exp(� � ) and � �� = �

Also, note that if X follows Type-I EV distribution (with pdf (9.1.1)
then U = expf� (X � � )=� g has the standard exponential distribution,
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i.e., the pdf of U is e� u ; u � 0: Using this property of EV-I ( �; � ); the
moment generating function (mgf ) of X can be found as

E(etX ) = et� �(1 � �t ); for � jt j < 1 (9.1.15)

From (1.1.15) one can �nd the mean ofX as

E(X ) = � � � �
′
(1); where �

′
(1) =

@
@x

�( x)jx =1 (9.1.16)

and the variance ofX as

V ar(X ) = � 2
h
�

′′
(1) � (�

′
(1))2

i
; where �

′′
(1) =

@2

@x2
�( x)jx =1 (9.1.17)

The EV-I ( �; � ) is unimodal with mode at � . From the distribution
function (9.1.2) the 100
 th (0 < 
 < 1) percentile point � 
 can be found
by solving the equation

exp
n

� e� ( � 
 � � )=�
o

= 


which yields
� 
 = � � �ln (� ln
 ) (9.1.18)

In particular, the median (i.e., � 0:5) is obtained by using 
 = 0 :5; i.e.,
� 0:5 � � + (0 :366)�:

The following table gives the percentiles for standard Type-I EV dis-
tribution (i.e., EV-I (1 ; 0)).


 � 
 
 � 
 
 � 


0.0001 -1.957 0.100 -1.100 0.950 1.866
0.005 -1.750 0.250 -0.705 0.975 2.416
0.010 -1.640 0.500 -0.164 0.990 3.137
0.025 -1.468 0.750 0.521 0.995 3.679
0.050 -1.306 0.900 1.305 0.999 4.936

Table 9.1.5: Percentiles of the Standard Type-I Extreme Value Distribu-
tion.

9.2 Characterizations of Extreme Value Dis-
tributions

In the previous section it has been discussed how Type-II and Type-
III EV distributions are related to the Type-I EV distribution (through
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the simple l̀n ' transformation). Therefore, in this section we talk about
characterization of Type-I EV distribution only. However, note that,
Gnedenko's (1943) necessary and su�cient conditions do serve as most
general characterization of the three types of EV distributions.

It is seen that a random variable X has a Type-I EV distribution, if
and only if expf� (X � � )=� g has the standard exponential distribution.
Therefore, the characterization results for exponential distribution can
also be used for Type-I EV distribution, by applying them to expf� (X �
� )=� g:

Dubey (1966) characterized the Type-I EV distribution by the distri-
bution of the smallest order statistics from the same distribution.

Theorem 9.2.1 Let X 1; X 2; : : : ; X n be iid observations andX (1) = min
f X 1; X 2; : : : ; X n g: Then, X (1) follows a Type-I EVD distribution with pdf
(9.1.11) if and only if X i 's are so.

Ballerini (1987) provided a characterization of the Type-I EV distri-
bution based on record analysis as given below.

Theorem 9.2.2 Supposef X i gi � 0 be a sequence of iid nondegenerate
continuous random variables with cdf F. Assume thatEX +

0 < 1 (where
X +

0 = X 0I (X 0 > 0) ). De�ne Yi = ( X i + ic) where c > 0 and i � 0: Let
Y(n ) = max f Y1; : : : ; Yn g; and 1n = I [Yn > Y (n � 1) ] = I [record occurs at
time n]: If for every c > 0, Y(n ) is independent of1n for each n, then the
cdf F has the form(9.1.2) for some � real and � > 0:

Among the other characterizations of the Type-I EV distribution,
prominent are Leadbetter, Lindgren, and Rootz�en (1983) where it has
been shown that EV-I (�; � ) is the only `max-stable' distribution with
the entire real line as its support. Also see Sethuraman (1965) for char-
acterization of all three types of EV distributions in terms of `complete
confounding' of random variables.

Before we go to the next section, we would like to observe the close
relationship between the Weibull distribution and the Type-I Extreme
Value Distribution.

Result 9.2.1 SupposeX follows a two parameter Weibull distribution
(W (�; � )) with pdf (8.1.1). Then (i) Y = lnX has the EV-I (� � ; � � ) of
smallest values with pdf(9.1.11) where the location parameter� � = ln�
and scale parameter� � = 1=� ; (ii) Y = � lnX has the EV-I (� � ; � � ) of



238 Chapter 9 Extreme Value Distributions

largest values with pdf(9.1.1) where the location parameter� � = � ln�
and scale parameter� � = 1=�:

Conversely, if X follows EV-I (�; � ) with pdf (9:1:1) (or (9:1:11)),
then Y = exp(X ) (or exp(� X ) ) follows a two-parameter Weibull dis-
tribution (W (� � ; � � )) with pdf (8:1:1) where � � = 1=� � and � � = exp(� )
(or exp(� � )) .

Remark 9.2.1 A similar relationship between the Weibull distribution
and the other two types of EV distributions can be established easily
through the relationships that exist between Type-I EV distribution and
the Type-II and Type-III EV distributions as discussed earlier.

Another interesting result is the relationship between the Type-I EV
distribution and the logistic distribution (see Section 2.2) as stated below.

Result 9.2.2 Let X 1 and X 2 be two independent random variables hav-
ing the Type-I EV distributions with common scale parameter� but di�er-
ent (possibly) location parameters� 1 and � 2 respectively(i.e., X i follows
EV-I (�; � i ); i = 1 ; 2 ). Then Y = ( X 1 � X 2) follows a two-parameter
logistic distribution with location parameter � = ( � 1 � � 2) and scale pa-
rameter � .

9.3 Estimation of Parameters

First we consider estimation of parameters for the Type-I EV distribution
only. Then we consider the other two types of EV distribution.

Given iid observationsX 1; X 2; : : : ; X n having the commonpdf (9.1.1),
the maximum likelihood estimators b� ML and b� ML of � and � respectively
satisfy the equations:

nX

i =1

expf� (X i � b� ML )=b� ML g = n (9.3.1)

(X � b� ML ) �
1
n

nX

i =1

(X i � b� ML )expf� (X i � b� ML )=b� ML g = b� ML (9.3.2)

where X =
P n

i =1 X i =n: Further simpli�cation of (1.3.1) gives b� ML in
terms of b� ML as

b� ML = � b� ML ln
�

1
n

nX

i =1

exp(� X i =b� ML )
�

(9.3.3)
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which after plugging in (1.3.2) gives b� ML in terms of the following equa-
tion:

b� ML = X �
� nX

i =1

X i exp(� X i =b� ML

	�� nX

i =1

exp(� X i =b� ML )
	

(9.3.4)

The above MLEs, which are asymptotically unbiased, are obtained through
numerical methods and have the following asymptotically properties (Down-
ton (1966)).

lim
n !1

V ar(
p

nb� ML ) = f 1 + 6(1 � 
 )2=� 2g� 2 � (1:1087)� 2

lim
n !1

V ar(
p

n b� ML ) = 6 � 2=� 2 � (0:6079)� 2

lim
n !1

Corr (b� ML ; b� ML ) = ( 
 � 1)

r
6
n2 =

p
1 + 6( 
 � 1)2=� 2 � 0:313

(9.3.5)

where 
 = 0 :57721566: : : is Euler's constant. However, for �xed n, the
above MLEs are biased.

In many practical problems one does not have a complete data set due
to censoring. For instance, out of a random sample of sizen the smallest
r 1 and the highest r 2 sample values are not available, i.e., we observe
only the ordered valuesX ( r 1 +1) � X ( r 1 +2) � : : : � X (n � r 2 ) : Harter and
Moore (1968) provided the method of deriving the MLEs of � and �
based on the doubly censored observationsX ( r 1 +1) � : : : � X (n � r 2 ) as
given below.

De�ne Z i = ( X ( i ) � � )=�; F (Z i ) = 1
2 � 1

2 � expf� exp(� Z i )g; i =
(r 1 +1) ; : : : ; (n � r 2): Also, f (Z i ) = expf� Z i � exp(� Z i )g; and the upper
(lower) signs being those for the distribution of smallest (largest) values
(with cdf (9.1.10) ((9.1.2)) as mentioned in Section 9.1). The MLEs of�
and � based on the doubly censored (DC) observations, denoted byb� DC

ML

and b� DC
ML ; are obtained by solving the following two equations for� and

� :

�
(n � r 1 � r 2)

�
�

1
�

n � r 2X

i = r 1 +1

exp(� Z i ) � r 1f (Z r 1 +1 )=[�F (Z r 1 +1 )]

+ r 2f (Zn � r 2 )=[� f 1 � F (Zn � r 2 )g] = 0 (9.3.6)

and

�
1
�

n � r 2X

i = r 1 +1

Z i �
1
�

n � r 2X

i = r 1 +1

Z i exp(� Z i ) �
(n � r 1 � r 2)

�
� r 1Z r 1 +1



240 Chapter 9 Extreme Value Distributions

f (Z r 1 +1 )=[�F (Z r 1 +1 )] + r 2Zn � r 2 f (Zn � r 2 )=[� f 1 � F (Zn � r 2 )g] = 0
(9.3.7)

To �nd the asymptotic dispersion matrix of ( b� DC
ML ; b� DC

ML ) we de�ne the
following terms:

� ! (y) =
Z !

0
uy � 1e� u du

�
′

! (a) =
d
dy

[� ! (y)]jy= a

�
′′

! (a) =
d2

dy2 [� ! (y)]jy= a

Let q1 = r 1=n; q2 = r 2=n; and p = 1 � (q1 + q2) = 1 � (r 1 + r 2)=n:
Keeping q1 and q2 �xed, as n ! 1 ; Z r 1 +1 ! bz1 and Zn � r 2 ! bz2 such
that

F (bz1) =
Z bz1

�1
f (t) dt = q1

1 � F (bz2) =
Z 1

bz2

f (t) dt = q2

For the distribution of the smallest values, the information matrix is
I = (( I ij )) ; where

I 11 =
n
� 2

h
� p � 2

n
�

′

� lnq 2
(1) � �

′

� ln (1 � q1 ) (1)
o

+ �
′′

� ln q2
(2) � �

′′

� ln (1 � q1 ) (2)

+2
n

�
′

� lnq 2
(2) � �

′

� ln (1 � q1 ) (2)
o

� q2lnq2 ln (� lnq2) f 2 + ln (� lnq2)g

+(1 � q1)ln (1 � q1)ln f� ln (1 � q1)g [2 + ln f� ln (1 � q1)g

+ ln (1 � q1)ln f� ln (1 � q1)g=q1 ]
i

I 22 =
n
� 2 [p + q2ln q2 � (1 � q1)ln (1 � q1)]

I 21 = I 12 =
n
� 2

h
�

′

� lnq 2
(2) � �

′

� ln (1 � q1 ) (2) � q2 lnq2 ln (� lnq2)

+(1 � q1)ln (1 � q1)ln f� ln (1 � q1)g

+(
1
q1

� 1) f ln (1 � q1)g2 ln f� ln (1 � q1)g
i

(9.3.8)

The asymptotic dispersion matrix of ( b� DC
ML ; b� DC

ML ) is I � 1.
If one considers the distribution of the largest values instead of the

distribution of smallest values, then it can be shown that by interchanging
q1 and q2, the values ofI 11 and I 22 remain the same, andI 12 (the (1; 2)-
element of the matrix I � 1) retains the same absolute value but changes
the sign.
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In the case of single (or one-sided) censoring, where we observe only
the r smallest observationsX (1) � X (2) � : : : � X ( r ) from a sample of
size n, Sch}upbach and H}usler (1983) proposed simple looking unbiased
estimators of � and � for the model (9.1.11) given as

b� SH =
n

�
lX

i =1

X ( i ) +
� l

r � l

� rX

i = l +1

X ( i )

o
=(nkr;n )

b� SH = �X ( r ) + dr;n
b� SH (9.3.9)

where �X ( r ) =
P r

i =1 X ( i ) =r; r = [ pn] < n , l = [ qn] < r; 0 < p < 1; 0 <
q < 1. Also, l is chosen such that the variance ofb� SH is minimized,
and kr;n and dr;n are suitable constants. It has been observed that for
0 < p < 0:8; the optimal choice of l is (r � 1): For 0:8 � p < 1:0;
Sch}upbach and H}usler (1983) provided the values of optimall and kr;n

as well asdr;n as given below in Table 9.3.1.

n r l kr;n dr;n n r l kr;n dr;n

5 4 3 0.800 0.894 14 12 1.27 0.800
10 9 7 1.067 0.751 13 11 0.982 0.907

8 7 0.962 0.918 17 16 13 1.240 0.687
11 10 8 1.120 0.737 15 13 1.158 0.789

9 8 1.016 0.890 14 12 1.016 0.889
12 11 9 1.166 0.726 18 17 14 1.268 0.681

10 9 1.065 0.866 16 14 1.187 0.778
13 12 10 1.207 0.716 15 13 1.048 0.873

11 9 1.013 0.846 19 18 15 1.294 0.676
14 13 11 1.244 0.707 17 15 1.214 0.769

12 10 1.055 0.829 16 14 1.078 0.859
15 14 12 1.277 0.699 20 19 16 1.318 0.672

13 11 1.093 0.814 18 16 1.239 0.760
12 11 1.019 0.927 17 15 1.105 0.846

16 15 13 1.307 0.693 16 14 0.9905 0.932

Table 9.3.1: Values ofl , kr;n , and dr;n for Selectedn and r (0:8 � r=n <
1:0).

In the case of complete sampleX (1) � X (2) � : : : � X (n ) ; the esti-
mators in (9.3.9) remain same except that
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l = [0 :84n] = largest integer not exceeding 0:84n

dr;n is replaced by
 = 0 :57721566 (Euler's constant)

kr;n is replaced bykn ; given in the following Table 9.3.2 (Engelhardt
and Bain (1977))

n kn n kn n kn

2 0.6931 22 1.4609 42 1.5208
3 0.9808 23 1.4797 43 1.5303
4 1.1507 24 1.4975 44 1.4891
5 1.2674 25 1.5142 45 1.4984
6 1.3545 26 1.4479 46 1.5075
7 1.1828 27 1.4642 47 1.5163
8 1.2547 28 1.4796 48 1.5248
9 1.3141 29 1.4943 49 1.5331
10 1.3644 30 1.5083 50 1.5411
11 1.4079 31 1.5216 51 1.5046
12 1.4461 32 1.4665 52 1.5126
13 1.3332 33 1.4795 53 1.5204
14 1.3686 34 1.4920 54 1.5279
15 1.4004 35 1.5040 55 1.5352
16 1.4293 36 1.5156 56 1.5424
17 1.4556 37 1.5266 57 1.5096
18 1.4799 38 1.4795 58 1.5167
19 1.3960 39 1.4904 59 1.5236
20 1.4192 40 1.5009 60 1.5304
21 1.4408 41 1.5110 1 1.5692

Table 9.3.2: Values ofkn for 2 � n < 1 :

Another simple way of estimating the Type-I EV Distribution param-
eters is to match the log-log (natural) transformation of the empirical dis-
tribution function with that of the cdf and then use a simple regression
method.

Note that the cdf in (9.1.2) (distribution of largest values) yields

� ln (� lnF 1(x)) = ( x � � )=�
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i.e., x = � + � f� ln (� lnF 1(x))g (9.3.10)

On the other hand, the empirical distribution function based on the dou-
bly censored observationsX ( r 1 +1) ; : : : ; X (n � r 2 ) is bF1(x) where

bF1(x) = f # X 0
( i ) s � xg=(n � r 1 � r 2) (9.3.11)

For i = ( r 1 + 1) ; (r 1 + 2) ; : : : ; (n � r 2); we have from (1.3.11),

bF1(X ( i ) ) = ( i � r 1)=(n � r 1 � r 2) (9.3.12)

Now in (9.3.10) replace F1(x) by bF1(�) for x = X ( r 1 +1) ; : : : ; X (n � r 2 ) ;
yielding

X ( i ) = � + � f� ln (� ln (( i � r 1)=(n � r 1 � r 2))) g

i.e., X ( i ) = � + � f� ln (ln (n � r 1 � r 2) � ln (i � r 1))g (9.3.13)

Use a simple linear regression approach (whereX ( i ) 's play the role of
dependent variable values andf� ln (ln (n � r 1 � r 2) � ln (i � r 1))g's are the
independent variable values) to estimate� and � , and call the resultant
estimators b� R and b� R respectively.

Identical steps can be followed for the distribution of smallest values
(i.e., cdf (9.1.10)).

Also note that when r 1 = 0 and r 2 = n; we have the full sample
(uncensored).

In the following we use the data set in Example 9.1.2 to estimate the
parameters of a Type-I EV distribution.

Method b� b�

MLE 5.2446 11.7128

Sch}upbach & H}uster 5.21717 11.6112

Regression 4.81539 11.8520

Table 9.3.3: Estimated Parameters with Various Methods.

Since this data set islarge (with n = 485), we apply the bootstrap
method to estimate the bias andMSE of the above three types of esti-
mates. Number of replications used here is 10,000.
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Method Estimators Averages Bias MSE

MLE b� ML 11.7164 0.0035898 0.0652417
b� ML 5.2350 -0.0095709 0.0288717

Sch}upbach & H}uster b� SH 11.6135 0.0023443 0.0590269
b� SH 5.2125 -0.0046892 0.0326424

Regression b� R 11.8623 0.0102647 0.0678648
b� R 4.7981 -0.0172493 0.0339656

Table 9.3.4: Estimated Mean, Bias, and MSE of the Parameter Estimates
Using Bootstrap.

9.4 Goodness of Fit Tests for Extreme Value
Distributions

In this section we discuss the goodness of �t tests for extreme value
distributions of Type-I (i.e., EV-I( �; � )) only.

Shapiro and Brain (1987) proposed a goodness of �t test for the Type-
I limiting distribution of the smallest value of iid random variables, i.e.,
for the distribution with pdf (9.1.11).

To test that a random sample X 1; X 2; : : : ; X n is following the EV-
I( �; � ) with pdf (9.1.11), we �rst order the observations X (1) � X (2) �
: : : � X (n ) and then de�ne the following quantities:

! i = ln(
n + 1

n � i + 1
); i = 1 ; 2; : : : ; (n � 1)

! n = n �
n � 1X

i =1

! i

! n + i = ! i (1 + ln! i ) � 1; i = 1 ; 2; : : : ; (n � 1) (9.4.1)

! 2n = 0 :4228n �
n � 1X

i =1

! n + i

A1 =
nX

i =1

! i X ( i ) and A2 =
nX

i =1

! n + i X ( i )

The test statistic to test goodness of �t is

Wn =
(0:6079A2 � 0:2570A1)2

n
P n

i =1 (X i � �X )2
(9.4.2)
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which provides a two-tail test of the null hypothesis (i.e., the data follows
(9.1.11)). The distribution of Wn under the null hypothesis is not analyt-
ically tractable. However, the above authors carried out a comprehensive
simulation work based on which percentile points of the null distribution
of Wn were expressed as a function of the sample size. For 0< � < 1; let
Wn;� be the (100� )th percentile point, i.e.,

� = P(W � Wn;� j null hypothesis is true) (9.4.3)

Shapiro and Brain (1987) showed that

Wn;� � � 0 + � 1(ln (n)) + � 2(ln (n))2 (9.4.4)

The values of �; � 0; � 1 and � 2 are provided in the following.

0 < � < 1 � 0 � 1 � 2

0.005 0.10102 0.04249 0.005882
0.025 0.11787 0.08550 -0.002048
0.050 0.13200 0.10792 -0.006487
0.950 1.46218 -0.21111 0.012914
0.975 1.64869 -0.26411 0.016840
0.995 1.91146 -0.31361 0.017669

Table 9.4.1: Values of� , � 0, � 1, and � 2.

Using the formula (9.4.4) and the Table 9.4.1, the percentile points of
Wn under the null hypothesis can be found as given below.

n �
0.005 0.025 0.050 0.950 0.975 0.995

5 0.18464 0.25017 0.28889 1.15586 1.26724 1.45249

10 0.23004 0.30388 0.34610 1.04455 1.12984 1.28303

15 0.25922 0.33439 0.37668 0.98519 1.05696 1.19176

20 0.28110 0.35563 0.39708 0.94565 1.00862 1.13054

25 0.29873 0.37186 0.41217 0.91645 0.97304 1.08506

30 0.31358 0.38498 0.42402 0.89354 0.94521 1.04921

35 0.32644 0.39597 0.43369 0.87485 0.92255 1.01981

40 0.33780 0.40540 0.44183 0.85915 0.90358 0.99503

Table 9.4.2: Values ofWn;� for Selected Values ofn and � .
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To test that a random sample X 1; X 2; : : : ; X n is following the EV-
I( �; � ) with pdf (9.1.1) (i.e., the limiting distribution of the largest value
of iid observations), one needs to work withX �

1 ; X �
2 ; : : : ; X �

n whereX �
i =

� X i : Note that X �
i follows (9.1.11) if and only if X i follows (9.1.1).

Hence, one works withX �
i 's, de�nes the Wn statistic based on X �

(1) �
X �

(2) � : : : � X �
(n ) ; and make use ofWn;� as discussed above.

At level � , one accepts the null hypothesis ifWn; ( �= 2) � Wn �
Wn; 1� ( �= 2) ; and rejects otherwise.

As an application, we consider the data set (of sizen = 24) given in
the Example 9.1.1. The values for the altitude of 40 km are used to see
if the pdf (9.1.11) is appropriate for the data. Our ordered observations
are (row wise):

� 1:14, � 1:00, � 0:71, � 0:25, � 0:20, � 0:15,
� 0:10, � 0:05, 0.00, 0.00, 0.10, 0.15,
0.20, 0.20, 0.21, 0.25, 0.30, 1.00,
1.43, 2.64, 3.43, 4.14, 4.14, 4.43.

i ! i i ! i i ! i

1 0.0408 9 0.4463 17 1.1394
2 0.0834 10 0.5108 18 1.2730
3 0.1278 11 0.5798 19 1.4271
4 0.1744 12 0.6539 20 1.6094
5 0.2231 13 0.7340 21 1.8326
6 0.2744 14 0.8210 22 2.1203
7 0.3285 15 0.9163 23 2.5257
8 0.3857 16 1.0217

Table 9.4.3: The Coe�cients Wi 's for n = 24.

Sincen = 24, we �rst calculate the Wi values, 1� i � (n � 1) = 23. We
now have A1 = 48:1970, A2 = 69:6708; Wn = 0 :585897: With � = 0 :1;
Wn; ( �= 2) = 0 :409457 andWn; 1� ( �= 2) = 0 :921693. SinceWn; ( �= 2) <
Wn < W n; 1� ( �= 2) , we accept the fact that the above data set can be
modelled by EV-I( �; � ).


