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Poisson time-series

2 / 14

Examples related to extreme events that can be modeled as
Poisson:

■ The number of occurrences of a meteorological
phenomenon e.g. hurricanes that strike every year

■ Epidemiology data e.g. death counts



Observation driven v.s. parameter driven

models
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GLM idea
Mean process µt := E(Yt|Zt) = exp(xT

tβ + Zt)

Cox (1981):

■ Parameter-driven models: The dist’n of Zt+1 depends
only on Zt and does not depend on
(Zt−1, Zt−2, . . .), (Yt, Yt−1, . . .). The dependence
structure of {Yt} is inherited from that of {Zt}.

■ Observation-driven models : The dist’n of Zt+1 depends
on (Yt, Yt−1, . . .).

Observation driven models are easier to forecast but
theoretical properties are more difficult to establish.



Desirable properties
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Zeger and Qaqish (1988):

1. Approximate relationship for the mean
E(Yt) = E(µt) ≈ exp(xT

tβ)
so that β is interpreted as the proportional change in
the expectation of Yt given a unit change in xt.

2. The model should allow for both positive and negative
serial dependence. For example, log(µt) = β + γYt−1 is
not stationary unless γ ≤ 0.

3. The estimators for β and γ should be approximately
orthogonal for easier computation.
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In addition Davis, Dunsmuir and Wang (1999):

4. The model should be easy to forecast.

5. The computational procedure should be easy to
implement; earlier obs-d models are computationally
intensive.

6. Diagnostic tools should be available.



Poisson GLARMA(p,q) model
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1. Yt|Yt−1, Yt−2, . . . ∼ Poisson(µt)

2. Define the state process Wt := log(µt)

3. et := (Yt − eWt)e−λWt, 0 < λ ≤ 1 fixed, is a martingale
difference sequence

4. Zt :=
∞
∑

i=1

γiet−i,
∑

|γi| < ∞

5. Wt = xT

tβ + Zt



Reparameterization
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Suppose {Ut} ∼ ARMA(p, q)
Ut = φ1Ut−1 + . . . + φpUt−p + et + θ1et−1 + . . . + θqet−q

where
∞
∑

i=1

γiz
i ≡

(

1 −

p
∑

i=1

φiz
i

)−1(

1 +

q
∑

i=1

θiz
i

)

− 1

Then Zt satisfies

Zt =

p
∑

i=1

φi(Zt−i + et−i) +

q
∑

i=1

θiet−i (1)

Set es = 0 and Zs = 0 for s ≤ 0



A few properties
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1. E(et|et−1, et−2, . . .) = 0 and E(et) = 0

2. E(e2
t ) = E(µ1−2λ

t )

3. cov(et, es) = 0 for t 6= s

4. E(Wt) = xT

tβ

5. cov(Wt, Wt+h) =
∑∞

i=1 γiγi+hE(µ1−2λ
t−i )

6. for λ = 0.5, E(µt) ≈ exp(xT

tβ + 1
2

∑∞
i=1 γ2

i )



Remarks
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■ The accuracy of the approximation at 6 depends on how
close {et} is to a process of independent normal random
variables.

■ µ̂t := exp
(

Ŵt −
1
2

∑∞
i=1 γ̂2

i

)

is an unbiased prediction of

Yt.



The basic model
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Set

■ xT

tβ = β

■ p = 0

■ q = 1

Then
Wt = β + γ (Yt−1 − eWt−1) e−λWt−1 (2)

Proposition: For 1
2 ≤ λ ≤ 1 and γ 6= 0, {Wt} has a

stationary dist’n. If λ = 1, the dist’n is unique.
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Maximum likelihood estimation
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Details in Davis, Dunsmuir and Street (2005) section 2.1

δ := (β, γT)T

`(δ) ≈
∑n

t=1

(

Yt Wt(δ) − eWt(δ)
)

Iteratively:
Set e0 = . . . = e1−q = 0 and Z0 = . . . = Z1−p = 0
for t = 1, . . . , n {

Zt =
∑p

i=1 φi(Zt−i + et−i) +
∑q

i=1 θiet−i

Wt = xT
tβ + Zt

et = (Yt − eWt)e−λ Wt

}
` =

∑n
t=1(Yt Wt − eWt)
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1st and 2nd derivatives are calculated similarly.

The Newton-Raphson algorithm is used to obtain δ̂.
Convergence is achieved within 10 iterations.

When λ = 1, q = 1, δ̂
aprx
∼ N(0, V −1)

where

V = lim
n

1

n

n
∑

t=1

eWt

(

∂Wt

∂δ

)(

∂Wt

∂δ

)T

(3)



Connection with extreme value theory
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Two approaches of analyzing extremes in time-series (from
the book statistics of extremes):

1. Time-series model for the complete process

2. Model only the extreme values

Idea:

1. Different form of {Zt}
e.g. moving maxima process → parameter-driven model

2. Use the model proposed by Davis et al but focus only on
the extreme values
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