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Poisson time-series

Examples related to extreme events that can be modeled as
Poisson:

s [ he number of occurrences of a meteorological
phenomenon e.g. hurricanes that strike every year

s Epidemiology data e.g. death counts
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Observation driven v.s. parameter driven
models

GLM idea
Mean process pu; == (Y| Z;) = exp(x; 6 + Z;)

Cox (1981):

m Parameter-driven models: The dist'n of Z;.; depends
only on Z; and does not depend on
(Z1-1,Z—9,...),(Ys,Y;_1,...). The dependence
structure of {Y;} is inherited from that of {Z,}.

m Observation-driven models: The dist'n of Z;.; depends
on (Y;g, Y;g_l, .. )

Observation driven models are easier to forecast but

theoretical properties are more difficult to establish.
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Desirable properties

Zeger and Qaqish (1988):

1. Approximate relationship for the mean

E(Y;) = E(u) =~ exp(z]3)
so that 3 is interpreted as the proportional change in
the expectation of Y; given a unit change in z;.

2. The model should allow for both positive and negative
serial dependence. For example, log(u;) = 6+ vY;_1 is
not stationary unless v < 0.

3. The estimators for 3 and ~ should be approximately
orthogonal for easier computation.
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In addition Davis, Dunsmuir and Wang (1999):
4. The model should be easy to forecast.

5. The computational procedure should be easy to

Implement; earlier obs-d models are computationally
Intensive.

6. Diagnostic tools should be available.
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Poisson GLARMA (p, q) model

YilYi 1, Y o, ... ~ Poisson( )
. Define the state process W; == log( i)

cep = (Y, —eV)e MW 0 < X <1 fixed, is a martingale
difference sequence

= Z%et—i' 2 il < o0
i=1

Wy =ux,0+ 2
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Reparameterization

Suppose {U;} ~ ARMA(p, q)
Ut — ¢1Ut_1 + ...t ¢pUt—p + €4 + (91615—1 + ...+ qut—q

50 p -1 q
where Z%zi = (1 — Z gbzzz) (1 -+ Z Hizi> — 1
i=1 i=1 i=1

Then Z; satisfies

p q
Zi = Z Gi(Zi—i + er—i) + Z Oier—i (1)
i—1 i=1
Sete,=0and Z, =0 for s <0
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A few properties

E(etlet_l, €t—2, .. ) = 0 and E(Gt) =0

E(e?) = E(u )

. cov(et, es) =0 for t #£ s

 E(W) =z 0

ccov(Wiy, Win) = >0, Vivien By zQA)
6.

for A = 0.5, E(u;) ~ exp(x; (6 + 5 221 %2)
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Remarks

s [ he accuracy of the approximation at 6 depends on how
close {e;} is to a process of independent normal random
variables.

m [l = exp (Wt — % o %2) Is an unbiased prediction of
Y;.
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The basic model

Set
. 213 =0
m p=0
mg—=1
Then

Wt — ﬁ - Y (}/;j_l — GWt_l) 6_)\Wt—1

Proposition: For % <A<1land~#0, {W;} has a
stationary dist'n. If A = 1, the dist'n is unique.

(2)
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Maximum likelihood estimation

Details in Davis, Dunsmuir and Street (2005) section 2.1

0= (B8,7")"
00) = Y0, (Ve Wi(6) — e"et?))

lteratively:
Set 60:...261_q20 and Z()Z...ZZl_pZO
for t=1,...,n {

Zy = i 0i(Zi—i +eri) + D1 bier

Wi =ux,0+ Z

e; = (Y't . GWt)e—)\Wt

12 / 14



1st and 2nd derivatives are calculated similarly.

The Newton-Raphson algorithm is used to obtain 0.
Convergence is achieved within 10 iterations.

<~ aprx )

When A=1,g=1, § "T"N(0,V~

where _h};nnz <8Wt) <%)T 5
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Connection with extreme value theory

Two approaches of analyzing extremes in time-series (from
the book statistics of extremes):

1. Time-series model for the complete process

2. Model only the extreme values

|dea:

1. Different form of {Z;}
e.g. moving maxima process — parameter-driven model

2. Use the model proposed by Davis et al but focus only on
the extreme values
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