Observation Driven Models for Poisson Counts by R. Davis, W. Dunsmuir and S. Street

Evangelos Evangelou SAMSI Extreme Value Methodology Workgroup

January 14, 2008

Poisson time-series

Examples related to extreme events that can be modeled as Poisson:

- The number of occurrences of a meteorological phenomenon e.g. hurricanes that strike every year
- Epidemiology data e.g. death counts

Observation driven v.s. parameter driven models

GLM idea

Mean process
$$\mu_t \coloneqq \mathbb{E}(Y_t | Z_t) = \exp(x_t^{\mathsf{T}} \beta + Z_t)$$

Cox (1981):

■ Parameter-driven models: The dist'n of Z_{t+1} depends only on Z_t and does not depend on $(Z_{t-1}, Z_{t-2}, ...), (Y_t, Y_{t-1}, ...)$. The dependence structure of $\{Y_t\}$ is inherited from that of $\{Z_t\}$.

• Observation-driven models: The dist'n of Z_{t+1} depends on (Y_t, Y_{t-1}, \ldots) .

Observation driven models are easier to forecast but theoretical properties are more difficult to establish.

Desirable properties

Zeger and Qaqish (1988):

- 1. Approximate relationship for the mean $\mathbb{E}(Y_t) = \mathbb{E}(\mu_t) \approx \exp(x_t^{\mathsf{T}}\beta)$ so that β is interpreted as the proportional change in the expectation of Y_t given a unit change in x_t .
- 2. The model should allow for both positive and negative serial dependence. For example, $\log(\mu_t) = \beta + \gamma Y_{t-1}$ is not stationary unless $\gamma \leq 0$.
- 3. The estimators for β and γ should be approximately orthogonal for easier computation.

In addition Davis, Dunsmuir and Wang (1999):

- 4. The model should be easy to forecast.
- 5. The computational procedure should be easy to implement; earlier obs-d models are computationally intensive.
- 6. Diagnostic tools should be available.

Poisson $\textbf{GLARMA}(\mathbf{p},\mathbf{q})$ model

1.
$$Y_t | Y_{t-1}, Y_{t-2}, ... \sim \text{Poisson}(\mu_t)$$

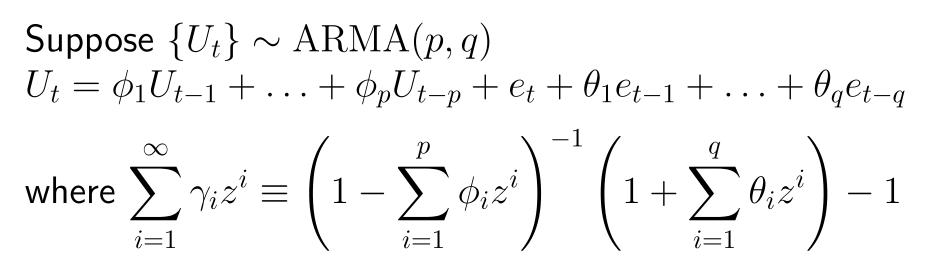
2. Define the *state* process $W_t \coloneqq \log(\mu_t)$

3. $e_t \coloneqq (Y_t - e^{W_t})e^{-\lambda W_t}$, $0 < \lambda \le 1$ fixed, is a martingale difference sequence

4.
$$Z_t \coloneqq \sum_{i=1}^{\infty} \gamma_i e_{t-i}, \sum |\gamma_i| < \infty$$

5. $W_t = x_t^{\mathsf{T}}\beta + Z_t$

Reparameterization



Then Z_t satisfies

$$Z_t = \sum_{i=1}^p \phi_i (Z_{t-i} + e_{t-i}) + \sum_{i=1}^q \theta_i e_{t-i}$$
(1)

Set $e_s = 0$ and $Z_s = 0$ for $s \le 0$

A few properties

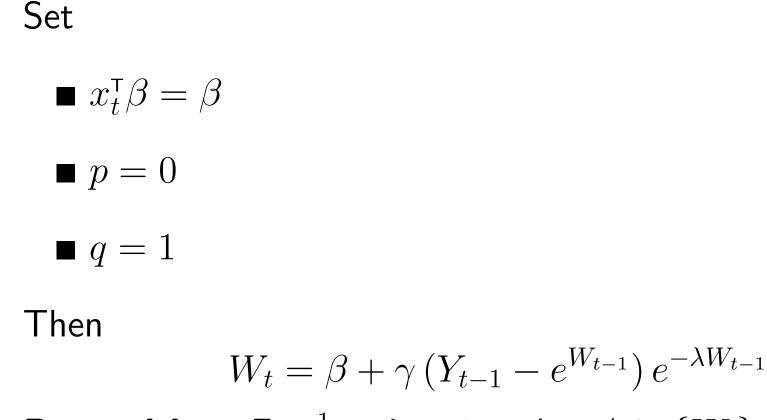
1.
$$\mathbb{E}(e_t|e_{t-1}, e_{t-2}, ...) = 0$$
 and $\mathbb{E}(e_t) = 0$
2. $\mathbb{E}(e_t^2) = \mathbb{E}(\mu_t^{1-2\lambda})$
3. $\operatorname{cov}(e_t, e_s) = 0$ for $t \neq s$
4. $\mathbb{E}(W_t) = x_t^{\mathsf{T}}\beta$
5. $\operatorname{cov}(W_t, W_{t+h}) = \sum_{i=1}^{\infty} \gamma_i \gamma_{i+h} \mathbb{E}(\mu_{t-i}^{1-2\lambda})$
6. for $\lambda = 0.5$, $\mathbb{E}(\mu_t) \approx \exp(x_t^{\mathsf{T}}\beta + \frac{1}{2}\sum_{i=1}^{\infty} \gamma_i^2)$

Remarks

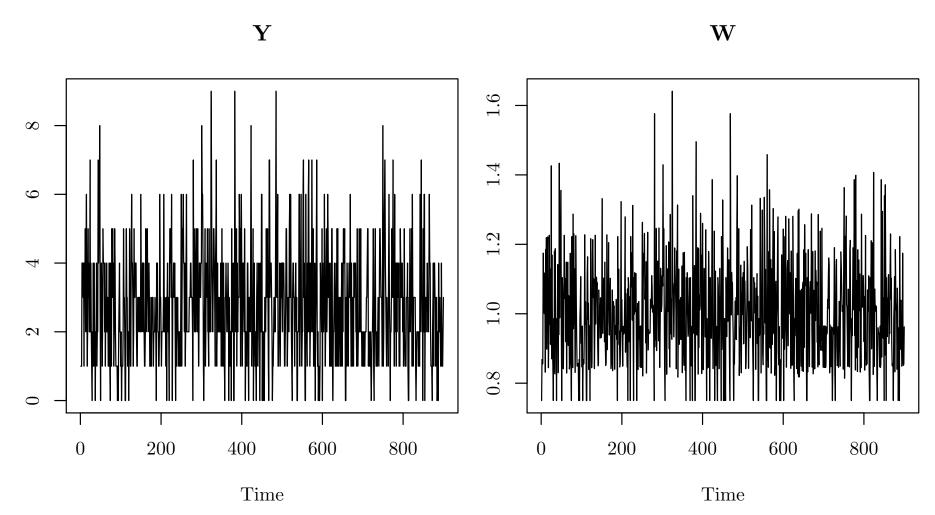
The accuracy of the approximation at 6 depends on how close {e_t} is to a process of independent normal random variables.

•
$$\hat{\mu}_t \coloneqq \exp\left(\hat{W}_t - \frac{1}{2}\sum_{i=1}^{\infty}\hat{\gamma}_i^2\right)$$
 is an unbiased prediction of Y_t .

The basic model



Proposition: For $\frac{1}{2} \leq \lambda \leq 1$ and $\gamma \neq 0$, $\{W_t\}$ has a stationary dist'n. If $\lambda = 1$, the dist'n is unique.



 $\lambda = 1$

11 / 14

Maximum likelihood estimation

Details in Davis, Dunsmuir and Street (2005) section 2.1 $\delta \coloneqq (\beta, \gamma^{\mathsf{T}})^{\mathsf{T}}$ $\ell(\delta) \approx \sum_{t=1}^{n} (Y_t W_t(\delta) - e^{W_t(\delta)})$

Iteratively:
Set
$$e_0 = \ldots = e_{1-q} = 0$$
 and $Z_0 = \ldots = Z_{1-p} = 0$
for $t = 1, \ldots, n$ {
 $Z_t = \sum_{i=1}^p \phi_i(Z_{t-i} + e_{t-i}) + \sum_{i=1}^q \theta_i e_{t-i}$
 $W_t = x_t^T \beta + Z_t$
 $e_t = (Y_t - e^{W_t})e^{-\lambda W_t}$
}
 $\ell = \sum_{t=1}^n (Y_t W_t - e^{W_t})$

1st and 2nd derivatives are calculated similarly.

The Newton-Raphson algorithm is used to obtain $\hat{\delta}$. Convergence is achieved within 10 iterations.

When
$$\lambda = 1, q = 1$$
, $\hat{\delta} \stackrel{\mathrm{aprx}}{\sim} \mathrm{N}(0, V^{-1})$ where

$$V = \lim_{n} \frac{1}{n} \sum_{t=1}^{n} e^{W_t} \left(\frac{\partial W_t}{\partial \delta}\right) \left(\frac{\partial W_t}{\partial \delta}\right)^{\mathsf{T}}$$

(3)

Connection with extreme value theory

Two approaches of analyzing extremes in time-series (from the book statistics of extremes):

- 1. Time-series model for the complete process
- 2. Model only the extreme values

Idea:

- 1. Different form of $\{Z_t\}$ e.g. moving maxima process \rightarrow parameter-driven model
- 2. Use the model proposed by Davis et al but focus only on the extreme values