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Basic Extremes

Extreme Value Distributions

Frechet: Φα(x) = exp(−x−α), x > 0

Gumbel: Λ(x) = exp(−e−x), x ∈ R

Weibull: Ψα(x) = exp(−(−x)α), x ≤ 0

F (u) = 1− F (u) = P (X > u).

Regular Variation

A positive measurable function f on (0,∞) is regu-

larly varying at ∞ with index α if

lim
t→∞

f(tx)

f(t)
= xα, x > 0.

Notation: f ∈ R(α)

f is said to be slowly varying if α = 0, rapidly varying

if the above limit is 0 for x > 1 and ∞ for 0 < x < 1.

F ∈ L(γ), γ ≥ 0 if for every y ∈ R,

lim
x→∞

F (x− y)

F (x)
= eγy.



Convolution Equivalent Distributions

Let X have d.f. F . F ∈ S(γ), γ ≥ 0 if F ∈ L(γ) and

lim
x→∞

F ∗2(x)
F (x)

= 2f̂(γ)

where f̂(γ) = EeγX is the moment generating func-

tion of X at γ. The class S := S(0) is the class of

subexponential distributions.

Subexponential distributions are heavy tailed in the

sense that no exponential moments exist. S contains

all df.f.s F with regularly varying tails and is a much

larger class. Distribution functions in S(γ) for some

γ > 0 have exponential tails, hence are lighter tailed

than suexponential distributions.

Fisher-Tippett Theorem

For an iid sequence, the limit distribution of the max-

ima is one of the three extreme value distributions:

Frechet, Gumbel and Weibull.



Diffusion Extremes
Consider the Itô stochastic differential equation

dXt = µ(Xt)dt + σ(Xt)dWt, t > 0, X0 = x

W : standard Brownian motion

µ ∈ R: drift coefficient

σ > 0: diffusion coefficient or volatility

Running maxima :

Mt = max
0≤s≤t

Xs, t > 0

Scale function :

s(x) =

∫ x

z

exp

(
−2

∫ y

z

µ(t)

σ2(t)
dt

)
dy, x ∈ (l, r)

where z is any interior point in (l, r).

Speed measure : m has Lebesgue density

m′(x) =
2

σ2(x)s′(x)
, x ∈ (l, r).

and total mass |m| = m((l, r)). s′ is the Lebesgue

density of s. Xt is ergodic and its stationary distribu-

tion is absolutely continuous with Lebesgue density

h(x) =
m′(x)
|m| , x ∈ (l, r).



Xt satisfies the usual conditions which guarantees

that X is ergodic with stationary density:

s(r) = −s(l) = ∞

|m| < ∞

Davis Theorem

Let (Xt)t≥0 satisfy the usual conditions. Then for

any initial value X0 = y ∈ (l, r) and any ut ↑ r,

lim
t→∞

|P y(Mt ≤ ut)− F t(ut)| = 0.

where F is a df defined for any z ∈ (l, r) by

F (x) = exp

(
− 1

|m|s(x)

)
, x ∈ (z, r).

Proof: Diffusion can be represented as an Ornstein-

Uhlenbeck process after a random time-change. Then

standard theory of extremes of Gaussian processes

apply.

Davis Corollary

F (x) ∼
(
|m|

∫ x

z

s′(y)dy

)−1

∼ (|m|s(x))−1, x ↑ r.



F is in the maximum domain of attraction of G :

F ∈ MDA(G)

Mt − bt

at
→D G, t →∞.

G ∈ {Φα,Λ} , α > 0

Φα is Frechet distribution, Λ is Gumbel distribution.

Main Theorem

If µ and σ are differentiable in some left neighbor-

hood of r such that

lim
x→r

d

dx

σ2(x)

µ(x)
= 0

lim
x→r

σ2(x)

µ(x)
exp

(
−2

∫ x

z

µ(t)

σ2(t)
dt

)
= −∞,

then

F (x) ∼ |µ(x)|h(x), x ↑ r.



Interest Rate Extremes

Vasicek Model

dXt = (a− bXt)dt + σdWt, X0 = x, a ∈ R, b > 0

Xt =
a

b
+ (x− a

b
)e−bt + σ

∫ t

0
e−b(t−s)dWs.

E(Xt) =
a

b
+ (x− a

b
)e−bt → a

b
, t →∞.

V ar(Xt) =
σ2

2b
(1− e−2bt) → σ2

2b
, t →∞.

Xt has a normal stationary distribution N(a
b
, σ2

2b
)

Condition of the Main Theorem holds which gives

F (x) ∼ 2b2

σ2
(x− a

b
)2H(x), x →∞.

where H(x) is the tail of a stationary normal distri-

bution, hence F has heavier tail than H.

F ∈ MDA(Λ) with norming constants

at =
σ

a
√

b log t

bt =
σ√
b

√
log t +

a

b
+

σ

4
√

b

log log t + log(σ2d/2π)√
log t



Cox-Ingersoll-Ross (CIR) Model

dXt = (a− bXt)dt + σ
√

XtdWt

E(Xt) =
a

b
+ (x− a

b
)e−bt → a

b
, t →∞.

V (Xt) =
aσ2

2b2
(1−(1+(x−a

b
)
2b

a
)e−2bt+(x−a

b
)
2b

a
e−3bt) → aσ2

2b2
, t →∞.

Xt has a Gamma stationary distribution Γ(2a
σ2 ,

2b
σ2)

Condition of the Main Theorem holds which gives

F (x) ∼ 2ab

σ2
G(x) ∼ AxH(x), x →∞

where G(x) is the tail of a stationary gamma dis-

tribution Γ(2a
σ2 + 1, 2b

σ2) hence F has heavier tail than

H.

F ∈ MDA(Λ) with norming constants

at =
σ2

2b

bt =
σ

2b
(log t +

2a

σ2
log log t + log(

b

Γ(2a/σ2)
)).



Chan-Karloyi-Logstaff-Sanders (CKLS) Model

dXt = (a− bXt)dt + σXγ
t dWt, γ ∈ [1/2,∞)

1
2

< γ < 1

E(Xt) =
a

b
+ (x− a

b
)e−bt → a

b
, t →∞, b > 0

E(Xt) =
a

b
+ (x− a

b
)e−bt →∞, t →∞, b < 0

E(Xt) = x + at →∞, t →∞, b = 0

The lack of first moment indicates that for certain

parameter values the model can capture very large

fluctuations in the data, which will reflect also in the

maxima.

Stationary density is

h(x) =
2

Aσ2
x−2γ exp

(
− 2

σ2

(
a

2γ − 1
x−(2γ−1) +

b

2− 2γ
x2−2γ

))
.

for some constant A > 0.

Condition of the Main Theorem holds.

F (x) ∼ bxh(x) ∼ Bx2(1−γ)H(x), x →∞
F ∈ MDA(Λ) with norming constants

at =
σ2

2b

(
σ2(1− γ)

b
log t

)2γ−1

2−2γ



bt =

(
σ2(1− 2γ)

b
log t

) 1

2−2γ


1− 2γ − 1

(2− 2γ)2

log
(

σ2(1−γ)
b

log t
)

log t




+at log

(
2b

Aσ2

)

γ = 1

The model has an explicit solution

Xt = e−(b+σ2

2
)t+σWt

(
x + a

∫ t

0
e(b+σ2

2
)s−σWsds

)

The stationary density is inverse gamma:

h(x) =

(
σ2

2a

)− 2b

σ2−1 (
Γ

(
2b

σ2
+ 1

))−1

x−2b/σ2−2 exp

(
−2a

σ2
x−1

)
,

x > 0, h ∈ R(−2b/σ2 − 2) and the tail H of the

stationary distribution is regularly varying.

F (x) ∼ Bx−2b/σ2−1, x →∞.

F ∈ MDA(Φ1+2b/σ2) with norming constants

at ∼ Ct1/(1+2b/σ2)

bt = 0



γ > 1

h has the same form as in the case 1
2

< γ < 1 and

H ∈ R(−2γ + 1)

F (x) ∼ (Ax)−1, x →∞.

CKLS pointed out, most plausible value of γ = 1.5

Condition of the Main Theorem holds.

F ∈ MDA(Φ1) with norming constants

at ∼ t/A

bt = 0



Stochastic Volatility Extremes

Levy-Ornstein-Uhlenbeck Volatility

Empirical volatility changes in time and exhibits tails

which are heavier than normal. Empirical volatil-

ity has upward jumps and clusters on high levels.

Levy driven Ornstein-Uhlenbeck models can capture

heavy tails and volatility jumps and have volatility

clusters if the driving Levy process has regularly vary-

ing tails.

Black-Scholes Model

dSt = rStdt + σStdWt

Heston Model

dSt = rStdt +
√

VtStdWt

dVt = λ(a− Vt)dt + σ
√

VtdBt

λ, a, σ > 0, λa ≥ σ2

2

a is the long run mean, λ is the rate of mean rever-

sion. Volatililty is a CIR Process, W and B are two

independent Brownian motions for simplicity, they

could be correlated to include leverage.



GARCH Model

dSt =
√

VtdWt

dVt = λ(a− Vt)dt + σVtdBt

Volatility is a CKLS model with elasticity γ = 1.

Barndorff-Neilsen-Shephard Model

dSt = (µ + rSt)dt +
√

VtdWt + ρdLλt

dVt = −λVtdt + σdLλt

Vt = e−λtV0 +

∫ t

0
e−λ(t−s)dLλs

is a cadlag process.

If V0 is independent of L and V0 =d
∫∞
0 e−sdLs then

the process is stationary. The stationary solution is

Vt = e−λt

∫ t

−∞
eλsdLλs.

We are concerned with processes L which are heavy

or semi-heavy tailed, i.e., whose tails decrease no

faster than exponentially.



Define

Mh := sup
0≤t≤h

Vt.

Theorem a) If L1 ∈ S ∩MDA(Φα), then

P (Mh > x) ∼ (λh + α−1)P (L1 > x), x →∞.

b) If L1 ∈ S ∩MDA(Λ), then

P (Mh > x) ∼ λhP (L1 > x), x →∞.

Running Maxima Theorem

a) If L1 ∈ S ∩MDA(Φα), then

P (a−1
λT MT ≤ x) = e−x−α

, x > 0

where aT is such that

lim
T→∞

TP (L1 > aTx) = x−α, x > 0.

b) If L1 ∈ S ∩MDA(Λ), then

P (a−1
λT (MT − bλT) ≤ x) = e−e−x

, x ∈ R.



Example: Positive Shot Noise Process

Let L be a positive compound Poisson process

Lt =
Nt∑

j=1

ξj

where (Nt)t≥0 is a Poisson process on R+ with inten-

sity µ > 0 and jump times (Γk)k∈N. The process N

is independent of the i.i.d. sequence of positive r.v.s

(ξk)k∈N with d.f. F. The resulting volatility process

is then the positive shot noise process

Vt = e−λtV0 +

∫ t

0
e−λ(t−s)dLλs

= e−λtV0 +
Nλt∑

i=1

e−λt+Γjξj.

Running Maxima Theorem

a) Let V be a stationary version of the OU process

where L is a positive, compound Poisson process.

Assume L1 ∈ S(γ), γ > 0. Then

lim
T→∞

P (a−1
λT (MT − bλT) ≤ x) = e−e−x

, x ∈ R.

b) Assume that V is a Γ(µ, γ)-OU process. Then

lim
T→∞

P (a−1
λT (MT − bλT) ≤ x) = e−e−x

, x ∈ R.



Long Memory Extremes

A stationary process with correlation function ρ ex-

hibits long range dependence , if there exists a H ∈
(0,1/2) and l is a slowly varying function such that

ρ(h) ∼ l(h)h−2H, h →∞.

Long range dependence implies that∫ ∞

0
ρ(h)dh = ∞.

Superposition of Ornstein-Uhlenbeck Processes

Barndorff-Neilsen and Shephard proposed supOU pro-

cesses as volatility models. Emprirical volatility has

long memory in the sense that the empirical auto cor-

relation function decreases slower than exponential.

The class of supOU processes can capture extremal

clusters and long range dependence.

supOU Processes

Vt =

∫

R+×R
e−r(t−s)I[0,∞)(t− s)dΛ(r, λs), t ≥ 0

where λ > 0 and Λ is an infinitely divisible indepen-

dently scattered random measure (i.d.i.s.r.m.) which

are extensions of OU type processes of the form

Vt =

∫ t

−∞
e−λ(t−s)dLλs



where λ > 0 and L is a Levy process. The time

change by λ yields marginal distributions indepen-

dent of λ. To guarantee that the volatility process

V is positive, the Levy process L is chosen as a sub-

ordinator. The resulting price process has martingale

term dSt =
√

VtdBt, where B is a Brownian motion

independent of L.

The generating quadruple (m, σ2, ν, π) determines

completely the distribution of Λ. The underlying

driving Levy process

Lt = Λ(R+ × [0, t])

has generating triplet (m, σ2, ν). The underlying

driving Levy process

Lt = Λ(R+ × [0, t]), t ≥ 0

Define the probability measure π(dr) := λ/rπ(dr)

and the idisrm Λ with generating quadruple

(m/λ, σ2/λ, νλ, π).

Thus π is a probability measure on R+ with λ :=∫
R+ rπ(dr). The distribution π governs the long range

dependence of the model. Essentially the measure



π needs sufficient mass near 0. We write π(r) :=

π((0, r]).

Then

Xt =

∫ ∞

−∞
e−rt

∫ rt

−∞
esdΛ(r, s).

Then X = V a.s.

dXt =

∫

R+

{−rX(t, dr)dt + dΛ(t, r)}

where

X(t, B) =

∫

B

e−rt

∫ rt

−∞
esdΛ(r, λs).

Example: Let π be gamma distribution with density

π(dr) = Γ(2H + 1)−1r2He−rdr

for r > 0 and H > 0. Then λ = 2H and

ρ(h) = Γ(2H)−1

∫ ∞

0
r2H−1e−r(h+1)dr = (h+1)−2H, h ≥ 0.

The following theorem shows how long range depen-

dence can be introduced in the supOU models.

Theorem

π(r) ∼ (2H)−1l(r−1)r2H, r → 0

if and only if

ρ(h) ∼ Γ(2H)l(h)h−2H, h →∞



Theorem

Define MT := sup0≤t≤T Vt

a) Let L1 ∈ R−α with norming constants aT > 0 such

that

lim
T→∞

TP (L1 > aTx) = x−α, x > 0.

Then

lim
T→∞

P (a−1
λT MT ≤ x) = e−x−α

, x > 0.

b) Let L1 ∈ S(γ) ∩MDA(Λ) with norming constants

aT > 0 and bT ∈ R such that

lim
T→∞

TP (L1 > aTx + bT) = e−x, x ∈ R.

Then

lim
T→∞

P (a−1
λT (MT − bλT) ≤ x) = eEeγL1

−1
EeγV0e−x

, x ∈ R.

Typical examples of d.f.s in S ∩ MDA(Λ) are GIG,

NIG, GH, CGMY. All these distributions are self-

decomposable, which means that they are possible

stationary distributions of OU-type processes and

hence also supOU processes.
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