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1. Introduction

Let X = {X(t), t ∈ T} be a real valued stochastic process
defined on an index set T , say T ⊆ RN . When N > 1, X is
called a random field.

We are interested in studying the excursion (or tail) proba-
bility

P
(
sup
t∈T

X(t) ≥ u

)
(1)

and the geometry of the excursion set

Au := Au(X,T ) = {t ∈ T : X(t) ≥ u} . (2)

They are connected by

P
(
sup
t∈T

X(t) ≥ u

)
= P (Au 6= ∅) .
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When N = 1 and X(t) is smooth, the number of connected
components of Au is related to the number of upcrossings,
Nu(T ), by X(t) of level u.

# of connected components of Au = Nu(T ) + 1{X(0)≥u}.

Moreover,

P

 sup
t∈[0,T ]

X(t) ≥ u

 ≤ P (Nu(T ) ≥ 1 or X(0) ≥ u)

≤ E (Nu(T )) + P (X(0) ≥ u) .
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2. Motivating examples

2.1 Overflow probability in queueing systems

2.2 Ruin probability

2.3 Brain imaging

2.4 Other applications
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2.1 Overflow probability in queueing
systems

Consider a single server queueing system with the netput
process Y = {Y (t), t ≥ 0} and Y (0) = 0.

Let Z(t) be the queue length at time t.

It can be shown [see, e.g., Harrison (1985)] that, if Y has
stationary increments, then

Z(t)
d
= sup

0≤s≤t
Y ∗(s),

where Y ∗(s) = −Y (−s).

The steady-state probability (or overflow probability) is de-
fined as

lim
t→∞

P{Z(t) ≥ u} = P
{

sup
0≤s<∞

Y ∗(s) ≥ u

}
.
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If the netput process Y is Brownian motion with a drift,

Y (t) = σB(t)− ct (c > 0, σ > 0),

then it is well known [cf. Harrison (1985)] that

P
{

sup
0≤s<∞

Y (s) ≥ u

}
= exp

(
−

2cu

σ2

)
.

Examples of netput processes Y :

• a fractional Brownian motion WH with drift; Dȩbeki, Michna
and Rolski (1998), Hüsler and Piterbarg (1999), · · ·.

• an integrated Gaussian process

Y (t) =
∫ t
0
ξ(s)ds− ct,

where {ξ(s), s ≥ 0} is a stationary Gaussian process; cf.
Dȩbeki and Rolski (1995, 2002), Dȩbeki (2002), Dieker (2005),
· · ·.
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2.2 Ruin probability

Consider the risk process

U(t) = u+ ct− S(t), t ≥ 0,

where u ≥ 0 is the initial capital and c > 0 is a constant. In
many cases, S(t) can be assumed to be (or approximated by)
a mean 0 Gaussian process.

The ruin probability with finite horizon is

P
(

sup
0≤t≤T

(S(t)− ct) > u

)
.

When T = ∞, this is called the ruin probability with infinite
horizon.

Examples of S(t) include Lévy processes, fractional Brownian
motion and so on.
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2.3 Brain imaging

Many studies of brain function with positron emission tomog-
raphy (PET) involve the interpretation of subtracted PET
images. The purpose of these studies is to see which areas
of the brain show an increase in blood flow, or “activation,”
due to the stimulation condition.

Worsley, Evans, Marrett and Neelin (1992, 1993) showed that
the averaged image can be modeled by a Gaussian random
field X(t) with a covariance function depending on the known
resolution of PET camera.

The maximum of the random field X(t) was used to test for
activation at an unknown point in PET images.

The geometric characteristic of the excursion sets Au was
used to estimate the number of regions of activation. See
Worsley (1995, 1996) for more information.
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2.4 Other applications

Astrophysics:

� Gott, Mellot and Dickinson (1986), Rhoads, Gott and Post-
man (1994) studied the density of matter in the universe;

� Torres (1994) used the similar tools to study the fluctu-
ations in the cosmic microwave which were discovered by
Smoot, et al. (1994).

Microstructure modeling:

� Roberts and Garboczi (2001), Kozintsev and Kedem (2000)
used excursion sets to generate realistic microstructure mod-
els.

10



3. General techniques

There are three main techniques for estimating the excursion
probability (1):

• Metric entropy method: Dudley (1967), Borell (1975), Ta-
lagrand (1994), . . ..

• Double-sum method: Pickands (1969), Piterbarg (1996),
. . ..

• Excursion set method: Adler (1976, 1981, 2000), Worsley
(1995), Taylor (2001), Adler and Taylor (2007), . . ..
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3.1 Large deviation results

As a first order approximation to (1), one studies the follow-
ing

Problem: Find a positive function ϕ(u) such that

lim
u→∞

1

ϕ(u)
logP

(
sup
t∈T

X(t) ≥ u

)
= −K,

where K is a positive constant.

• Advantages: It gives the correct logarithmic rate and, for
Gaussian random fields, it can be done.

• Drawback: for some applications, the result is not precise
enough.
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The following theorem is originally due to Landau and Shepp
(1970). See also Marcus and Sheep (1972).

Theorem 1 Let X = {X(t), t ∈ T} be a centered Gaussian
process with bounded sample paths a.s. Then

lim
u→∞

1

u2
logP

(
sup
t∈T

X(t) ≥ u

)
= −

1

2σ2
T

, (3)

where σ2
T = supt∈T E(X(t)2).

Proof Half of the proof is easy: note that

P
(
sup
t∈T

X(t) ≥ u

)
≥ sup

t∈T
P (X(t) ≥ u) ,

which implies

lim inf
u→∞

1

u2
logP

(
sup
t∈T

X(t) ≥ u

)
≥ −

1

2σ2
T

.
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To prove the other half of Theorem 1, one can make use of
the following important result in modern theory of Gaussian
processes, which is due independently to Borell (1975) and
Cirelson, Ibragimov and Sudakov (1976).

Theorem 2 [Borell’s Inequality] Let X = {X(t), t ∈ T} be a
centered Gaussian process with bounded sample paths a.s.
Then m := E(supt∈T X(t)) <∞ and for all u > m,

P
{
sup
t∈T

X(t) > u

}
≤ 2exp

(
−

(u−m)2

2σ2
T

)
.
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The boundedness condition m := E(supt∈T X(t)) <∞ can be
verified by the metric entropy theorem due to Dudley (1967).

Theorem 3 [Dudley’s Metric Entropy Condition] Let X =
{X(t), t ∈ T} be a centered Gaussian process with pseudo-
metric

d(s, t) :=
√

E(X(t)−X(s))2.

Then there exists a constant K > 0 such that

E
(
sup
t∈T

X(t)

)
≤ K

∫ ∞
0

√
logNd(T, ε) dε,

where Nd(T, ε) is the ε-covering number of T under the metric
d.

A necessary and sufficient condition for E(supt∈T X(t)) < ∞
was established in Fernique (1974) and Talagrand (1987).
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Example 1: Fractional Brownian motion

An N-parameter fractional Brownian motion (FBM) with in-
dex α ∈ (0,1) is a centered Gaussian random field Xα =
{Xα(t), t ∈ RN} in R with covariance function

E [Xα(s)Xα(t)] =
1

2

(
|s|2α + |t|2α − |s− t|2α

)
.

Xα has the following properties:

∗ Self-similarity: ∀c > 0,{
Xα(ct), t ∈ RN

} d
=
{
cαXα(t), t ∈ RN

}
.

∗ Isotropy & stationarity of increments:

E
[
(Xα(t)−Xα(s))2

]
= |t− s|2α.
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The pseudo-metric d on RN is

d(s, t) = |t− s|α.
Note that for any ε > 0,

d(s, t) ≤ ε ⇐⇒ |s− t| ≤ ε1/α.

Hence, for every M > 0 and T = [0,M ]N , we have

Nd(T, ε) �
(
M

ε1/α

)N
.

The entropy integral∫ ∞
0

√
logNd(T, ε) dε ≤

∫ Mα

0

√
log

(
M

ε1/α

)
dε <∞.

Consequently, we obtain

lim
u→∞

1

u2
logP

 sup
t∈[0,M ]N

Xα(t) ≥ u

 = −
1

2(
√
N M)2α

.
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Example 2: Ruin probability with
fractional BM

Let N = 1 and consider the ruin probability:

P
(

sup
0≤t<∞

(Xα(t)− ct) > u

)
.

Using the same method as above, one can show (try it!)

lim
u→∞

1

u2−2α
logP

(
sup

0≤t<∞
(Xα(t)− ct) ≥ u

)

= −
c

2α2α(1− α)2−2α
.
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3.2 Asymptotic results with power
correction

By refining the entropy argument, one can improve the upper
bound for the excursion probability given by Theorem 1; see
Samorodnitsky (1987, 1988), Talagrand (1994).

Theorem 4 If for some constants A ≥ σT , ε0 ∈ [0, σT ] and
β > 0 we have

Nd(T, ε) ≤
(
A

ε

)β
∀ ε < ε0.

Then for all u ≥ σ2
T (1 +

√
β)/ε0 we have

P
(
sup
t∈T

X(t) ≥ u

)
≤ K

(
Au
√
βσ2

T

)β
Φ

(
u

σT

)
,

where Φ(u) = P (N(0,1) ≥ u) it the tail probability of a stan-
dard normal r.v.
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For some Gaussian random fields, the metric entropy method
is still useful for studying the following

Problem: Find a positive function ψ(u) such that

lim
u→∞

P (supt∈T X(t) ≥ u)

ψ(u)
= 1. (4)

For example, Berman (1985) and Talagrand (1988) applied
the metric entropy method to prove

Theorem 5 If the variance of X = {X(t), t ∈ [0,1]N} has a

unique maximum at a point τ ∈ [0,1]N [so σ2
T = Var

(
X(τ)2

)
]

and satisfies some technical conditions, then (4) holds with
ψ(u) = P{X(τ) ≥ u}.
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Double-sum method

This method was initiated by Pickands (1969a, b) for sta-
tionary Gaussian processes. It was extended by Bickel and
Rosenblatt (1973), Qualls and Watanabe (1973) and Piter-
barg (1996) to Gaussian random fields.

The basic idea is to write T =
⋃n
k=1 Tk, where Tk (1 ≤ k ≤ n)

generally depend on the exceedence level u.

Then
n∑

k=1

P
(
sup
t∈Tk

X(t) ≥ u

)
≥ P

(
sup
t∈T

X(t) ≥ u

)

≥
n∑

k=1

P
(
sup
t∈Tk

X(t) ≥ u

)

−
∑
j 6=k

P

sup
t∈Tj

X(t) ≥ u, sup
t∈Tk

X(t) ≥ u

 .
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Theorem 6 Let {X(t), t ∈ RN} be a stationary, isotropic
Gaussian random field with mean 0 and variance 1 such that

E(X(s)X(t)) = 1− |s− t|2αL(|s− t|) + o(|s− t|2αL(|s− t|))
as |s − t| → 0, where L(·) is a slowly varying function at 0.
Then for any bounded open set T ⊂ RN with λN(T ) = λN(T ),

lim
u→∞

P (supt∈T X(t) ≥ u)

Ψ(u)
= Kα,

where Kα is the generalized Pickands’ constant and Ψ(u) is
defined by

Ψ(u) = λN(T )(2π)−1u−1e−u
2/2

(
σ−1(u−1)

)−N
.

In the above, σ2(r) = 2r2αL(r).

The conditions of Theorem 6 are quite restrictive. Some ex-
tensions have been established by Berman (1991), Piterbarg
(1996), Dieker (2005).
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3.3 Asymptotic expansion

For smooth Gaussian random fields, it is possible to establish
an expansion of the form

P
(
sup
t∈T

X(t) ≥ u

)
= uαe−u

2/(2σ2
T )

 n∑
j=0

Cju
−j + error

 (5)

for large u > 0 and constant parameters α, σT , n and Cj
depending on the distribution of X and the geometry of T .

This is the main theme of the recent book “Random Fields
and Geometry” by R. Adler and J. Taylor (2007).

The key step is the following connection

P
(
sup
t∈T

X(t) ≥ u

)
= E (ϕ(Au)) + o (E(ϕ(Au))) , (6)

where ϕ(Au) denotes the Euler characteristic of Au.
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Euler characteristic

Let A ⊂ RN be a nice set. For N = 1,2, roughly,

ϕ(A) =


#of disjoint closed intervals in A, if N = 1,

#of con. components−#of holes, if N = 2.

For N ≥ 2, ϕ(A) can be defined by an iterative procedure.

If X = {X(t), t ∈ RN} is a smooth, stationary and isotropic
Gaussian random field, the expected Euler characteristic of
the excursion set Au, E (ϕ(Au)), can be computed exactly.

Combining this with (6) yields expansion of the form (5).
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