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Introduction: Maximum Likelihood Estimator (1)

The extreme value condition:
Define the exceed distribution function as

Ft(x) := P (X ≤ t + x|X > t) =
F (t + x)− F (t)

1− F (t)
.

Then F ∈ D(Gγ) is equivalent to

lim
t→x∗

Ft(xσ(t)) = Hγ(x) := 1− (1 + γx)−1/γ,

for all 1 + γx > 0, where x∗ is the right endpoint of F ,
σ is a positive function and Hγ is the Generalized Pareto
Distribution)

Peak over threshold method:
Smith (1987) proposed to find a maximum likelihood es-
timator for γ and σ by fitting the GPD to the tail of F.
The consistency and asymptotic normality is proved for
γ > −1/2 under some extra conditions.



Introduction: Maximum Likelihood Estimator (2)

Taking high order statistic as the threshold:

Denote Xn,1 ≤ Xn,2 ≤ · · · ≤ Xn,n as the order statistics of
an i.i.d. sample X1, · · · , Xn. Drees, Ferreira and de Haan
(2004) proposed to use the order statistic Xn,n−k (k →∞
and k/n → 0 as n →∞) as the threshold in the maximum
likelihood procedure.

Likelihood equations

The maximum likelihood estimators satisfy (when γ '= 0):

1

k

k∑

i=1
log

(
1 +

γ

σ
(Xn,n−i+1 −Xn,n−k)

)
= γ

1

k

k∑

i=1

1

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
=

1

γ + 1



Introduction: First order and second order conditions

First order condition:
An alternative way to present the extreme value condition
is via U(t) =

(
1

1−F

)←
. F ∈ D(Gγ) is equivalent to

lim
t→∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
,

for all x > 0, where a is a positive function. Note that
σ(t) = a(U←(t)).

Second order condition:
The second order condition characterizes the speed of con-
vergence in the first order condition as follows.

lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
= Ψ(x).



Introduction: Asymptotic behavior of estimators

Estimation of the extreme value index γ

Estimators: Hill, Pickands, Moment, etc.

Properties: Consistency and Asymptotic Normality
First order condition ⇒ consistency

Second order condition ⇒ asymptotic normality



Introduction: Maximum Likelihood Estimator (3)

Asymptotic normality (Drees, Ferreira and de Haan
(2004)):
Suppose the sequence k satisfies the condition that as n →
∞, k → ∞, k/n → 0 and k1/2A(n/k) → λ for some real
constant λ. With the second order condition, for γ > −1/2,
for any solution of the likelihood equations satisfying

∣∣∣∣∣
γ̂n

σ̂n/a(n/k)
− γ

∣∣∣∣∣ = Op(k−1/2) and log
σ̂n

a(n/k)
= Op(1),

the asymptotic normality holds as follows:
√

k(γ̂n − γ) d→ W1,

√
k

(
σ̂n

a(n/k)
− 1

)
d→ W2,

where (W1, W2) follows a 2-dimensional normal distribu-
tion.



Research Question (1)

Under only the first order condition, without the second
order condition

1) Are the likelihood equations always solvable? (exis-
tence)

2) Is the maximum likelihood estimator consistent?

With the second order condition

3) Does a solution satisfying the requirements in Drees,
Ferreira and de Haan (2004) exist?



Answers of question 1) and 2)

Theorem. Suppose the first order condition holds for the
extreme value index γ > −1. If the sequence k = k(n)
satisfies k(n)→∞, k(n)/n → 0, and k(n)/(log logn)5 →∞,
then

P ({The MLE does not exist for infinitely many n}) = 0.

Or, equivalently,

P (
∞⋃

N=1

∞⋂

n=N

{The MLE exists for sample size n}) = 1.

On this probability 1 set, there exists an random integer
N , such that for any sample size n > N , there is a suitable
solution of the likelihood equations, (γ̂n, σ̂n), satisfying

γ̂n
a.s.−→ γ and

σ̂n

a(n/k)
a.s.−→ 1

as n →∞.



Idea of Grimshaw’s numerical solution (1)

Grimshaw’s numerical method on solving the likeli-

hood equations:

Recall the likelihood equations

1

k

k∑

i=1
log

(
1 +

γ

σ
(Xn,n−i+1 −Xn,n−k)

)
= γ

1

k

k∑

i=1

1

1 + (γ/σ)(Xn,n−i+1 −Xn,n−k)
=

1

γ + 1
.

With the notation Yi := Xn,n−i+1 −Xn,n−k, we can derive
that,



1

k

k∑

i=1
log

(
1 +

γ

σ
Yi

)
+ 1



 ·
1

k

k∑

i=1

1

1 + (γ/σ)Yi
= 1.



Idea of Grimshaw’s numerical solution (2)

Denote

fn(t) =
1

k

k∑

i=1
log(1 + tYi) + 1,

gn(t) =
1

k

k∑

i=1

1

1 + tYi
,

hn(t) = fn(t)gn(t)− 1.

Then, it is clear that any root (γ̂n, σ̂n) of the likelihood
equations satisfies hn(γ̂n/σ̂n) = 0.

The maximum likelihood estimator can be calculated in
the following procedure:
(1) find the root t∗n of hn(t) = 0;
(2) γ̂n = fn(t∗n)− 1;
(3) σ̂n = γ̂n/t∗n.



Idea of proof (1) (γ > 0)

We try to approximate the root t∗n = γ̂n/σ̂n. We use an
approximate solution γ

σ(Xn,n−k)
= 1

Xn,n−k
, but disturb it as

t(δ)n = 1+δ
Xn,n−k

for δ ∈ (−1/2,1/2). It can be proved that

fn(t
(δ)
n ) a.s.−→ f(δ) := 1 +

∫ 1

0
log((1 + δ)t−γ − δ)dt,

gn(t
(δ)
n ) a.s.−→ g(δ) :=

∫ 1

0

dt

(1 + δ)t−γ − δ
,

hn(t
(δ)
n ) a.s.−→ h(δ) := f(δ)g(δ)− 1.

We can calculate that

f(0) = γ + 1, g(0) =
1

γ + 1
, h(0) = 0

and

h′(0) = f(0)g′(0) + g(0)f ′(0) = −
γ3

(γ + 1)2(2γ + 1)
< 0.



Idea of proof (2) (γ > 0)

Now we can choose a suitable δ > 0 such that h(δ) <

0 < h(−δ). Then, hn(t
(δ)
n ) < 0 < hn(t

(−δ)
n ) for sufficient

large n. Considering the continuity of the function hn, the
existence of the root is proved. Furthermore, the root t∗n
is in between t(−δ)

n and t(δ)n .

Since fn is an increasing function and f(δ) is continuous
at 0. we have

fn(t∗n)
a.s.−→ f(0) = γ + 1,

i.e.

γ̂n = fn(t∗n)− 1 a.s.−→ γ.

The consistency of σ̂n can be similarly proved.



Answer of question 3) (γ > 0)

With second order condition and γ > −1/2, we can choose
a sequence δn shrinking to 0 satisfying k1/2δn = Op(1)
without destroying the inequality

hn(t
(δn)
n ) < 0 < hn(t

(−δn)
n ).

Since t(0)n
γ/a(n/k) = 1 + Op(k−1/2) and δn = Op(k−1/2), there

exits a root t∗n of hn(t) = 0 such that

t∗n
γ/a(n/k)

− 1 = Op(k−1/2).

It implies that
∣∣∣∣∣

γ̂n

σ̂n/a(n/k)
− γ

∣∣∣∣∣ = Op(k−1/2) and log
σ̂n

a(n/k)
= Op(1),

i.e. there exists a solution of the likelihood equations sat-
isfying the requirements in Drees, Ferreira and de Haan
(2004).



Research Question (2)

Results up to now:

For γ > −1,
First order condition ⇒ existence and consistency
For γ > −1/2,
Second order condition ⇒ asymptotic normality.

New question:

How about −1 < γ ≤ −1/2? Under the second order con-
dition do we still have asymptotic normality?



Answer of new question

Yes, but extra condition on k sequence

Theorem. Suppose the second order condition holds for
the extreme value index −1 < γ ≤ −1/2. If the sequence
k = k(n) satisfies k → ∞, k/n → 0 and k−γA(n/k) →
0, then for sufficiently large n, there exist a sequence of
solution (γ̂n, σ̂n) of the likelihood equations satisfying

√
k

(

γ̂n − γ,
σ̂n

a(n/k)
− 1

)
d→, (W1, W2)

as n →∞, where (W1, W2)T follows a 2-dimensional normal
distribution



Idea of proof (−1 < γ < −1/2)
We first prove that there exists a root t∗n of hn(t) = 0 lying
in between p(1)

n and p(2)
n such that for any ε > 0,

k−γ−ε



 p(j)
n

γ/σ(Xn,n−k)
− 1



 = Op(1) for j = 1,2.

By studying fn(p
(1)
n )− 1 and fn(p

(2)
n )− 1, we prove that

√
k(γ̂n − γ) d→ W1.

The proof for the scale part is different from the case
γ > −1/2. We start from

σ̂n

a(n/k)
=

γ̂n/t∗n
a(n/k)

=
γ̂n

γ
·
γ/σ(Xn,n−k)

t∗n
·

σ(Xn,n−k)

σ(U(n/k))
.

Therefore, σ̂n/a(n/k) goes to 1 at speed k1/2 with a limit
distribution dominated by limit distributions of the first and
third items.



Remark on asymptotic variance

When γ > −1/2, Drees, Ferreira and de Haan (2004) pro-
vided the asymptotic covariance matrix for (W1, W2) as

(
(1 + γ)2 −(1 + γ)
−(1 + γ) 1 + (1 + γ)2

)

.

When −1 < γ ≤ −1/2, we calculate the asymptotic covari-
ance matrix for (W1, W2) as

(
γ2 γ
γ 1 + γ2

)

.

They are connected at γ = −1/2, but not smoothly!



Conclusion

Conclusion

The maximum likelihood estimator can be used for all γ >

−1 by choosing suitable high threshold.

Further question

How about γ ≤ −1?

Questions and Remarks


