Identi cation of Green's functions
by cross-correlation of noisy signals

J. Garnier (Universite Paris VII)
Collaboration with G. Papanicolaou (Stanford).

In @ medium in which unknown sources emit noisy signals:
record (in time) the waves u(t;x) and u(t;|¥) at two points x andy
cross-correlate the signals: C( ;x;y ) = Tl OT u(t; x)u(t + ;y)dt
C(;x;y) is related to the Green's function from x to y !
the (singular part of the) Green's function from x to y gives the travel time from

X to y.



Travel time estimations between pairs of observation points
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Surface waves ¢ = 2) [from Larose et al, Geophysics 71, 2006, SI11-SI21]



Background velocity estimation from travel time estimations

[from Larose et al, Geophysics 71, 2006, SI111-SI21]



Wave equation with sources

We consider the solution u of the wave equation with attenuation:

2
i+@ u u=n(x)in ; uje =0
Ta
is a bounded open set RY.

the operator is de ned by

r(2(X)r);

where ¢ is smooth.
T, is the attenuation time.

n(t;X): noisy sources.
It is a zero-mean stationary (in time) Gaussian process with autocorrelation
function !

. X +
m(s;xs)n(tys)i = (t S) S’Zys’;xS Vs

hi is the statistical average over the distributions of the sou rces.
The function xs 7! (Xs;0) models the spatial distribution of the sources.
The function zs 7! (Xs; zs) is the local spatial autocorrelation function.

Example: (x;y)= (y) means "sources everywhere, delta-correlated in space".



The Green's function

The Green's function is the fundamental solution of

@G G= (1) (x )
starting from G(0;x;y) = @G(0;x;y) =0.

It can be written in terms of the eigenvalues ! 3 and orthonormal eigenfunctions
n of |, namely,

n=12 .in ; ,=00n @:
It is the distribution
> % sin(l)
sin(! .
I a0 ) ift> 0
Gtxy)=_ nax "
0 ift O

which, for t> 0O, is the kernel of the operator
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If c(x) ¢ and = RY, then

1 JX )
4c3ix Yj Co

G(t;x;y) = t

Note that xy = XY s the travel time from x to y.

Co
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Xy

S(lixy )=

If c(x) is smooth, then (the support of) the singular part of G(t;x;y) contains
information on the travel time from x to .
At high frequency ! , WKB expansion:
X . G 34)
Glixy)  alpgy)e
i O
where the sum is over rays ( (t))t2[0:1 connecting x and y that make the action

_ ™ O)jat -
()= o (" stationary.

In particular, the travel time is
Z . :
i Avjdt
o o (1)

We are interested in travel time estimation, therefore we ar e interested in the
high-frequency part of the Green's function.

o =inf 2C%([0;1]) 5 (O)=x; W=y ;




The (rst) key result

The observed signal is
z 7, 1
u(t;x) = n(s:xs)G(t s;x:xs)e Ta'' ¥ dsdxs:
1

Consider the autocorrelation function
VA T
1
Cr(ixy)= & u(txju(t+ jy)dt
0

Proposition: If (x;y)= (y) (i.e. sources everywhere, delta-correlated in space),
then the average of Ct is an even function in  that does not depend on T. Its

-derivative is given by

. Ta . i
@MCr(;xy)i= ngn( )G(j ;X y)e Ta:



An elementary proof of the key result

Z 1
Cr(;xy)i = hu(t; x)u(t + ;y)idt

2.72,2, Z

=~ |

n(s; xs)n(s"xg)
0 1 1 2

t+

S SO
G(t s;x;Xs)G(t+ Ly:x%e T2 T dxsdx’dsldsdt:

The processn is delta-correlated in time and space, so that

.72, Z t
Cr(;x;y)i = T G(t s;X;xs)G(t+ S;¥; Xs)e °Ta dxsdsdte Ta:
0 1
We make the change of variables 7! u=t s:
Z 2,7
hCr(;x;y)i = T G(u;x;xs)G(u+ ;y;xs)e °Ta dxsdudte Ta:
0 0

This shows that hCti does not depend onT:
zZ,Z

Cr(;x;y)i = G(u;x;xs)G(u+ ;y;xs)e
0

2 U —
Ta dxsdue Ta;



We next substitute the expansion of the Green's function in t erms of the
eigenvalues and eigenfunctions of

zZ. . |
X 1sm?nMSmU%%+ D g 24 g,
' n n

Cr(;xy)i =

n;nzozl 0
n(X) n(Xs) no(Xs) no(y)dxse Ta:
From the orthonormality progerty of the eigenfunctions

n(XS) nO(Xs)dXs - nn 0

and a direct computation

b sin(! hu) sin(!  (u + ) o 24 gy = TZ2 1 nTacos( n )+ Tasin(ln )
. !n L a4, 1+ 1372 |
we obtain
X T2 T, cos( +sin( ! _
ey )is 1 4!an — 1(+n!)%'|'a2 L) n(X) n(y)e Ta
n=

Taking the derivative with respect to gives

Ta X sin(ln )

@MCr(;x;y) = 7 . n(X) n(y)e Ta:

n=1



hC+r (;X;y )i is the kernel of the operator

21 1 sin” " usin’ (u+ )
Cr( )i = e Tal MW Tp p—
0
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@ hC+t (;x;y )i Is the kernel of the operator
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The (second) key result
If (x;y)= (y), then, forany T
h@Cr (xy)i= ~Esgn()G( jixy)e -
Statistical stability
@Cr(ixy)* h@Cr(ixy)i’= O(1)

Proof: @Ct(;x;y)? can be written as a multiple integral involving forth-order
moments of n(t; x). Use the Gaussian property to write the forth-order moment as
products of second-order moments:

ninonansi = insihnanal + Ninsihnaongi + Ninsihnonsi

Consequence:

P @Cr(;xy) h@Cr(:xy)i 1a

If
T Ta

then one realization of @C+ ( ;X;y ) is close to the statistical average

h@Cr ( ;XY )i.



What if sources are not everywhere ?

Assume: the sources are neither stationary in space, nor defa-correlated

( (xy)6 (y).

The previous result is still true if the cavity is classical |y ergodic, up to a
smoothing operator K and up to a remainder R that is small for high frequencies.

Proposition If

-c2 W4 (),
R _
- )= (x;y)e ' Ydy is smooth, bounded, and integrable,
- Ta < 2Tego,
then h@C+ ( ;X;y )i is the kernel of the operator
Y p—
e K Tp——+R ()
Z R 0 0
1 z (2% c(z%y)dz
K = k ——~ dz; Kk = —R
() O TR - o W ) o(z% 9dz0
The remainder R ( ) is small: there exists a constant Cr(c; ) such that
" #
- 1 k kH 1()
kR ( ) kH 1() CRe Ta rerg(Ta)+ T k k|_2()
1 2Teago k k|_2()

where rerg (t) goesto O ast ' 1



Three ingredients:
approximate the wave dynamics by classical dynamics (Egorov's theorem): the
high-frequency components propagate along the classical ays.
IS an ergodic cavity: the classical dynamics along the rays is ergodic (starting
from any point, any direction, the ray visits all of the phase space).
the noisy sourcesn(t; x) is a Gaussian process: the forth-order moments are

products of second order moments.

Problem of time scales:

Egorov's theorem breaks down after time Tego,

ergodicity needs some timeTeg (and no uniform estimate !),
self-averaging property needs an integration time long enough (T  Ty).



First ingredient: ergodicity of the classical ow

Classical Hamiltonian ow gives the propagation of rays

% )7 e (X )= (xe(x ) (% ));

with the Hamiltonian h(x; ) = P (c2(x); )= c(X)j j:

dXt t

— = o(Xt)—; Xo(X; )= X;
R TR

dt - t J tJa 0 ’ -

+ rays are re ected on the boundary @ according the Snell's law.

The Hamiltonian ow €™ is said to be (classically) ergodic if for any
f2LY (S () andfor m=(x; )in a subset of full measure of S (),
1 Z 1 Z

im = f("m)ds=f :=
A, e 0 s

where S () is the cotangent spherical bundle (energy surface)

f(m)d (m):

SO= f(x)2T ;cx)j=1g



Second ingredient: Egorov's theorem

The function (x;y) de nes the covariance operator : L?%() ! L?%()
Z ey |
(x) = > Xy (y)dy;

which is a zero-order pseudodi erential operator with symb ol “(x; )

=0p( "(x )):
Here we have used the Weyl quantization Op de ned by
7 !
Ne,. — 1 N XTY, i (X y) .
Op("(6 ) ()= 5 ST e (y)dyd :

The semiclassical Egorov theorem states that the operator

p_ p h i
elt e It Op /\(eth (X, ))

is continuous from H *()to L?() with a norm which grows in t with an
exponential rate 1=Teyo.
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We write K1 in the form

h@G( )i = K +ZK2; )
471 1 ,gsin( —
Ki = — e Tal ZS)SI%_S) cos( P ( s+ ))ds;
"7
. Pp— P —
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a o0
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Summary

If

where
- Terg IS the convergence time for the ergodic theorem applied to e (x; )):
VA t

o /\(esh (X; )) ds r ( Tetrg

1
T )
- T4 Is the attenuation time of the medium,

- Tego is the Egorov time for "
it P it P h/\ th | t=T
e e Op (e (x; ) Cego€ ™ *9°;
H 11 L2
- T is the integration time,
then everything works !

If we restrict the set of test functions to the high-frequenc y set
B = 2L%) ;k kizy =1:k ky 1 . where 1

then D

_ SN
@Cr() e TaK Zp_




Surface waves

The full theory for surface waves has not been written, not th e case of sources
located at the boundary.

In fact, it is possible to reconstruct 3D maps of background v elocity with surface
waves |

Fact: low-frequency surface waves penetrate deeper in the arth crust than
high-frequency surface waves.

Method:

- Iter the Green's function in frequency bands

- for each frequency band, compute the travel times

- each frequency band corresponds to a particular penetration depth of the surface
waves.

Segmentation problem: assume that we have one-year signals
- solution 1: cross-correlate one-year signals,
- solution 2: cross-correlate one-month signals and averag over 12 months.
Solution 2 de nitely better in case of seasonal sources, and better in general.
What is the optimum ?



