Super fast tour on basics of compressed sensing

Mauro Maggioni

Mathematics and Computer Science Duke University

SAMSI, 11/27/07

Mauro Maggioni Super fast tour on basics of compressed sensing

What is compressed sensing about?

- (i) Many signals of interest (sounds, images, etc...) are *compressible* in some well-chosen basis
- (ii) Currently: make lots of measurements (e.g. 8Mpixels in a digital camera), expand on a well-chosen basis, retain and save only large coefficients.
- (iii) Q: is it necessary to makes lot of measurements, if we already know they don't contain much information and we know how to efficiently compress them? CS: No!

Main players: E. Candes, D. Donoho, A. Gilbert, J. Romberg, M. Strauss, T. Tao, J. Tropp, many others, in the past and in the present...

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Fourier case

Theorem

For any M > 0, let

$$\#\{t: f(t) \neq 0\} \leq \frac{\alpha(M)}{\log N} \tau N$$

where Ω is a random set of frequencies (each frequency gets picked randomly with probability τ), with $\mathbb{E}[\#\Omega] = \tau N$. Then f can be reconstructed exactly with probability at least $1 - O(N^{-M})$. One can choose $\alpha(M) \sim \frac{1}{29.6(M+1)}$.

What is the reconstruction algorithm? Solve

$$\operatorname{argmin}_{g}||g||_{\ell^{1}} : \hat{g}(k) = \hat{f}(k) \ k \in \Omega.$$

< 回 > < 回 > < 回 > -

Theorem (C-T,D)

Suppose $f \in \mathbb{R}^N$, $|f|_{(n)}$, the n-th largest entry of the expansion of f on a basis, is smaller than $\mathbb{R}n^{-\frac{1}{p}}$, $p \in (0, 1)$. Given K measurements $\{\langle f, \chi_k \rangle\}_{k=1,...,K}$, where χ_k are i.i.d. Gaussian random variables in \mathbb{R}^N , the solution to

$$\operatorname{argmin}_{f^{\#}}||\langle f^{\#},\chi_{k}\rangle||_{1}:\langle f^{\#},\chi_{k}\rangle=\langle f,\chi_{k}\rangle,$$

satisfies, with probability at least $1 - O(N^{-\frac{\rho}{\alpha}})$, where α is smaller than universal constant,

$$||f - f^{\#}||_2 \leq C_{\rho,\alpha} R\left(\frac{K}{\log N}\right)^{\frac{1}{p} - \frac{1}{2}}$$

Ex.: special classes of images with *m* pixels need, on a curvelet basis, $\sim m^{\frac{1}{4}} \log^{\frac{5}{2}}(m)$ coeffs.

With matrices: assume the data is Ψx_0 , where each column of Ψ is a basis vector, $||x_0||_p \leq R$, for some p < 1. Pick CS matrix Φ , $n \times m$, n < m, and measure $y = \Phi(\Psi x_0)$. Solve $\hat{x} = \operatorname{argmin}_x ||x||_1$ subject to $y = \Phi(\Psi x)$. Can be made robust to noise, by solving the slightly relaxed problem $||\Phi(\Psi x_0) - \Phi(\Psi x)|| < \epsilon$, where ϵ is comparable to size (variance) of the noise.

▲御♪ ▲ヨ♪ ▲ヨ♪ 三日