
Boundary Integral Methods for Interfaces

These are some very informal notes corresponding to my talk on Wed. Oct. 1 in-
cluding some things I didn’t mention there. I don’t guarantee that all signs are correct
etc. You can ask me about more specific references if you want. Other people in the
group will know more about some things. My recent papers can be found at my web site,
www.math.duke.edu/faculty/beale.

What do integrals have to do with interfaces? Let’s start with harmonic functions since
they are familiar. For the Laplacian ∆ we have the fundamental solution G(x) so that
∆G = δ. In R2, G(x) = (1/2π) log r and in R3, G(x) = −1/(4πr), where r = |x|. If Γ is a
closed surface in 3D or a closed curve in 2D, we define a double layer potential as

u(x) =

∫

Γ

∂G(x− y)

∂n(y)
f(y) dS(y)

where f is some given function on Γ and we use the outward normal n. For x inside or
outside of Γ, ∆u = 0, but u has a jump at Γ:

u(x±) = ∓1
2
f(x) +

∫

Γ

∂G(x− y)

∂n(y)
f(y) dS(y)

Thus if we are given f on Γ and we want to find u with jump (u+) − (u−) = −f , we
could define u in this way. The single layer potential is continuous at Γ, but the normal
derivative has a jump. Thus if jumps are specified in u and its normal derivative, we can
find a harmonic function with the given jumps by adding two terms. This is all very classical
and in many pde books.

Boundary integrals have been used for a long time for computing fluid flow with moving
boundaries. To say how, let’s start with the Navier-Stokes equations

ρ(vt + v · ∇v) = −∇p + µ∆v + F

∇ · v = 0

Here v is velocity, p is pressure, ρ is density, µ is viscosity. I’ll assume ρ, µ constant here. (Of
course we are interested in more general problems.) If the equations are nondimensionalized
then µ is one over the Reynolds number Re. Boundary integrals are useful at the two
extremes, viscosity zero or viscosity dominant.

Stokes flow, or creeping flow, is the special case where we neglect the material derivative
above and have

−∇p + µ∆v + F = 0 , ∇ · v = 0

The interface still moves with the fluid velocity, even though the problem for velocity/pressure
has no time deriv. This model is appropriate at small scales, as in many biology problems;
Lisa Fauci talked about such things at the workshop. Charles Peskin’s immersed boundary
method (not an integral method) has been used for such problems. The interface may exert
a force on the fluid in which case F above could be F = fδΓ where here the δ restricts to
the interface. The resulting equation amounts to having F = 0 off the interface but jump



conditions. They are naturally expressed in terms of the stress σij = −δijp + µ(vi,j + vj,i).
Then the condition is that the normal stress jumps by f ,

∑
j

[σij]nj = −fj

where [·] means the jump.
The Stokes equations are an elliptic pde system. Let’s set µ = 1. The solution of

−∆v +∇p = F , ∇ · v = 0

in free space is

vi =
∑

j

Sij ? Fj

where Sij is the fundamental solution or Stokeslet, in 2D

4πSij = −δij log r + xixj/r
2

and in 3D
8πSij = δij/r + xixj/r

3

Think of this as like G for the Laplacian but more complicated. The sol’n of the Stokes
problem with F = fδΓ is a surface integral like the single layer potential for the Laplacian.

The simplest case of the force f is constant surface tension, f proportional to κn, where κ
is mean curvature. For this case boundary integral methods have long been used to compute
the motion of a drop of one fluid in another. These started with Acrivos. See especially
the books of Pozrikidis especially his ”Boundary Integrals and Singularity Methods” for the
theory, elsewhere for numerics. There was a nice review artice by Howard Stone in the
Ann. Rev. of Fluid Mech. 1994. Maybe there’s a more recent one. There is nice work by
Zinchenko probably in J. Comput. Phys. (JCP) with 3D drops which shows the ”state of the
art”. In all this work it is important that the velocity is computed only on the interface. For
Stokes flow, unlike NS, it is not necessary to find it off the interface to move the interface. To
find the velocity off the interface we encounter ”nearly singular” integrals, mentioned below.

Such methods are used much more generally. The interface may exert an elastic force,
as in biology problems. There is interesting work by Cortez and Fauci at Tulane and by M.
Shelley and A-K Tornberg (separately and together) at the Courant Inst, NYU. John Strain
and I have a recent paper about this, submitted to JCP.

At the other end, neglecting viscosity, boundary integrals are often used for potential
flow, i.e, vorticity zero or concentrated on interfaces. Applications include vortex sheets and
water waves. Methods for water waves are practical in 2D and have been developed in 3D.
There was a survey article by Tsai and Yue in Ann Rev Fl Mech a few years back. Also see
work of F. Dias among others. Some of my work has been about analysis of such methods
for water waves.

Boundary integral methods are often used for electromagnetic scattering. The important
equation is the Helmholtz equation

∆u + k2u = 0



For many realistic cases k is large, introducing difficulties we do not consider here. The work
of Oscar Bruno and his group at Caltech is notable.

We will comment on various issues of implementing the methods. Naturally 3D is harder
than 2D, and in several ways. In principle the way the interface is moved is independent
of the integral representation, but usually in integral methods markers are moved, i.e. the
interface is tracked. This is not hard to implement in 2D. If the markers are material, or
Lagrangian, moving with the fluid velocity, then they may not be well placed after a while.
Remeshing can be used; it might introduce significant errors, but not necessarily. The
placement of the markers can be improved by choosing a tangential velocity which doesn’t
affect the surface (or curve). This was done with success in the method of Hou, Lowengrub
and Shelley ”Removing the Stiffness...”

How to represent a surface in 3D is not simple. There is a well developed field of boundary
element methods in which the surface is triangulated and singular integrals are computed
in the elements. This has analogies with the finite element method but has extra problems.
It is practical in in steady problems, but probably for moving boundaries we don’t want to
make so much effort for one boundary. A thorough treatment of this method can be found in
the book of Hackbush. Also see work of Schwab, and probably many others. For other ways
of representing interfaces see work of Cristini especially. My preference is to use overlapping
coordinate charts and a partition of unity; see my paper ”A Grid-Based...” Of course this is
more work. That approach is also used in O. Bruno’s work and work of Biros, Lexing Ying,
and Zorin.

How to compute the singular integral? In 2D the exact singularity has limited form,
usually log or 1/x, and there are definitive rules for both. If we want the velocity at grid
points near the curve, but not on it, we have a nearly singular integral, which is generally
harder. I would regularize and then discretize; see my paper with M.C. Lai, ”A Method
for Computing Nearly Singular Integrals”. That approach extends to 3D, as in my other
paper already mentioned. The exact singularities in 3D generally have the form 1/r. That
is often removed by introducing polar coordinates; see work of Schwab as well as Bruno and
coworkers. The regularization I would use makes special coordinates unnecessary.

Regularization is related to Ewald summation, which splits the fundamental solution into
a local, singular part and a smooth part. It is especially useful for periodic problems. John
Strain has a good point of view on this. See his paper ”Fast Potential Theory II” or a recent
paper he and I wrote on Stokes flow with an elastic interface. In our paper we compute the
velocity at grid points as well as on the interface; our approach is meant to be ”upwardly
compatible” with Navier-Stokes.

Some disadvantages and what can be done about them: If the integral for the velocity
on a surface has N points there are in principle N2 operations and this could be prohibitive.
Practical methods will depend on fast summation methods. The best known is that of L.
Greengard and V. Rokhlin. There are interesting variants, e.g. the kernel-free method of
Biros, Ying and Zorin. They and Bruno replace sources with equivalent sources, but Bruno
uses FFT’s. For the boundary integral method, basically we need to know the fundamental
solution, but that is not strictly so. We mentioned periodic cases above. Strain (and maybe
others?) have tried preconditioning variable coeff’t problems with the constant coeff’t case.
Wenjun Ying in a recent paper treated general integral problems, with variable coeff’ts, to
an interface problem treated by the immersed interface method. Topological changes are not
natural with integral methods.


