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single or double layer potential on a curve in 2D or surface in 3D
the integral is nearly singular at points off the surface but nearby
use rectangular grids in coordinate systems
outline of the procedure:

(1) regularize, e.g., 1/r 7→ 1/δ for r → 0
(2) standard quadrature over grid points
(3) corrections for regularization and discretization

corrections are found by local analysis near singularity
for closed surface in 3D use overlapping grids

and partition of unity (cf. O. Bruno)
curve or surface must be smooth
discrete integral equation for boundary value problem converges



Why Singular Integrals?

Solutions of ∆u = 0 or ∆u = f in Rd

can be written as integrals with
G (x), the fundamental solution,

∆G (x) = δ(x)

G (x) = − 1

4π|x | in R3

G (x) =
1

2π
log |x | in R2

For ∆u = f in Rd , with decay at ∞,

u(x) =

∫

Rd

G (x − y)f (y) dy

Boundary value problems can be solved with
layer potentials on the boundary



Layer Potentials

Ω ⊆ Rd a bounded domain
For σ on ∂Ω, the single layer potential is

u(x) =

∫

∂Ω
G (x − y)σ(y) dS(y)

∆u = 0 on Rd − ∂Ω, u continuous across ∂Ω
∂u/∂n has a jump at ∂Ω
For µ on ∂Ω, the double layer potential is

v(x) =

∫

∂Ω

∂G (x − y)

∂n(y)
µ(y) dS(y)

∆v = 0 on Rd − ∂Ω, jumps at ∂Ω

v(x±) = ∓1
2µ(x) +

∫

∂Ω

∂G

∂n(y)
µ(y) dS(y)



Boundary Value Problems via Integral Equations

For µ on ∂Ω, the double layer potential is

v(x) =

∫

∂Ω

∂G (x − y)

∂n(y)
µ(y) dS(y)

∆v = 0 on Rd − ∂Ω, jumps at ∂Ω

v(x±) = ∓1
2µ(x) +

∫

∂Ω

∂G

∂n(y)
µ(y) dS(y)

To solve the Dirichlet problem
∆v = 0 in Ω, v = f on ∂Ω,

we solve an equation for µ on ∂Ω,

1
2µ(x) +

∫

∂Ω

∂G (x − y)

∂n(y)
µ(y) dS(y) = f (x)

a Fredholm integral equation of the second kind



Numerical Integration

Suppose f : Rd → R smooth and decaying at ∞.
Use regular grid points jh, j ∈ Zd , j = (j1, . . . , jd),

I =

∫

Rd

f (x) dx , S =
∑

j∈Zd

f (jh) hd

For ` ≥ d + 1, |S − I | ≤ C` h`‖D`f ‖L1

This follows from the Poisson Summation Formula:

(2π)−d/2
∑

j∈Zd

f (jh) hd =
∑

k∈Zd

f̂ (2πk/h)

where f̂ is the Fourier transform

f̂ (k) = (2π)−d/2

∫

Rd

f (x)e−ikx dx

A single layer potential in R3 ≈ an integral in R2 with 1/|x |
We want to use values only at grid points x = jh



A Simple Example

For f : R2 → R smooth, decaying at ∞, j = (j1, j2) ∈ Z 2

∫∫

R2

f (x)

|x | dx =
∑

j 6=0

f (jh)

|jh| h2 + O(h)

More precisely,

∫∫
=

∑
+ c0f (0)h + O(h3)

where c0 ≈ 3.900265, c0 = 4ab/(
√

2− 1),
a = 1 − 2−1/2 + 3−1/2 − 4−1/2 + . . .
b = 1 − 3−1/2 + 5−1/2 − 7−1/2 + . . .

The constant depends on the singularity.
For a surface with local coordinates α = (α1, α2),

1/r = 1/
√

gijαiαj , and c0 depends on gij .
The constants are difficult to compute.



Quadrature of Singular Integrals

Integrate a homogeneous fcn times a smooth fcn
using regularly space points

General principle: Assume that
K is homogeneous in x ∈ Rd of degree m,
K (ax) = amK (x), a > 0, x 6= 0
K (x) smooth for x 6= 0, m ≥ 1− d
f (x) smooth, f → 0 rapidly as x →∞

I =

∫

Rd

K (x)f (x) dx , S =
∑

j 6=0

K (jh)f (jh) hd

where j ∈ Zd . Then

S − I = hd+m(c0f (0) + C1h + C2h
2 + . . . )

(In our example, m = −1, d = 2, d + m = 1.)
Lyness ’76; Goodman, Hou & Lowengrub ’90
Again, c0 is difficult to find.



Regularization?

First thing to try:
1

|x | →
1√

|x |2 + δ2

Notice the regularized form

Kδ(x) = K (x)s(|x |/δ) , s(ρ) =

√
ρ2

ρ2 + 1

The error is O(δ), but we can make higher order kernels,
impose moment conditions
vortex methods, smooth particle hydrodynamics

We prefer more localized smoothing
Gaussian-based smoothing is much like Ewald summation



Quadrature with Regularization

Replace kernel K (degree m, −d ≤ m ≤ 0) with
Kδ(x) = K (x)s(x/δ) or Kδ(x) = δm K1(x/δ)

Assume s is chosen so that
Kδ is smooth; s → 1 at ∞

E.g., K (x) = 1/|x | , Kδ(x) = erf(|x |/δ)/|x |
Now compare integral with sum:

I =

∫

Rd

Kδ(x)f (x) dx , S =
∑

j

Kδ(jh)f (jh) hd

Again, if ρ = δ/h ≥ ρ0,

S − I = hd+m(c0f (0) + C1h + C2h
2 + . . . )

From the Poisson Summation Formula

c0 = (2π)d/2
∑

n 6=0

K̂ρ(2πn)

If Kρ is smooth, the terms decrease rapidly.
∫

Kδf ≈
∫

Kf ?



Simple Example, Regularized Version

Use sum with regularized kernel:

∫∫

R2

f (x)

|x | d2x ≈
∑

j∈Z2

f (jh)

|jh| erf(|jh|/δ) h2

Smoothing error:
∫∫

R2

f (x)

|x | (erf(r/δ)−1) d2x = 2πδf (0)

∫ ∞

0
(erf(ρ)−1) dρ+O(δ3)

∫∫

R2

f (x)

|x | d2x =

∫∫

R2

f (x)

|x | erf(r/δ) d2x + 2
√
πδf (0) + O(δ3)

After this correction, the total error is
smoothing error + discretization error = O(δ3) + O(he−c0δ

2/h2
)

E.g., f (x) = e−x2
, δ = 2h, error ≈ 1.2δ3 = 9.6h3 if h ≥ .0002

Discretization error can be corrected to O(h2e−c0δ
2/h2

)



Single Layer Potential on a Surface

For single layer potential on a surface, y on or near surface,

u(y) =

∫∫

S
G (y−x)f (x) dS =

∫∫
G (y−x(α)) f (x(α)) J(α) d2α

with coordinates α = (α1, α2), G (x) = −1/4π|x |
Regularize and discretize: Gδ(x) = G (x)erf(|x |/δ), α = (j1h, j2h)

u(y) ≈
∑

j∈Z2

Gδ(y − x(jh))f (x(jh)) J(jh) h2

Error in two parts:
∫ −∑

δ =
(∫ − ∫

δ

)
+

(∫
δ −

∑
δ

)

Smoothing correction = (δ/2)(1 + δηH)(|η|erfc|η| − e−η2
/
√
π)

where y is at (normal) distance b from x0 on the surface;
η = b/δ; and H = mean curvature at x0.

Smoothing error O(δ3) after correction.
Discretization error O(he−c0δ

2/h2
), correctable to O(h2e−c0δ

2/h2
)



Smoothing Correction, Nearly Singular Case

error =

∫∫
(Gδ − G ) (y − x(α))f (α) d2α

For y near Γ, let y = x(0) + bn(0), over α = 0
Use special coordinates α = (α1, α2) such that for α = 0,

gij is identity; Christoffel symbols are zero
tangent vectors are principal directions of curvature

(Gδ − G ) is a function of r/δ, rapidly varying for small δ

r2 = |x(α)− y |2 = |α2|+ b2 + O(|α|3 + b3)

Change variables, α→ ξ, define ξ = ξ(α, b) so r2 = ξ2 + b2

Rescale (ξ, b) by δ, expand integrand in δ

HHHHHHHHHHHHHH

x(0)

x(α)

y

b r



The Dirichlet Problem in 3D
Ω a bounded domain, S the boundary

∆u = 0 in Ω , u = g on S
For some f on S

u(y) =

∫

S

∂

∂n(x)
G (x − y)f (x) dS(x)

∂

∂n(x)
G (x − y) =

n(x) · (x − y)

4π|x − y |3 .

Solve the integral equation for f :

1

2
f (x) +

∫

S
K (x , x ′)f (x ′) dS(x ′) = g(x) , x ∈ S

Iteration with 0 < β < 1

f n+1 = (1− β)f n − 2βTf n + 2βg

Use overlapping coordinate grids, partition of unity
E.g., for sphere, two stereographic projections



Integrals on the Boundary Surface S
Use grids in coordinate patches X σ : Uσ → S, Uσ ⊆ R2

partition of unity ψσ(x), with Σσψ
σ(x) ≡ 1

e.g. ψσ = φσ/
∑

τ φ
τ , φσ(X σ(α)) = exp(−r2/(r2− |α|2), |α| ≤ r

grid points xσ
i = X σ(ih) in support of ψσ

∫

S
F (x ′) dS(x ′) =

∑
σ

∫

Uσ

F (Xσ(α))ψσ(Xσ(α))Aσ(α)dα

Integral equation with subtraction and discrete version:

f (x) +

∫

S
K (x , x ′)[f (x ′)− f (x)] dS(x ′) = g

f σ
i +

∑

j ,τ

Kστ
ij ψ

τ
j [f τ

j − f σ
i ]Aτ

j h2 + gσ
i

with Kστ
ij = Kδ(x

σ
i , x

τ
j ), Kδ(x , x

′) = n(x ′) · ∇Gδ(x
′ − x)

∇Gδ(x
′ − x) = ∇G (x ′ − x)s(|x − x ′|/δ),

s(r) = erf(r)− (2/
√
π)(r − 2r3/3)e−r2

, O(δ5) smoothing error



The Integral Equation on S

Theorem. For h, δ small, δ/h ≥ ρ0,
the discrete integral eq’n has a unique solution;
the iteration converges to the discrete solution;
and as h, δ → 0,

|f σ
i − f (xσ

i )| ≤ C1δ
5 + C2h

2e−c0δ2/h2

e.g, if δ = chq, q < 1, error = O(h5q)
c0 depends on coordinate systems
proof uses Hölder norms to maintain

agreement in overlaps



Nearly Singular Integrals on S
For y in Ω, near S,

u(y) =

∫

S

∂

∂n(x)
G (x − y)[f (x)− f (x0)] dS(x) + f (x0)

Start with the sum

S =
∑

σ,j

n(xσ
j ) · ∇Gδ(x

σ
j − y)[f (xσ

j )− f (x0)]ψ
σ
j Aσ

j h2

with errors O(δ2) and O(he−c0δ
2/h2

). Corrected sum is

ũ(y) = S + f (x0) + T1 + ΣσT σ
2 ,

|ũ(y)− u(y)| ≤ C1δ
3 + C2h

2e−c0δ
2/h2

Error is almost O(h3)



Corrections for Nearly Singular Integrals

Suppose y = x0 + bn0, x0 on S. Smoothing correction:

T1 = δ2(∆S f (x0))(η/4)(|η|erfc|η| − e−η2
/
√
π)

where ∆S = surface Laplacian, η = b/δ, ρ = δ/h
Discretization correction:

T σ
2 = −h

2∑

r=1

crψ
σ(α0)

∂(f ◦ X σ)

∂αr
(α0)

cr =
ρη

2

2∑

s=1

∑

n∈Q

a(n, s) sin (2πn · ν) g rsns

‖n‖ E (η, πρ‖n‖)

E (p, q) = e2pqerfc(p + q) + e−2pqerfc(−p + q)

Q = {n = (n1, n2) ∈ Z 2 : n2 ≥ 0, n 6= 0}
‖n‖ =

√
g ijninj ; a = 1 mostly; |nth term| ≤ Cρ exp(−c0ρn

2),
indep’t of y



The Dirichlet Problem on the Sphere

(1/2)f + Kf = g

f (x) = 1.75((Mx)1 − 2(Mx)2)(7.5(Mx)23 − 1.5)

g(x) = (4/7)f (x) , u(x) = g(x/|x |)|x |3

M =




1/
√

3 0 −2/
√

6

1/
√

3 1/
√

2 1/
√

6

1/
√

3 −1/
√

2 1/
√

6




Errors in the Integral Equation on the Sphere

δ = .5h2/3 δ = .75h2/3

1/h Grid Points δ/h Rel Err Order δ/h Rel Err Order

8 610 1.00 5.1E-4 1.50 3.6E-4
16 2490 1.26 6.1E-5 3.1 1.89 1.4E-5 4.7
32 10026 1.59 4.0E-6 3.9 2.38 1.7E-6 3.1
64 40138 2.00 6.3E-8 6.0 3.00 1.7E-7 3.3



The Dirichlet Problem on the Sphere, (cont’d)

(1/2)f + Kf = g

f (x) = 1.75((Mx)1 − 2(Mx)2)(7.5(Mx)23 − 1.5)

g(x) = (4/7)f (x) , u(x) = g(x/|x |)|x |3

M =




1/
√

3 0 −2/
√

6

1/
√

3 1/
√

2 1/
√

6

1/
√

3 −1/
√

2 1/
√

6




Errors at Nearby Points

Irreg δ = .5h2/3 δ = .75h2/3 δ = 2h
1/h Points Rel Err Order Rel Err Order Rel Err Order

8 606 3.1E-3 6.9E-3 1.5E-2
16 2546 5.3E-4 2.6 1.7E-3 2.0 2.0E-3 2.9
32 10470 1.3E-4 2.0 4.3E-4 2.0 2.6E-4 3.0
64 42282 3.2E-5 2.0 1.1E-4 2.0 3.2E-5 3.0



The Dirichlet Problem on an Ellipsoid

S : x2
1 + x2

2 + x2
3/2 = 1

u(x) = exp ((Mx)1 + 2(Mx)2) cos
√

5(Mx)3)

(1/2)f + Kf = g

Set g = u on S; f is unknown.
Solve integral equation for f , compute u(y) near S

Errors at Nearby Points

Irreg δ = .5h2/3 δ = .75h2/3 δ = 2h
1/h Points Rel Err Order Rel Err Order Rel Err Order

8 798 4.1E-3 7.8E-3 1.3E-2
16 3330 3.1E-4 3.8 1.0E-3 3.0 1.2E-3 3.4
32 13614 7.6E-5 2.0 2.5E-4 2.0 1.5E-4 3.0
64 54914 1.9E-5 2.0 6.2E-5 2.0 1.9E-5 3.0
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