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On retrieval of Green's Function from correlations of noise
 . . . . the perspective of a Physicist and Experimentalist
 

Recent intense activity correlating ambient 
seismic noise at 10's of seconds has given 
us stunning maps of the earth's elasticity 
to depths of 10's of km or more.   Theory in 
support of the methods has lagged.   While 
it is quite clear that – under conditions 
of equipartition – such correlations ought 
to converge on the Green's function, it is 
less clear how much we should trust the 
results when the ambient waves do not 
satisfy the conditions.   

I review a few of the proofs and laboratory 
demonstrations, paying particular attention 
to the degree of equipartition present in 
each case and estimates for the quality of 
convergence.

In many circumstances one can show that a 
laboratory or seismic correlation, even when 
the averaging is essentially converged, does 
not correspond to the Green's function.   
The discrepancy is traceable to an insufficiently 
diffuse and equipartitioned noise field.   
I discuss one way to finesse this failure 
of the conditions; a numerical example is offered.



A few proofs

Convergence rates.  Signal/Noise ?

Laboratory demonstrations - 
- using fully diffuse, and almost fully diffuse, coda waves

Seismic applications 
- using ambient not fully diffuse waves
- stunning results but how much can we trust them ?

A numerical experiment seeking to retrieve G from anisotropic noise 
using higher order averages.

Outline -



Main Points

 Correlations of fields ψ, C = < ψ ψ > 
∂C/∂t =  Greens Function

except for
a) Fluctuations [ insufficient averaging ]
b) imperfectly diffuse fields ψ.

review of
proofs
laboratory demonstrations
theory for fluctuation levels
results with ambient seismic waves

  Towards a finesse of caveat (b)

Some numerical experiments



Lobkis, O.I., and R.L. Weaver, On the emergence of the Greens function 
in the correlations of a diffuse field, J. Acoust Soc Am, 110, 3011-3017, 2001

Plausibility arguments, sundry "proofs", laboratory study in a finite body.

Weaver, R.L., and O.I. Lobkis, Ultrasonics without a source:  Thermal 
fluctuation correlations at MHz frequencies, Phys. Rev. Lett., 87 134301, 2001.

Proof for a thermally diffuse field, and 
Lab demonstration of high quality retrieval from a thermally diffuse field

Snieder, R., 2004, Extracting the Green's function from the correlation of 
coda waves: A derivation based on stationary phase: Phys. Rev. E, 69, 46610.

A "proof" applicable to open media

R L Weaver and O I Lobkis, “Diffuse waves in open systems and the emergence 
of the Greens’ function,” J Acoust Soc Am 116, 2731-4

A different proof, with different predicates, for an open medium

Wapenaar K 2004 Retrieving the elastodynamic Greens function of an arbitrary 
inhomogeneous medium by cross correlation, Phys Rev Lett 93 254301

An entirely different relation, often cited as equivalent.

Proofs of correlation:

  

€ 

G(r x , r y ;τ ) ~ ∂
∂τ

<ψ(r x , t)ψ(r y , t + τ ) > ?

Obviously, it depends on the nature of ψ and what is meant by  < >.
Original assertion G = dC/dτ  if ψ is fully diffuse, i.e., equipartitioned



J. Acoust Soc Am, 110, 3011-3017, 2001
Plausibility arguments, sundry "proofs", and a laboratory study in a finite body

Three plausibility arguments / proofs were offered:

  1)  Randomly excited normal modes (in a finite) body

φ (x,t) =  UΣ ∞
n =1 an un(x) exp{iω nt}

<  φ (x, t)  φ (y, t + τ) >  =  1
2
U  Σ ∞

n=1F(ω n) un(x) un(y) exp{− iω nτ}

Gxy(τ) =  Σ ∞
n=1un(x) un(y) 

sin ω nτ

ω n
    [ for τ >  0 , 0 otherwise ]

Compare with G . . . 

n.b: this follows from maximum entropy

C =

So, ∂C/∂τ = G - Gtime reversed , i.e,  G - G* or  Im G



2)  Propagator Picture  (applies in a bounded or unbounded medium) 
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<  φ (x,t) φ (y,t) >  =  δ 3(x− y) Φ(x);   <  φ (x,t) φ̇ (y,t) >  =  0

< φ (y,t + t) φ (x,t) >  =  Φ ( x) /ρ(x)  Ġyx(τ) 

From definition 
   of G  (exact)

an assumption
of no equal-time 
correlations

We deduce
the
retrieval
(for τ > 0)

(It is not obvious what this condition means)

and



3) Exact/explicit normal mode treatment for a finite body 
                  with discrete random sources

Vx(t) =  Σ ∞
n=1 un(x) un(s) T  [ X̃(ω n) S̃(ω n) exp{iω nt} /ω n]

Vy(t) =  Σ ∞
n=1 un(y) un(s) T  [ Ỹ(ω n) S̃(ω n) exp{iω nt} /ω n]

Vs(t) =  Σ ∞
n=1  un(s) 2 T  [  S̃(ω n) 2 exp{iω nt} /ω n]

Cxy(τ) =  
t=  ΔT /2

I
t=−  ΔT /2

W(t)  V x(T + t) V y(T + t+ τ) dt

Cxy(τ) =  1
2
Σ n Σ m un(x) um(y)   [un(s)um(s)] /ω mω n                                      (12) 

      U  X̃(ω n) S̃(ω n) Ỹ ∗(ω m)S̃∗(ω m)exp{− iω mτ} W̃(ω n−ω m) exp{iT (ω n−ω m)}

(Definition of C)

exact

Exact, normal mode expansion



Cxy(τ) =  1
2
Σ n Σ m un(x) um(y)   [un(s)um(s)] /ω mω n                                      (12) 

      U  X̃(ω n) S̃(ω n) Ỹ ∗(ω m)S̃∗(ω m)exp{− iω mτ} W̃(ω n−ω m) exp{iT (ω n−ω m)}

Double sum reduces to diagonal terms  . . . .  
If  W is long lasting enough
and/or If  we average over many source positions s.

Cxy(τ) .  W̃(0) Σ n
[un(s)]2 | S̃(ω n) |2

2 ω 2
n

 U  X̃(ω n)Ỹ∗(ω n) un(x) un(y) exp{− iω nτ} 

An average over sources then gives our retrieval (almost . . . . . .  caveats).

Approach underlines the need for a source average
time average from a single source does not suffice 

It also lends itself to estimating variances



State of the proof ca 2001:
normal mode with maximum entropy statements about the an's 
or normal mode representation with explicit sources s.

 - inapplicable to unbounded media
Propagator proof 

- meaning of assumption?
Then, Snieder, 2004,
"Extracting the Green's function from the correlation of 
coda waves: A derivation based on stationary phase" Phys. Rev. E, 69, 46610

Showed that a distribution of distant random point sources in an unbounded 
(and homogeneous) medium

Gave a random field at x and y that correlated
to give the (ballistic) Green's function G(x,y)

Reminiscent of the room acoustics (also Aki) proof 
that an incoherent superposition of plane waves from 
all directions gives a field-field correlation 
C = jo(k|x-y|) = sinc(k|x-y|)= Im G



A third argument:

Imagine an ensemble of sources s(x)f(t) 
distributed over all space.    cf Roux et al 

With <s> = 0; <s(x)s(x')> = δ3(x-x').

Then

€ 

an = un (x)s(x)d3x∫ f (ωn ) /ωn

Satisfies modal-perspective definition of equipartition: 

€ 

< anam
* >=δnm <| f (ωn ) |

2>

Applicable to unbounded, heterogeneous, and even to lossy media, 
but requires
infinite number of sources, including sources near x and y.



The above proofs can be thought of as following in part from a
 (perhaps familiar?) identity . . .

€ 

Im ˜ G (x, y,ω ) = −ωε ˜ G (x,u,ω ) ˜ G *(u, y,ω )du∫

a property of Greens functions, 
relating the square of the operator G to its Imaginary part.

. . .  other forms of this "Ward" identity entail
integrals over bounding surfaces
integrals over the dissipative parts of the volume

  versions without the *

              e.g.

€ 

˜ G (ω +Ω / 2)− ˜ G (ω −Ω / 2)
= −2ωΩ ∫ ˜ G (ω +Ω / 2) ˜ G (ω −Ω / 2)

aside . . .



Problems with above arguments for G = ∂C/∂τ

     ➨ The first (Weaver) requires modal Equipartition  

Manifest nonsense in an open medium

➨ The second (Snieder) requires plane waves to be solutions of the 
wave equation (and smoothly randomly distributed in incident direction)

Manifestly incorrect in 
heterogeneous media
or near boundaries

Also :  what about incompletely diffuse wave fields ?

➨ The third (Roux) asks for sources over all ∞; 
is this reasonable?  Is it necessary?



Needed:
An argument for ∂C(a,b)/∂τ ~ G(a,b)  based on a more 
useful notion of a diffuse field.

R L Weaver and O I Lobkis, “Diffuse waves in open systems and the 
emergence of the Greens’ function,” J Acoust Soc Am 116, 2731-4 (2004) 

Presented a proof,  for a heterogeneous open medium
using a notion of a diffuse field which is either

➨ Due to uncorrelated sources s(x)f(t)
over entire volume external to U+V

or

➨ Due to an incident field in U that satisfies
room-acoustics notion of a diffuse field =
incoherent superposition of incident plane waves.



€ 

ImGab ~ω <ψ(a)ψ*(b) >

➨ Retrieved G includes scatterings, not just ballistic waves.
➨ It suffices for the incident field to be diffuse by the ordinary local definition



But real sources are not distributed so uniformly

So why, by the way, ought we expect a real diffuse field 
to be equipartitioned?   

What is meant by that?



R. Weaver, "On Diffuse Waves in Solid Media,"  J. Acoust. Soc. Am., 71, 1608-1609 (1982)
R. Weaver, "Diffuse Elastic Waves at a Free Surface," J. Acoust. Soc. Am., 78, 131-136 (1985)
Renaud Hennino, Nicolas Trégourès, Nicolaï M Shapiro, Ludovic Margerin, Michel Campillo, 
       Bart A van Tiggelen and R L Weaver, "Observation of equipartition of seismic waves," 
       Phys Rev Lett  86  3447-50 (2001)
Also, the idea of detailed balance : R. Weaver, J Sound & Vibr (1984) 

Equipartition:

What is it?
Why/when does it happen?
What is it good for?

Essential concept:  After enough multiple scattering, 
(each scattering or reflection generating mode conversion)

A wave field achieves a dynamic balance amongst
different wave types and 
different propagation directions



First(?) occurrence of the concept, 
for elastic waves in thermal equilibrium:

P. Debye (1914) Theory of Specific Heat of (insulating) Solids
(see, e.g. C Kittel : Intro to Solid State Physics)

Then, for more general diffuse elastic waves:
D Egle 1981 Diffuse waves in solid media J Acoust Soc Am 70, 476

Egle argued that multiply reflected elastic waves in a finite reverberant body
would mode convert and achieve a steady state balance between P and S waves,

Calculated by him using Monte Carlo methods and 
known mode conversion reflection coefficients
and an assumption that rays are incident at uniformly random angles.

Egle found, for ν = 0.30,
       a ratio of 12.9



Then, 

R. Weaver, "On Diffuse Waves in Solid Media,"  
J. Acoust. Soc. Am., 71, 1608 (1982)

claimed, that, like the thermally equilibrated waves of Debye, 
a fully randomized elastic wave field should partition its energy in proportion to the 
number of modes of each type at a given frequency in a given volume.

Standard argument for counting modes:

    In a 3-d rectangular region,
        (with Dirichlet Boundary Conditions)

    There is a mode at any wavevector

     where kx = nπ/Lx, ky = mπ/Ly, kz = jπ/Lz   (n, m, j > 0)

     This allows us to count the modes with frequencies less than ω:
     N = LxLyLz ω3/6c3π2  − scales with volume, and inversely with c3.

        (In 2-d it is proportional to area and inversely proportional to c2)

  

€ 

r 
k = kx ˆ e x + kyˆ e y + kz ˆ e z , ω = c |

r 
k |

  

€ 

r 
k 



N = LxLyLz ω3/6c3π2  for each wave type implies

  Nshear = 2 * Volume  x ( ω3/6π2 ) / cS
3

NP =           Volume  x  ( ω3/6π2 ) / cP
3

Ratio =
Nshear/NP = 2cP

3/cS
3 ~ 

typically 10 or more, depends on ν.

Numerical value at ν = .3  (13.1) 
~agreed with Egle's calculation (12.9)

also calculated ratio of 
Rayleigh wave surface energy density
to volumetric density of bulk waves



The agreement between the calculations was not a 
numerical co-incidence, but rather, 
           a consequence of reciprocity and energy conservation.(*)

Discussion thereon is found in
R. Weaver, "Diffuse Waves in Finite Plates,"
J. Sound and Vibr., 94, 319-335 (1984)
( see also experiment follow up:J.A.SA., 79, 1986)

in which the steady state balance
amongst the several
guided Lamb waves of a plate was calculated
      (and it was noted that equipartition factor c3 is really vgroupcphase

2)

And where it was shown that this partition is the only way to have a
steady-state balance of energy amongst the different wave types.

A thick
plate with
a diffuse
field

(* or maximum entropy)



Reciprocity and Energy conservation

establish that

The Rate at which 
  incident S energy (from direction nS)
  converts to P energy (in direction nP)

is proportional to phase space volume for P ~ cp
-3 = small

and

The Rate at which 
  incident P energy (from direction nP)
  converts to S energy (in direction ns)

 is proportional to phase space volume for S ~ cS
-3 = big

With the same Proportionality factor!
Equilibrium balance therefore requires much more S energy density

slow

fast

Detailed balance . .  .



R. Weaver, "Diffuse Elastic Waves at a Free Surface," 
J. Acoust. Soc. Am., 78, 131-136 (1985)

Discussed the consequences of equipartition for elastic
waves at a surface

Showed:    A picture of a diffuse field as an incoherent mixture
of plane waves incident upon the free surface from
the bulk + their reflections + incident Rayleigh wave

                  Gave the same predictions for < ψ2(x) > 
as Im[Greens function(x,x)] 

Also showed that the Rayleigh waves are responsible for about 70% of
the vertical surface motion in a diffuse field. 



Renaud Hennino, Nicolas Trégourès, Nicolaï M Shapiro, 
Ludovic Margerin, Michel Campillo, Bart A van Tiggelen and 
Richard Weaver,  "Observation of equipartition of seismic waves," 
Phys Rev Lett  86  3447-50 (2001)

15 years later . . . 

Applied these ideas to measured coda at the earth's surface.
and showed that those Mexican codas had
 • the expected equipartitions  (ES / EP ~ 7 at surface of half space)
 • and values of H/V and H/E 
 • and values of various mean square strains

. . .  indicating that the coda was 
i)  equipartitioned
ii) therefore thoroughly multiply scattered . . ?

Story from Cargese . . .



A laboratory confirmation  (in a finite specimen). .  .

Capture each source's coda at each of
two receiver positions

Correlate from each source
and average . .
    Compare with direct signal 1 → 2



Results  . . . 
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correlation  
--------

Chief observation:  C~G, but there are fluctuations - 
how to apriori estimate confidence?
how to know what's C and what's fluctuation?



Theories for the fluctuations

           how to estimate how much averaging is needed ?
           and to estimate whether a feature seen in C is real

RL Weaver and O I Lobkis, "The mean and variance of diffuse field correlations in finite bodies", 
The Journal of the Acoustical Society of America , 118, 3447 (2005),

€ 

var Rab /< R >2

= [2+ (2or 3)d(τ )+ 1
2
(TH
T
)2(1− exp{−2T /TH})]

per source

1)  In a Finite Body

where TH = “Heisenberg time” = modal density = 2π ∂N(ω)/∂ω



Experiments

Thermo-elastic surface
excitations from pulsed laser,
~132 different positions

A Q-switched Nd:YAG laser excites elastic waves 
in an irregular aluminum block of nominal dimension 15 cm.  

The signals from two piezoelectric transducers are 
amplified and lo-pass filtered before being digitized 
by a PC.
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Direct Signal from one transducer to the other:

Observe ray arrivals corresponding to
    Surface Rayleigh wave
    Surface skimming P wave (P)
    Bottom reflected P wave (LL)
    P wave reflected twice off bottom(LLLL)



Theory of normalized variance (assuming randomly
distributed sources and a data capture duration T) :

€ 

[2+ (2or 3)d(t)+ 1
2
(TH
T
)2(1− exp{−2T /TH})]
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Comparison of
a) Direct signal between transducers
b) Adjusted Correlation

- adjusted for source time function
- and transducer response functions

c)  observed ( var / {numberofsources N}  )1/2
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Strength of fluctuations agrees with theory
But deviation (G-C essentially) is in excess of expected error.

 . . . . . why ?  



Imaging with coda correlations . . 

Larose et al JASA 119 (2006)



2) theory for fluctuations in an open medium . . . 

€ 

ray peak height2

var
=

1
2 π

NT
Δ

c2

r2ω 2
 (in 3-d)

  Retrieved ray arrival peak energy      
 energy of background fluctuations =

NT = number of sources * duration of each coda,
Δ = inverse bandwidth,

so NT/Δ = amount of information collected.

So, good resolution requires: 
    amount of information collected      >> 

[source-receiver separation in units of λ/2π]d−1 



Ambient ~10 sec
Seismicity in western US

( generated mostly 
        by ocean storms?)

Detected on an array of
Wide-band stations.



A sample correlation (Ritzwoller's group) of ambient ~10 second period
seismic noise in CA, with a year of data collecting.

Shows      a) failure of symmetry in τ
  b) some (even noncausal!) deviations from simple ray arrivals

Theory says fluctuations/error ought to be tiny. (~1%)
So, the anomalous features above are real, i.e. C = ∂τ< ψ ψ > ≠   G

Rayleigh wave

Love wave



Nevertheless maps of wavespeed are constructed by tomography . . 



Conclude - even though ambient waves are not fully diffuse,
maps are still constructable.



A map of Surface-wave
Velocity in California

Obtained from correlating
30 days of seismic noise

earthquake
1 year of 
correlations

4 one-month
correlations

Shapiro, N.M., M. Campillo, L. Stehly, and M.H. Ritzwoller, 2005, High-Resolution Surface-Wave
Tomography from Ambient Seismic Noise:  Science 307:1615-1618



Paul, Campillo, Margerin,
and Larose
correlated the codas
of several Alaskan earthquakes



Correlations of coda
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, (2005)

Time (sec)

NB.  Asymmetry reduced if raw data is confined to later coda

From a set of 100 regional
earthquakes, each with a coda
of about 300 sec duration.

NT = 30,000sec
Δ= 20 sec
λ = 20km

At 40 km distance, rω/c =13
pk height/rmsbackground= 10%



Virtues of using ambient noise
there is lots of it: many years x many stations

Downside
it is imperfectly diffuse

Virtues of using earthquake coda
If late enough it is more closely equipartitioned

Downside
There is not much of it, especially of the very late variety
Need many strong earthquakes with different sources

  Speculation that we can combine the virtues:(?)

Examine the coda of ambient noise correlations
                      . . . . and correlate that.



Numerical experiment
A 251 x 291 rectangular domain with

 dissipation
 inhomogeneous 

distribution of sources
 net wave flux

DNS run for 20,000 transit times.
Signals recorded on each of

2000 receivers.

We shall focus on the
responses at two
particular sites

Wavespeed ~1 ( plus dispersion)
Dissipation ( one e-fold of energy loss per transit)



Each source applies a forcing which is white noise convolved with

A band limitation
centered on a frequency 
of 0.17 Hz
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Snapshot of wave field
8000 seconds after sources
began  ( only 6 sources here )

Field is imperfectly diffuse.
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Correlation of signals at particular receivers
   due to waves from noisy sources

NB.   Note the time-non symmetry as with ambient seismic correlations
Note the noncausal amplitude near τ=0 as with ambient seismic correlations

  Can't be ImG.
NB.   This correlation has converged. 
                 because the expected error ( < 1% of peak ) is below 'signal'

     out to beyond τ = 1000.   Thus this is all real!

On correlating 660,000 seconds of signals at the two special receivers,
 . . . .   ∂ < ψ1(t+τ)ψ2(t)  > / ∂τ =

τ



A correlation like
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Correlation of signals at particular receivers
   due to waves from noisy sourcesC12(τ)

Is constructed for each receiver r = 3,4 . . 2000

C1r(τ)   and    C2r(τ), 
each windowed into a reliable coda regime 300 < τ < 1000

Then the meta-correlation is constructed

€ 

Χ(τ ' ) ≡ ∂
∂τ '

<C1r (τ )C2r (τ + τ ' )
r
∑ >τ

Finesse . . ?



0 100 200 300 400 500
-1.0e+13

-5.0e+12

0.0e+00

5.0e+12

1.0e+13

lag time

d/dt of Correlation between C(1,r) and  C(2,r), 
each windowed on coda (300 < t < 1000 )
averaged over 2000 receivers r

€ 
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Conclude -
with enough correlations  (e.g. 2000 sites) 
from enough of a time record (e.g. 100,000 cycles)

A decent Im G can be constructed

even if the raw fields are not equipartitioned.



In Sum . . . .

Simple proofs of G ~ ∂C/∂t   are common now

Many lend themselves to estimates of variance

Most seismic records are averaged more than sufficiently

The chief caveat, and reason for  G≠ ∂C/∂t, is     
The raw fields are insufficiently equipartitioned

Can be fixed by focusing on multiply scattered coda
available - if there is sufficient S/N -

at late times from distinct sources
or

at late times in ambient noise correlations

Even when G≠ ∂C/∂t, C's are permitting good images. 



The best diffuse field is that provided by thermal 
fluctuations of elastic waves

A gas of phonons as it were . . . .



The strength of a thermal ultrasonic field at MHz frequencies

1)    Classical Thermal Fluctuation analysis tells us;
Each mode has small energy    kT ≈ 4.2 x 10-21 joules
For typical solids,

with mode counts below 1 MHz of ~ 300 modes / cm3

We have energy densities of ~ 10-12 Joules / m3

and rms strain amplitudes of    ~ 3 x 10-12

and rms displacement amplitudes of  ~ 10-15 meter
< radius of electron!

2)    How difficult is it to detect such weak signals?
We'll see . . . .

3)     Why should we do so?
Answer:
They are perfectly diffuse,

and carry ultrasonic information



Comparison of a
Direct Pulse-Echo
Signal,

and a
Thermal Noise
Correlation


